
Supplement to “On Robust Optimal Transport: Computational
Complexity and Barycenter Computation”

In this supplementary material, we collect several proofs and remaining materials that are deferred
from the main paper. In Appendix A, we introduce and recall necessary notations for the sup-
plementary material. In Appendix B, we provide key lemmas and proofs for the computational
complexity of robust semi-constrained optimal transport (RSOT), and those regarding ROT are in
Appendix D. Appendix C is devoted to the lemmas and proofs for the computational complexity of
robust semi-constrained barycenter (RSBP). We provide the proof for computational complexity of
robust Sinkhorn algorithms via Nyström approximation in Appendix E. Finally, we present additional
experiment studies with the proposed robust algorithms in Appendix F.

A Notations

This appendix aims to introduce some notations that will be used intensively in the subsequent parts
of the appendix. We start with the meaning of notations for the general case, and those for remaining
cases follow similarly (see the table content). First, we denote f and g to be the original objective and
the corresponding entropic-regularized objective, respectively, and let X̂ := arg min f(X), X∗ :=
arg min g(X). The sum of all elements in X is x := ‖X‖1 (similarly, x∗ := ‖X∗‖1). Regarding
Sinkhorn algorithm, uk, vk are the updates of the k-th iteration. The converged values for uk
and vk (if exist) are denoted u∗ and v∗ respectively, i.e. u∗ := limk→∞ uk, v∗ := limk→∞ vk.
Finally, for the ease of presentation, let us denote some quantites which will be frequently used
in our proofs: ∆k := max{‖uk − u∗‖∞, ‖vk − v∗‖∞}, R := max{‖log(a)‖∞, ‖log(b)‖∞} +

max

{
log(n),

1

η
‖C‖∞ − log(n)

}
, α := ‖a‖1, β := ‖b‖1 and ρi = ‖pi‖1 for all i ∈ [m].

General Robust Semi-OT Unbalanced OT Robust OT Non-normalized RSBP RSBP

f : f(X) := 〈C,X〉+ τ × regularization frsot frot frsbp

g : g(X) := f(X)− ηH(X) grsot grot grsbp

X̂ := arg min f(X) X̂rsot X̂uot X̂rot X̂

X∗ := arg min g(X) X∗rsot X∗uot X∗rot X̄∗ X∗

x∗ := ‖X∗‖1 1 x∗uot 1 x̄∗ 1

uk, vk (k-th Sinkhorn/IBP update) ukrsot, v
k
rsot ukuot, v

k
uot uk = (uk1 , . . . , u

k
m),vk = (vk1 , . . . , v

k
m)

(u∗, v∗) := limk→∞(uk, vk) u∗rsot, v
∗
rsot u∗uot, v

∗
uot u∗ = (u∗1, . . . , u

∗
m),v∗ = (v∗1 , . . . , v

∗
m)

∆k := max{‖uk − u∗‖∞, ‖vk − v∗‖∞} ∆k
rsot ∆k

uot ∆k = (∆k
1 , . . . ,∆

k
m)

Xk := B(uk, vk) Xk
rsot Xk

uot Xk
rot X̄k Xk

xk := ‖Xk‖1 1 (if k is even) xkuot 1 x̄k 1

Table 1: Key notations for technical results and proofs in the supplementary material. When a term has a constant
value (e.g. 1), we provide that value instead of the corresponding notation.

B Robust Semi-Constrained Optimal Transport: Omitted Proofs

This appendix is devoted to provide the lemmas and proofs for the computational complexity of
robust semi-constrained optimal transport.

B.1 Useful Lemmas

We first start with the following useful lemmas for the proof of Theorem 1.
Lemma 3. The following inequalities are true for all positive xi, yi, x, y.

(a) min
1≤i≤n

xi
yi
≤
∑n
i=1 xi∑n
i=1 yi

≤ max
1≤i≤n

xi
yi

,

(b) If max
{x
y
,
y

x

}
≤ 1 + δ, then |x− y| ≤ δmin{x, y},

14

(c)
(

1 +
1

x

)x+1

≥ e.

Proof of Lemma 3.
(a) It follows from the assumption xi and yi are positive that

yj min
1≤i≤n

(xi
yi

)
≤ xj ≤ yj max

1≤i≤n

(xi
yi

)
.

Taking the sum over j,
n∑
j=1

yj min
1≤i≤n

(xi
yi

)
≤

n∑
j=1

xj ≤
n∑
j=1

yj max
1≤i≤n

(xi
yi

)
.

This directly leads to the conclusion.
(b) WLOG assume that x > y, then

x

y
≤ 1 + δ ⇒ x ≤ y + yδ ⇒ |x− y| ≤ yδ.

(c) For the fourth inequality, taking the log of both sides, it is equivalent to

(x+ 1) [log(x+ 1)− log(x)] ≥ 1.

By the mean value theorem, there exists a number y between x and x + 1 such that log(x + 1) −
log(x) = 1/y, then (x+ 1)/y ≥ 1.

Lemma 4. Let a∗rsot = X∗rsot1n, a
k
rsot = Xk

rsot1n and b∗rsot = (X∗rsot)
>1n, b

k
rsot = (Xk

rsot)
>1n. Then,

(i)
∣∣∣∣log

((a∗rsot)i
(akrsot)i

)
− (u∗rsot)i − (ukrsot)i

η

∣∣∣∣ ≤ max
1≤j≤n

(v∗rsot)j − (vkrsot)j
η

,

(ii)
∣∣∣∣log

((b∗rsot)j
(bkrsot)j

)
− (v∗rsot)j − (vkrsot)j

η

∣∣∣∣ ≤ max
1≤i≤n

(u∗rsot)i − (ukrsot)i
η

.

Proof of Lemma 4.
(i) From the definitions of (akrsot)i and (a∗rsot)i, we have

log

(
(a∗rsot)i
(akrsot)i

)
=

(
(u∗rsot)i − (ukrsot)i

η

)
+ log

∑n
j=1 exp

(
(v∗rsot)j−Cij

η

)
∑n
j=1 exp

(
(vkrsot)j−Cij

η

)
 .

The desired inequalities are equivalent to upper and lower bounds for the second term of the RHS.
Applying part (a) of Lemma 3, we obtain

min
1≤j≤n

(v∗rsot)j − (vkrsot)j
η

≤ log

(
(a∗rsot)i
(akrsot)i

)
− (u∗rsot)i − (ukrsot)i

η
≤ max

1≤j≤n

(v∗rsot)j − (vkrsot)j
η

.

(ii) Part (ii) are done similarly.

Lemma 5. We have following upper bounds for the optimal solutions of RSOT’s dual form, which is
useful for the derivation of the convergence rate:

max{‖u∗rsot‖∞, ‖v∗rsot‖∞} ≤ (2τ + η)R.

Proof of Lemma 5. First, we will show that

‖u∗rsot‖∞
(1

τ
+

1

η

)
≤ ‖v

∗
rsot‖∞
η

+R. (17)

Since u∗rsot is a fixed point of the update in Algorithm 1, we get

u∗rsot

τ
= log(a)− log(a∗rsot). (18)

15

Then,

(u∗rsot)i
τ

= log(ai)− log

 n∑
j=1

exp
((u∗rsot)i + (v∗rsot)j − Cij

η

) ,
which is equivalent to

(u∗rsot)i

(1

τ
+

1

η

)
= log(ai)− log

[n∑
j=1

exp
((v∗rsot)j − Cij

η

)]
.

The second term can be bounded as follows

log
[n∑
j=1

exp
((v∗rsot)j − Cij

η

)]
≥ log(n) + min

1≤j≤n

{ (v∗rsot)j − Cij
η

}
≥ log(n)− ‖v

∗
rsot‖∞
η

− ‖C‖∞
η

,

and

log
[n∑
j=1

exp
((v∗rsot)j − Cij

η

)]
≤ log(n) + max

1≤j≤n

{ (v∗rsot)j − Cij
η

}
≤ log(n) +

‖v∗rsot‖∞
η

,

thus leading to∣∣∣ log
[n∑
j=1

exp
((v∗rsot)j − Cij

η

)]∣∣∣ ≤ ‖v∗rsot‖∞
η

+ max
{

log(n),
‖C‖∞
η
− log(n)

}
. (19)

Hence,

|(u∗rsot)i|
(1

η
+

1

τ

)
≤ | log(ai)|+

‖v∗rsot‖∞
η

+ max
{

log(n),
‖C‖∞
η
− log(n)

}
.

Choosing i such that |(u∗rsot)i| = ‖u∗rsot‖∞, combining with the fact that

| log(ai)| ≤ max{‖ log(a)‖∞, ‖ log(b)‖∞},
we have

‖u∗rsot‖∞
(1

τ
+

1

η

)
≤ ‖v

∗
rsot‖∞
η

+R. (20)

Next, we will prove that
‖v∗rsot‖∞ ≤ ‖u∗rsot‖∞ + ηR.

Notice that v∗rsot is a fixed point of the update in Algorithm 1, we get v∗rsot = η
[v∗rsot

η
+ log(b) −

log(b∗rsot)
]
, which implies that log(b∗rsot) = log(b). Therefore,

log(bj) = log
[n∑
i=1

exp
((u∗rsot)i + (v∗rsot)j − Cij

η

)]
=

(v∗rsot)j
η

+ log
[n∑
i=1

exp
((u∗rsot)i − Cij

η

)]
,

or equivalently,
(v∗rsot)j
η

= log(bj)− log

[
n∑
i=1

exp
((u∗rsot)i − Cij

η

)]
.

Using the same arguments as for deriving equation (19), we obtain∣∣∣ log
[n∑
i=1

exp
((u∗rsot)i − Cij

η

)]∣∣∣ ≤ ‖u∗rsot‖∞
η

+ max
{

log(n),
‖C‖∞
η
− log(n)

}
.

It follows that
1

η
|(v∗rsot)j | ≤ | log(bj)|+

‖u∗rsot‖∞
η

+ max
{

log(n),
‖C‖∞
η
− log(n)

}
.

16

Choosing j such that |(v∗rsot)j | = ‖v∗rsot‖∞, and making use of the fact that

| log(bj)| ≤ max{‖ log(a)‖∞, ‖ log(b)‖∞},

we have
‖v∗rsot‖∞ ≤ ‖u∗rsot‖∞ + ηR. (21)

From equations (20) and (21), we get

‖u∗rsot‖∞
(1

τ
+

1

η

)
≤ ‖v

∗
rsot‖∞
η

+R ≤ ‖u
∗
rsot‖∞
η

+ 2R,

which implies that
‖u∗rsot‖∞ ≤ 2τR ≤ (2τ + η)R. (22)

Therefore,
‖v∗rsot‖∞ ≤ ‖u∗rsot‖∞ + ηR ≤ (2τ + η)R. (23)

Combining equation (22) with equation (23), the proof is completed.

Lemma 6. For any k ≥ 0, the update (uk+1
rsot , v

k+1
rsot) from Algorithm 1 satisfies the following bound

max
{
‖uk+1

rsot − u∗rsot‖∞, ‖vk+1
rsot − v∗rsot‖∞

}
≤
(τ

τ + η

)k/2
× (2τ + η)R. (24)

This establishes a geometric convergence rate for the dual variables in Algorithm 1.

Proof of Lemma 6. We first consider the case when k is even. From the update of uk+1
rsot in Algorithm

1, we have

(uk+1
rsot)i =

ητ

τ + η

[(ukrsot)i
η

+ log(ai)− log((akrsot)i)
]

=
ητ

τ + η

{
(ukrsot)i
η

+
[

log(ai)− log((a∗rsot)i)
]

+
[

log((a∗rsot)i)− log((akrsot)i)
]}

.

Using equation (18), the above equality is equivalent to

(uk+1
rsot)i − (u∗rsot)i =

[
η log

((a∗rsot)i
(akrsot)i

)
− ((u∗rsot)i − (ukrsot)i)

] τ

τ + η
.

Applying Lemma 4, we get

|(uk+1
rsot)i − (u∗rsot)i| ≤ max

1≤j≤n
|(vkrsot)j − (v∗rsot)j |

τ

τ + η
,

which implies that
‖uk+1

rsot − u∗rsot‖∞ ≤
τ

τ + η
‖vkrsot − v∗rsot‖∞. (25)

From the update of vkrsot in Algorithm 1, we have

(vkrsot)j = (vk−1
rsot)j + η log

(bj

(bk−1
rsot)j

)
= (vk−1

rsot)j + η log
((b∗rsot)j

(bk−1
rsot)j

)
.

Subtracting (v∗rsot)j from both sides and applying Lemma 4, one gets

|(vkrsot)j − (v∗rsot)j | = η
∣∣∣ log

((b∗rsot)j

(bk−1
rsot)j

)
− (v∗rsot)j − (vk−1

rsot)j
η

∣∣∣ ≤ ‖uk−1
rsot − u∗rsot‖∞.

This leads to
‖vkrsot − v∗rsot‖∞ ≤ ‖uk−1

rsot − u∗rsot‖∞. (26)

Combining the two inequalities (25) and (26) yields

‖uk+1
rsot − u∗rsot‖∞ ≤

τ

τ + η
‖uk−1

rsot − u∗rsot‖∞.

17

Repeating all the above arguments alternatively, we have

‖uk+1
rsot − u∗rsot‖∞ ≤

(τ

τ + η

)k/2
‖u1

rsot − u∗rsot‖∞ ≤
(τ

τ + η

)k/2+1

‖v0
rsot − v∗rsot‖∞

=
(τ

τ + η

)k/2+1

‖v∗rsot‖∞.

Note that vk+1
rsot = vkrsot for k even. Therefore, it is clear from (26) that

‖vk+1
rsot − v∗rsot‖∞ ≤ ‖uk−1

rsot − u∗rsot‖∞ ≤
(τ

τ + η

)k/2
max{‖u∗rsot‖∞, ‖v∗rsot‖∞}.

Thus,

max
{
‖uk+1

rsot − u∗rsot‖∞, ‖vk+1
rsot − v∗rsot‖∞

}
≤
(τ

τ + η

)k/2
max{‖u∗rsot‖∞, ‖v∗rsot‖∞}.

Similarly, the above result also holds for k odd. Finally, applying Lemma 5, we obtain the conclusion.

B.2 Detailed Proof of Theorem 1

Denoting

k1 := log

(
8R(2τ + η)

3η

)/
log

(
τ + η

τ

)
, k2 :=

(
1 +

τ

η

)
log

(
3τR[2(η + τ) + 3R(2τ + η)]

η2 log(n)

)
,

we will show that for all k ≥ 1 + 2 max{k1, k2} and η = ε/Ursot, Xk
rsot is an ε-approximation of the

optimal solution X̂rsot, that is

frsot(X
k
rsot)− frsot(X̂rsot) ≤ ε = ηUrsot.

First, we can bound the above difference in the following way

frsot(X
k
rsot)︸ ︷︷ ︸

grsot(Xk
rsot)+ηH(Xk

rsot)

− frsot(X̂rsot)︸ ︷︷ ︸
grsot(X̂rsot)+ηH(X̂rsot)

≤
[
grsot(X

k
rsot)− grsot(X

∗
rsot)
]

+ η
[
H(Xk

rsot)−H(X̂rsot)
]
,

where the inequality comes from grsot(X̂rsot) ≥ grsot(X
∗
rsot) which is the optimal value of the

entropic ROT. Subsequently, the two terms in the right-hand side can be bounded separately as follows.

Upper bound ofH(Xk
rsot)−H(X̂rsot). The upper bound is obtained from the following inequalities

for the entropy under the constraint X ∈ Rn×n+ satisfying ‖X‖1 = 1,

1 ≤ H(X) ≤ 2 log(n) + 1. (27)

Since X̂rsot is the optimal solution for RSOT, ‖X̂rsot‖1 = 1. To derive the needed upper bound, we
will show that ‖Xk

rsot‖1 = 1 for even k. Notice that when k is even, at step k − 1 of Algorithm 1 we
update v, thus

vkrsot = arg min
v

hrsot(u
k−1
rsot , v) = arg min

v
hrsot(u

k
rsot, v), (because ukrsot = uk−1

rsot)

indicating that

Xk
rsot = arg min

X∈Rn×n
+ ,X>1n=b

gkrsot(X) := 〈C,X〉 − ηH(X) + τKL(X1n||ak),

where ak := exp

(
ukrsot

τ

)
� (X1n) with � denoting the element-wise multiplication. As a result,

we have ‖Xk
rsot‖1 = 1 which leads to the following inequality

H(Xk
rsot)−H(X̂rsot) ≤ 2 log(n). (28)

18

Upper bound of grsot(X
k
rsot) − grsot(X

∗
rsot). The main idea for deriving this bound comes from

the geometric convergence rate (i.e. Lemma 6). First, we represent the above difference by other
quantities that are straightforward to bound. Reusing the definition of gkrsot above, we utilize the
following result regarding the optimal value of entropic RSOT

grsot(X
∗
rsot) = −η − τ(1− α) + 〈v∗rsot, b

∗
rsot〉, (29)

gkrsot(X
k
rsot) = −η − τ(1− αk) + 〈vkrsot, b

k
rsot〉, (30)

where αk := ‖ak‖1. We can see that these two equations have a similar form, and we can prove the
first one by simple algebraic derivations as follows

ηH(X∗rsot) = −η
[n∑
i,j=1

(X∗rsot)ij log(X∗rsot)ij + 1
]

= −η
n∑

i,j=1

(X∗rsot)ij
(u∗rsot)i + (v∗rsot)j − Cij

η
+ η

= −〈a∗rsot, u
∗
rsot〉 − 〈b∗rsot, v

∗
rsot〉+ 〈C,X∗rsot〉+ η.

The second equation comes from the fact that (X∗rsot)ij = exp
{ (u∗rsot)i + (v∗rsot)j − Cij

η

}
. Then, we

have

〈C,X∗rsot〉 − ηH(X∗rsot) = −η + 〈a∗rsot, u
∗
rsot〉+ 〈b∗rsot, v

∗
rsot〉.

τKL(X∗rsot1n︸ ︷︷ ︸
a∗rsot

||a) = −τ + τα− τ
〈
a∗rsot, log

(a∗rsot

a

)〉
= −τ(1− α)− 〈a∗rsot, u

∗
rsot〉,

because u∗rsot satisfies the fixed-point equation:
u∗rsot

τ
= log

(a∗rsot

a

)
. The equation for grsot(X

∗
rsot)

comes straight from adding the above two equations. Then the difference of interest can be written as

g(Xk
rsot)− g(X∗rsot) =

[
g(Xk

rsot)− gk(Xk
rsot)
]

+
[
gk(Xk

rsot)− g(X∗rsot)
]

= τ
〈
akrsot, log

(ak

a

)〉
+
(
〈vkrsot, b

k
rsot〉 − 〈v∗rsot, b

∗
rsot〉
)
. (31)

Both terms above can be bounded with regards to ∆k
rsot := max

{
‖ukrsot − u∗rsot‖∞, ‖vkrsot − v∗rsot‖∞

}
.

On the first term in equation (31). From the fixed-point result for u-updates, we have∥∥∥ log

(
ak

a

)∥∥∥
∞

=
∥∥∥ukrsot − u∗rsot

τ
− log

(
a∗rsot

akrsot

)∥∥∥
∞

≤ 1

τ
‖ukrsot − u∗rsot‖∞ +

∥∥∥ log

(
a∗rsot

akrsot

)∥∥∥
∞

≤ 1

τ
‖ukrsot − u∗rsot‖∞ +

1

η
(‖ukrsot − u∗rsot‖∞ + ‖vkrsot − v∗rsot‖∞)

≤
(1

τ
+

2

η

)
∆k

rsot,

τ
〈
akrsot, log

(ak

a

)〉
≤ τ ‖akrsot‖1︸ ︷︷ ︸

=1

∥∥∥ log

(
ak

a

)∥∥∥
∞
≤ 2τ + η

η
∆k

rsot. (32)

On the second term in equation (31). We find that

〈vkrsot, b
k
rsot〉 − 〈v∗rsot, b

∗
rsot〉 = 〈vkrsot − v∗rsot, b

k
rsot〉 − 〈v∗rsot, b

∗
rsot − bkrsot〉

≤ ‖bkrsot‖1︸ ︷︷ ︸
=1

‖vkrsot − v∗rsot‖∞︸ ︷︷ ︸
≤∆k

rsot

+ ‖v∗rsot‖∞︸ ︷︷ ︸
≤(2τ+η)R

‖b∗rsot − bkrsot‖1.

19

Thus, we need an upper bound for ‖b∗rsot − bkrsot‖1, i.e., `1-norm of the difference between b∗rsot and
bkrsot. Note that we have the following bound on their ratio (which is a direct result of Lemma 4)

max
j

{ (b∗rsot)j
(bkrsot)j

,
(bkrsot)j
(b∗rsot)j

}
≤ exp

(
‖ukrsot − u∗rsot‖∞ + ‖vkrsot − v∗rsot‖∞

η

)
≤ exp

(
2∆k

rsot

η

)
.

Applying part (b) of Lemma 3, we obtain∣∣(b∗rsot)j − (bkrsot)j
∣∣ ≤ [exp

(
2∆k

rsot

η

)
− 1

]
min
j

{
(bkrsot)j , (b

∗
rsot)j

}
.

n∑
j=1

|(bkrsot)j − (b∗rsot)j | ≤
[
exp

(
2∆k

rsot

η

)
− 1

] n∑
j=1

min
{

(bkrsot)j , (b
∗
rsot)j

}
︸ ︷︷ ︸

≤‖b∗rsot‖1=1

≤ exp

(
2∆k

rsot

η

)
− 1.

Hence,

‖b∗rsot − bkrsot‖1 ≤
n∑
j=1

|(bkrsot)j − (b∗rsot)j | ≤ exp

(
2∆k

rsot

η

)
− 1.

To remove the exponential operator, noting that for k ≥ 1 + 2k1, we have ∆k
rsot
η ≤ 3

8 . Thus,

exp
(

2∆k
rsot
η

)
− 1 ≤ 3∆k

rsot
η , and consequently ‖b∗rsot − bkrsot‖1 ≤

3∆k
rsot
η . Having this bound on ‖b∗rsot −

bkrsot‖1, we can completely bound the second term of interest as follows

〈vkrsot, b
k
rsot〉 − 〈v∗rsot, b

∗
rsot〉 ≤

[
1 +

3

η
(2τ + η)R

]
∆k

rsot. (33)

Plugging the bounds (32) and (33) to equation (31), we obtain

grsot(X
k
rsot)− grsot(X

∗
rsot) ≤

[
1 +

2τ + η

η
+

3

η
(2τ + η)R

]
∆k

rsot.

From this bound, we will show that

grsot(X
k
rsot)− grsot(X

∗
rsot) ≤ η log(n). (34)

From Lemma 6 we have ∆k
rsot ≤ 3τ

(
τ
τ+η

)(k−1)/2

R. Thus, we only need to prove that for k ≥
2k2 + 1,

3τ

(
τ

τ + η

)(k−1)/2

·R ·
[
1 +

2τ + η

η
+

3

η
(2τ + η)R

]
≤ η log(n).

This form of inequality can be represented through the following lemma.

Lemma 7. For 0 < s < 1, if D ≥ s2 and κ ≥ (1 + 1
s) log

(
D
s2

)
, then D ≤ s2(1 + s)κ.

Proof of Lemma 7. The statement comes directly from a chain of inequalities using Lemma 3c for
x = 1

s :

s2(1 + s)κ ≥ s2(1 + s)(1+ 1
s) log

(
D
s2

)
≥ s2 exp

{
log
(D
s2

)}
= D.

Applying Lemma 7 for s = η
τ ∈ (0, 1), D = 3R

τ log(n) [2(τ + η) + 3R(2τ + η)] and κ = k−1
2 , we get

the inequality (34). Combining the bounds (28) and (34), we obtain

frsot(X
k
rsot)− frsot(X̂rsot) ≤ η log(n) + 2η log(n) = 3η log(n) ≤ ηUrsot = ε.

20

The complexity of Algorithm 1. By definition, Ursot = O(log(n)). Applying part (c) of Lemma 3
with x = τ

η , we have

log

(
τ + η

τ

)
≥ 1

1 + τ
η

.

Then, k1 can be bounded as follows

k1 =
log
(

8R(2τ+η)
3η

)
log
(
τ+η
τ

) ≤ log

(
8R(2τ + η)

3η

)(
1 +

τ

η

)
=

(
1 +

τUrsot

ε

)[
log

(
Ursot

ε

)
+ log

(
8

3
ηR

)
+ log

(
2
τUrsot

ε
+ 1

)]
.

Assume that R = O
(

1
η‖C‖∞

)
, we obtain

k1 = O
(
τ log(n)

ε

[
log

(
log(n)

ε

)
+ log(‖C‖∞) + log

(
τ log(n)

ε

)])
= O

(
τ

log(n)

ε

[
log(‖C‖∞) + log(log(n)) + log(τ) + log

(
1

ε

)])
. (35)

Next, let us consider

k2 =

(
1 +

τ

η

)[
log(3τR) + log(2(τ + η) + 3R(2τ + η)) + 2 log

(
1

η

)
− log(log(n))

]
≤
(

1 +
τ

η

)[
log(3R) + log(4 + 9R) + 2 log(τ) + 2 log

(
1

η

)
− log(log(n))

]
≤
(

1 +
τUrsot

ε

)[
log(3ηR) + 2 log(9ηR) + 2 log(τ) + 5 log

(
Ursot

ε

)
− log(log(n))

]
.

Thus,

k2 = O
(
τ

log(n)

ε

[
log(‖C‖∞) + log(τ) + 5 log

(
log(n)

ε

)
− log(log(n))

])
= O

(
τ

log(n)

ε

[
log(‖C‖∞) + log(τ) + log(log(n)) + log

(
1

ε

)])
. (36)

Equations (35) and (36) imply that

k = O
(
τ

[
log(n)

ε

] [
log(‖C‖∞) + log(τ) + log(log(n)) + log

(
1

ε

)])
.

Multiplying the above quantity with O(n2) arithmetic operations per iteration, we obtain the final
complexity. As a consequence, we reach the conclusion of Theorem 1.

C Robust Semi-Constrained Barycenter: Omitted Proofs

In this appendix, we provide some useful lemmas and proofs for deriving the computational complex-
ity of the robust semi-constrained barycenter problem.

C.1 Useful Lemmas

Lemma 8. The dual form of entropic RSBP in (11) without constraints ‖Xi‖1 = 1 for all i ∈ [m] is
given by

min
u,v:

∑m
i=1 ωivi=0n

h̄rsbp(u,v) :=

m∑
i=1

ωi

(
η‖B(ui, vi;Ci)‖1 + τ

〈
e−ui/τ ,pi

〉)
.

21

Proof of Lemma 8. First, we rewrite the objective function (11) as follows

min
Xi∈Rn×n

+ ,Xi1n=yi,∀i∈[m];

X>i 1n=X>i+11n,∀i∈[m−1]

m∑
i=1

ωi [〈Ci, Xi〉 − ηH(Xi) + τKL(yi||pi)] . (37)

The Lagrangian function for the above problem is equal to

m∑
i=1

(
ωi[〈Ci, Xi〉 − ηH(Xi) + τKL(yi||pi)]− λ>i (Xi1n − yi)− µ>i (X>i+11n −X>i 1n)

)
=

m∑
i=1

(
ωi[〈Ci, Xi〉 − ηH(Xi) + τKL(yi||pi)]− λ>i (Xi1n − yi)− (µi−1 − µi)>X>i 1n

)
,

where λi, µi ∈ Rn for all i ∈ [m] with convention µ0 = µm = 0n. Using the change of variables
ui = λi/ωi and vi = (µi−1−µi)/ωi, we have

∑m
i=1 ωivi = 0n which allows to uniquely reconstruct

µ1, . . . , µm. Then, the problem (37) is equivalent to

max
u,v∑m

i=1 ωivi=0n

min
Xi∈Rn×n,∀i∈[m]
yi∈Rn,∀i∈[m]

m∑
i=1

ωi[〈Ci, Xi〉 − ηH(Xi) + τKL(yi||pi)

− u>i (Xi1n − yi)− v>i X>i 1n] (38)

It can be verified that for all i ∈ [m],

min
yi∈Rn

τKL(yi||pi) + u>i yi = −τ
〈
e−ui/τ ,pi

〉
+ p>i 1n.

Moreover, the objective function of the optimization problem

min
Xi∈Rn×n

〈Ci, Xi〉 − u>i Xi1n − v>i X>i 1n − ηH(Xi)

is strongly convex. Thus, it has an unique optimal solution which could be directly calculated as
X̄i = B(ui, vi;Ci). Therefore,

min
Xi∈Rn×n

〈Ci, Xi〉 − u>i Xi1n − v>i X>i 1n − ηH(Xi) = −η‖B(ui, vi;Ci)‖1.

Collecting all of the above results, the optimization problem (38) turns into

max
u,v∑m

i=1 ωivi=0n

m∑
i=1

ωi

(
−η‖B(ui, vi;Ci)‖1 − τ

〈
e−ui/τ ,pi

〉
+ p>i 1n

)

= min
u,v∑m

i=1 ωivi=0n

m∑
i=1

ωi

(
η‖B(ui, vi;Ci)‖1 + τ

〈
e−ui/τ ,pi

〉)
.

We have thus proved our claim.

Next, we will derive formulas for the updates (uk,vk) of Algorithm 2 in the following lemma.
Assume that at iteration k where k is even, uk+1 was found by minimizing the function h̄rsbp given
vk and simply keep vk+1 = vk while for odd k, we do vice versa. In particular,

uk+1 = arg min
u

h̄rsbp(u,vk), vk+1 = vk if k is even;

vk+1 = arg min
v:

∑m
i=1 ωivi=0n

h̄rsbp(uk,v), uk+1 = uk if k is odd.

Let X̄k = (X̄k
1 , . . . , X̄

k
m) be the non-normalized output at k-th iteration of Algorithm 2. For the ease

of presentation, let us denote aki = X̄k
i 1n and bki = (X̄k

i)>1n for all i ∈ [m].

22

Lemma 9. In Algorithm 2, the updates (uk,vk) admit the following form

uk+1
i =

ητ

η + τ

[
uki
η

+ log(pi)− log(aki)

]
if k is even; (39)

vk+1
i = η

[
vki
η
− log(bki)−

m∑
t=1

ωt
(vkt
η
− log(bkt)

)]
if k is odd, (40)

for all i ∈ [m].

Proof of Lemma 9. For k even, by setting the gradients of h̄rsbp with respect to ui to 0 given fixed
vk, the update uki satisfies

exp

(
(uk+1
i)j
η

)
n∑
l=1

exp

(
(vki)l − (Ci)jl

η

)
= exp

(
− (uk+1

i)j
τ

)
pi for all j ∈ [n].

Multiplying both sides by exp
(

(uk
i)j
η

)
, we get

exp

(
(uk+1
i)j
η

)
(aki)j = exp

(
(uki)j
η

)
exp

(
− (uk+1

i)j
τ

)
pi for all j ∈ [n].

Taking logarithm of the above equation and simplifying the result lead to the equality (39).
For k odd, recall that vk+1 = arg minv:

∑m
i=1 ωivi=0n

h̄rsbp(uk,v), which also means that

vk+1 = arg min
v

m∑
i=1

ωi

(
η‖B(uki , vi;Ci‖1 + τ

〈
e−u

k
i /τ ,pi

〉)
+ γ>

(m∑
i=1

ωivi

)
,

where γ ∈ Rn is a vector of Lagrange multipliers. Taking the derivatives of the above objective
function with respect to vi,

exp
(vk+1

i

η

)
�Aki + γ = 0n

⇔ vk+1
i

η
+ log(Aki) = log(−γ), (41)

where Aki =
(∑n

j=1 exp
{

(uk
i)j−(Ci)jl

η

})n
l=1

. Subsequently, taking sum over i and using the fact

that
∑m
i=1 ωiv

k+1
i = 0, we obtain log(−γ) =

∑m
i=1 ωi log(Aki). Plugging this result in equation

(41), we obtain

vk+1
i

η
=

m∑
t=1

ωt log(Akt)− log(Aki)

=
vki
η
− log

(
Aki � exp

(vki
η

))
+

m∑
t=1

ωt

[
log

(
Akt � exp

(vkt
η

))
− vkt

η

]

=
vki
η
− log(bki)−

m∑
t=1

ωt

(
vkt
η
− log(bkt)

)
.

Hence, the proof is completed.

Lemma 10. Reusing the definition of the function grsot in equation (6), we have the following property
which is useful for the proofs of subsequent lemmas

grsot(tX) = tgrsot(X) + τ(1− t)α+ (τ + η)xt log(t),

for any X ∈ Rn×n+ and t ∈ R+ where x = ‖X‖1.

23

Proof of Lemma 10. By the definition of grsot, one has

grsot(tX) = 〈C, tX〉+ τKL(tX1n||a)− ηH(tX).

For the KL term of grsot(tX), by denoting a := X1n, we get

KL(tX1n||a) =

n∑
i=1

tai log

(
ai
ai

)
−

n∑
i=1

tai +

n∑
i=1

ai

=

n∑
i=1

tai

[
log

(
ai
ai

)
+ log(t)

]
− tx+ α

= t

n∑
i=1

[
ai log

(
ai
ai

)
− ai + ai

]
+ (1− t)α+ xt log(t)

= tgrsot(X) + τ(1− t)α+ (τ + η)xt log(t).

For the entropic term, it can be verified that

−H(tX) =
n∑

i,j=1

tXij(log(tXij)− 1) =
n∑

i,j=1

tXij(log(Xij)− 1) + xt log(t) = −tH(X) + xt log(t).

Collecting all of the above results, we obtain the conclusion.

Remark 3. Notice that when k is even, at step (k − 1)-th of Algorithm 2, {vki }mi=1 is found by
minimizing the dual function (15) given {pi}mi=1 and fixed {uk−1

i }mi=1, and remain {uki }mi=1 =

{uk−1
i }mi=1. Thus, X̄k is the optimal solution of

min
X1,...,Xm∈Rn×n

+

gkrsbp(X1, . . . , Xm) :=

m∑
i=1

ωi
[
〈Ci, Xi〉+ τKL(Xi1n||pki)− ηH(Xi)

]
s.t. X>i 1n = X>i+11n for all i ∈ [m− 1],

where pki = exp
(
uk
i

τ

)
� (X̄k

i 1n) with � denoting element-wise multiplication. The constraints

X>i 1n = X>i+11n for all i ∈ [m− 1] imply that ‖X̄k
i ‖1 = ‖X̄k

i+1‖1 for any i ∈ [m− 1]. Recall that
X̄∗ is the optimizer of grsbp with the feasible set D(X). By using similar arguments, we also have
‖X̄∗i ‖1 = ‖X̄∗i+1‖1 for all i ∈ [m− 1]. Denote x̄k = ‖X̄k

1 ‖1 for k even and x̄∗ = ‖X̄∗1‖1, we will
derive the upper bound of these quantities in the following lemma.

Lemma 11. The upper bounds of x̄k and x̄∗ are derived as follows

(i) x̄∗ ≤ 3 +
1

log(n)
;

(ii) x̄k ≤ 3

2

(
3 +

1

log(n)

)
, for all even k ≥ 2 + 2

(
τ
η + 1

)
log
(

4Rrsbpτ
2

η2

)
.

Proof of Lemma 11.
(i) Consider the function grsbp(tX̄∗) where t ∈ R+,

grsbp(tX̄∗) =

m∑
i=1

ωigrsot(tX̄
k
i ; pi, Ci)

=

m∑
i=1

ωi
[
tgrsot(X̄

k
i ; pi, Ci) + τ(1− t) + (τ + η)x̄kt log(t)

]
= tgrsbp(X̄∗) + τ(1− t) + (τ + η)t log(t)x̄∗. (42)

The second equality is due to Lemma 10. Taking the derivative of grsbp(tX̄∗) with respect to t,

∂tgrsbp(tX̄k) = grsbp(X̄∗)− τ + (τ + η)(1 + log(t))x̄∗.

24

Since grsbp(tX̄∗) attains its minimum at t = 1, we obtain

grsbp(X̄∗) + (τ + η)x̄∗ = τ. (43)

By using the facts grsbp(X̄∗) ≥ −η
∑m
i=1 ωiH(X̄∗i) and H(X̄∗i) ≤ 2x̄∗ log(n) + x̄∗ − x̄∗ log(x̄∗),

we have

τ − (τ + η)x̄∗ ≥ −η
m∑
i=1

ωiH(X̄∗i)

≥ η
m∑
i=1

ωi [−2x̄∗ log(n)− x̄∗ + x̄∗ log(x̄∗)]

= η [−2x̄∗ log(n)− x̄∗ + x̄∗ log(x̄∗)] .

It follows from the inequalities z log(z) ≥ z − 1 that

τ ≥ ηx̄∗ log(x̄∗) + (τ − 2η log(n))x̄∗ ≥ ηx̄∗ − η + (τ − 2η log(n))x̄∗.

Then, combining the above result and the inequality 3η log(n) ≤ τ , we get

x̄∗ ≤ τ + η

η + τ − 2η log(n)
≤ 3 +

1

log(n)
.

(ii) First, let us denote

∆k
i = max

{
‖uki − u∗i ‖∞, ‖vki − v∗i ‖∞

}
.

From Lemma 12, we have

∆k+1
i ≤ τ

(
τ

τ + η

)k/2
Rrsbp.

Next, we will prove that ∆k+1
i ≤ η2

4τ for all even k ≥ 2
(
τ
η + 1

)
log
(

4Rrsbpτ
2

η2

)
i ∈ [m], which is

equivalent to

τ

(
τ

τ + η

)k/2
Rrsbp ≤

η2

4τ

⇔
(
τ + η

τ

)k/2
η2

τ2
≥ 4Rrsbp

⇔ (1 + s)k/2s ≥ 4Rrsbp,

where s = η
τ . Let t = 1 +

log(4Rrsbp)

2 log(1
s)

. Since 4Rrsbp ≥ 8 log(n) ≥ η2

τ2 = s2, therefore, t >

1 + 2 log(s)

2 log(1
s)

= 0. Due to the fact that k2 ≥
(
τ
η + 1

)
log
(

4Rrsbpτ
2

η2

)
=
(
1 + 1

s

)
(2t) log

(
1
s

)
> 0, we

obtain

s2(1 + s)k/2 ≥ s2(1 + s)(1
s +1)2 log(1

s)t

≥ s2 exp {2 log(1/s)t}

=
1

s2t−2
=

1

slog(4Rrsbp)/ log(1/s)
=

1

s− logs(4Rrsbp)
= 4Rrsbp.

Therefore, max1≤i≤m ∆k+1
i ≤ η2

4τ ≤
1
8 . Then, by using the same arguments as part (b) of Lemma 5

in [27], we get

|x̄k − x̄∗| ≤ 3

η
∆k

1 min
{
x̄k, x̄∗

}
. (44)

Note that uk1 = uk−1
1 and vk+1

1 = vk1 for even k, hence, ∆k
1 ≤ max{∆k−1

1 ,∆k+1
1 } ≤ η2

4τ . As a
result,

x̄k ≤
(

1 +
3

η
∆k

1

)
x̄∗ ≤ 3

2
x̄∗ ≤ 3

2

(
3 +

1

log(n)

)
.

We have thus proved our claim.

25

C.2 Proof of Lemma 2

From the constraints X>i 1n = X>i+11n for all i ∈ [m− 1] in D(X), we have that ‖X̄∗i ‖1 is equal to
each other for all i ∈ [m] and denote x̄∗ = ‖X̄∗1‖1. Applying Lemma 10, we get

grsbp(X̄∗) =

m∑
i=1

ωigrsot
(
X̄∗i ; pi, Ci

)
=

m∑
i=1

ωigrsot

(
x̄∗
X̄∗i
x̄∗

; pi, Ci

)

=

m∑
i=1

ωi

[
x̄∗grsot

(
X̄∗i
x̄∗

; pi, Ci

)
+ τ(1− x̄∗)ρi + (τ + η)x̄∗ log(x̄∗)

]

= x̄∗grsbp

(
X̄∗

x̄∗

)
+ τ(1− x̄∗)

m∑
i=1

ωiρi + (τ + η)x̄∗ log(x̄∗).

Similarly, applying Lemma 10, we obtain

grsbp(x∗X∗) =

m∑
i=1

ωigrsot (x̄∗X∗i ; pi, Ci)

=

m∑
i=1

ωi [x̄∗grsot(X
∗
i ; pi, Ci) + τ(1− x̄∗)ρi + (τ + η)x̄∗ log(x̄∗)]

= x̄∗grsbp(X∗) + τ(1− x̄∗)
m∑
i=1

ωiρi + (τ + η)x̄∗ log(x̄∗).

It follows from x̄∗X∗ ∈ D(X) and the definition of X̄∗ that grsbp(X̄∗) ≤ grsbp(x̄∗X∗). Therefore,

we have grsbp

(
X̄∗

x̄∗

)
≤ grsbp(X∗). Since

X̄∗

x̄∗
∈ D1(X) and the minimizer X∗ of function grsbp is

unique, we obtain X∗i =
X̄∗i
x̄∗

=
X̄∗i
‖X̄∗i ‖1

for all i ∈ [m].

C.3 Proof of Lemma 12

Lemma 12. Let (uk,vk) be the updates of ROBUSTIBP algorithm at the k-th step and u∗ =
(u∗1, . . . , u

∗
m) and v∗ = (v∗1 , . . . , v

∗
m) be the optimal solution of the dual problem (15). Let ∆uki :=

uki − u∗i and ∆vki := vki − v∗i for i ∈ [m]. When m = 2 and k is even, we obtain that

max
{ m∑
i=1

‖∆uk+1
i ‖∞,

m∑
i=1

‖∆vk+1
i ‖∞

}
≤ τ

(τ

τ + η

)k/2
Rrsbp,

where Rrsbp :=
∑m
i=1

(
max

{
log(n), ‖Ci‖∞

η − log(n)
}

+ ‖log(pi)‖∞ + η+τ
ητ ‖Ci‖∞

)
.

Proof. Firstly, we will show that when k is even, k ≥ 1 and m = 2,

max
{ m∑
i=1

‖∆uk+1
i ‖∞,

m∑
i=1

‖∆vk+1
i ‖∞

}
≤
(

τ

τ + η

)k/2 m∑
i=1

‖v∗i ‖∞. (45)

Using the same arguments as deriving inequality (25), we have ‖∆uk+1
i ‖∞ ≤ τ

τ+η‖∆v
k
i ‖∞. Since

{v∗i }mi=1 are the fixed points of the update in Algorithm 2,

v∗i
η

=

[
v∗i
η
− log(b∗i)

]
−

m∑
t=1

ωt

[
v∗t
η
− log(b∗t)

]
.

26

Combining the above equality with the update of vki in Algorithm 2 and the fact
∑m
t=1 ωt = 1, we

find that

∆vki
η

= ∆V k−1
i −

m∑
t=1

ωt∆V
k−1
t =

∑
t 6=i

ωt(∆V
k−1
i −∆V k−1

t).

where

∆V ki :=
(vki
η
− log(bki)

)
−
(v∗i
η
− log(b∗i)

)
for all i ∈ [m].

Notice that Lemma 4 can also be applied for this section, therefore, ‖∆V ki ‖∞ ≤
‖∆uk

i ‖∞
η for all

i ∈ [m]. Collecting these results, we have

‖∆vki ‖∞ ≤
∑
t 6=i

ωt(‖∆uk−1
t ‖∞ + ‖∆uk−1

i ‖∞).

When m = 2, these bounds show that
m∑
i=1

‖∆vki ‖∞ ≤
m∑
i=1

‖∆uk−1
i ‖∞.

Thus,
m∑
i=1

‖∆uk+1
i ‖∞ ≤

τ

τ + η

m∑
i=1

‖∆uk−1
i ‖∞ ≤ . . . ≤

(
τ

τ + η

)k/2 m∑
i=1

‖∆u1
i ‖∞

≤
(

τ

τ + η

)(k+2)/2 m∑
i=1

‖∆v0
i ‖∞ =

(
τ

τ + η

)(k+2)/2 m∑
i=1

‖v∗i ‖∞,

which leads to
m∑
i=1

‖∆vki ‖∞ ≤
m∑
i=1

‖∆uk−1
i ‖∞ ≤

(
τ

τ + η

)k/2 m∑
i=1

‖v∗i ‖∞.

Recall that vk+1
i = vki for all i ∈ [m] when k is even. Then, putting all of the above results, we

obtain equation (45).
Next, we will prove that

m∑
i=1

‖v∗i ‖∞ ≤ τRrsbp. (46)

Since u∗ is the fixed point of the update in Algorithm 2 , we have

(u∗i)j
τ

= log((pi)j)− log

(
n∑
l=1

exp

{
(u∗i)j + (v∗i)l − (Ci)jl

η

})
,

which is equivalent to,(
1

τ
+

1

η

)
(u∗i)j = log((pi)j)− log

(
n∑
l=1

exp

{
(v∗i)l − (Ci)jl

η

})
.

Therefore,(
1

τ
+

1

η

) m∑
i=1

‖u∗i ‖∞ ≤
m∑
i=1

[
‖log(pi)‖∞ +

‖v∗i ‖∞
η

+ max

{
log(n),

‖Ci‖∞
η
− log(n)

}]
. (47)

For fixed u∗, we have that

v∗ = arg min
v:

∑m
i=1 ωivi=0n

h̄rsbp(u∗,v),

27

or equivalently,

v∗ = arg min

m∑
i=1

ωi

[
η

n∑
j,l=1

exp
{ (u∗i)j + (vi)l − (Ci)jl

η

}
+ τ
〈
e−u

∗
i /τ ,pi

〉]
+ λ>

m∑
i=1

ωivi,

where λ ∈ Rn is a vector of Lagrange multipliers. For each i ∈ [m], taking derivatives of the RHS
with respect to vi,

exp
(v∗i
η

)
�Ai + λ = 0n

⇔ v∗i
η

+ log(Ai) = log(−λ). (48)

where Ai =
(∑n

j=1 exp
{

(u∗i)j−(Ci)jl
η

})n
l=1

.

Next, taking sum over i and utilizing the fact that
∑m
i=1 ωiv

∗
i = 0, we obtain

∑m
i=1 ωi log(Ai) =

log(−λ). Putting this result together with equation (48) leads to

v∗i
η

=

m∑
t=1

ωt log(At)− log(Ai) =

m∑
t=1

ωt [log(At)− log(Ai)] .

Since m = 2, the above equality indicates that 1
η

∑m
i=1 ‖v∗i ‖∞ ≤ ‖log(A2)− log(A1)‖∞. Further-

more, for all l ∈ [n], applying part (a) of Lemma 3,

| log(A2)l − log(A1)l| =

∣∣∣∣∣∣log

∑n
j=1 exp

{
(u∗2)j−(C2)jl

η

}
∑n
j=1 exp

{
(u∗1)j−(C1)jl

η

}
∣∣∣∣∣∣

≤ 1

η
max

1≤j≤n
|(u∗2)j − (C2)jl − (u∗1)j + (C1)jl|

≤ 1

η

m∑
i=1

(‖u∗i ‖∞ + ‖Ci‖∞),

which implies that
m∑
i=1

‖v∗i ‖∞ ≤ η‖log(A2)− log(A1)‖∞ ≤
m∑
i=1

(‖u∗i ‖∞ + ‖Ci‖∞). (49)

Combining equation (47) with equation (49), we obtain
m∑
i=1

‖u∗i ‖∞ ≤ τ
m∑
i=1

[
‖log(pi)‖∞ +

‖Ci‖∞
η

+ max

{
log(n),

‖Ci‖∞
η
− log(n)

}]
.

Hence,
m∑
i=1

‖v∗i ‖∞ ≤
m∑
i=1

[
τ‖log(pi)‖∞ +

(
1 +

τ

η

)
‖Ci‖∞ + τ max

{
log(n),

‖Ci‖∞
η
− log(n)

}]
= τRrsbp.

From equations (45) and (46), we get the conclusion of this lemma.

C.4 Proof of Theorem 2

Let Xk = (Xk
1 , . . . , X

k
m) be the normalized output at k-th iteration of Algorithm 2. We will firstly

show that Xk is an ε-approximation of X̂ for all even k ≥ 2 + 2
(
τ
η + 1

)
log
(

4Rrsbpτ
2

η2

)
. By

definition of frsbp and grsbp,

frsbp(Xk)− frsbp(X̂) = grsbp(Xk)− grsbp(X̂) + η
m∑
i=1

ωi

[
H(Xk

i)−H(X̂i)
]

≤ grsbp(Xk)− grsbp(X∗) + η

m∑
i=1

ωi

[
H(Xk

i)−H(X̂i)
]

28

The above two terms can be bounded as follows.
Upper bound of

∑m
i=1 ωi

[
H(Xk

i)−H(X̂i)
]
.

Applying the inequalities (27) for the entropy function, we have

m∑
i=1

ωi

[
H(Xk

i)−H(X̂i)
]
≤

m∑
i=1

ωi[2 log(n) + 1− 1] = 2 log(n). (50)

Upper bound of grsbp(Xk)− grsbp(X∗).
Firstly, we consider the quantity grsbp(X∗).

grsbp(X∗) = grsbp

(
1

x̄∗
X̄∗
)

=
1

x̄∗
grsbp(X̄∗) + τ

(
1− 1

x̄∗

) m∑
i=1

ωiρi + (τ + η) log
(1

x̄∗

)
=

1

x̄∗

[
τ

m∑
i=1

ωiρi − (τ + η)x̄∗

]
+ τ
(

1− 1

x̄∗

) m∑
i=1

ωiρi − (τ + η) log(x̄∗)

= −(η + τ)− (η + τ) log(x̄∗) + τ

m∑
i=1

ωiρi.

The second equality is due to equation (42) and the third one results from equation (43).

Based on Remark 3 and the fact that Xk =
X̄k

x̄k
, it is clear that Xk is the optimal solution of

min
X1,...,Xm∈Rn×n

+

gkrsbp(X1, . . . , Xm) :=

m∑
i=1

ωi
[
〈Ci, Xi〉+ τKL(Xi1n||pki)− ηH(Xi)

]
s.t. X>i 1n = X>i+11n for all i ∈ [m− 1],

‖Xi‖1 = 1 for all i ∈ [m].

Therefore, using the same arguments as for deriving for the quantity grsbp(X∗), we have

gkrsbp(Xk) = −(η + τ)− (η + τ) log(x̄k) + τ

m∑
i=1

ωiρ
k
i .

where ρki := ‖pki ‖1. Denote aki = X̄k
i 1n for all i ∈ [m]. Writing grsbp(Xk) − grsbp(X∗) =[

grsbp(Xk)− gkrsbp(Xk)
]

+
[
gkrsbp(Xk)− grsbp(X∗)

]
, using the above equations of gkrsbp(Xk) and

grsbp(X∗), and the definitions of grsbp(Xk) and gkrsbp(Xk), we get

grsbp(Xk)− grsbp(X∗) = (η + τ) log
(x̄∗
x̄k

)
+

τ

x̄k

m∑
i=1

ωi

n∑
j=1

(aki)j log

(
(pki)j
(pi)j

)
.

It follows from equation (44) that

1

1 + 3
η∆k

1

≤ x̄∗

x̄k
≤ 1 +

3

η
∆k

1 ,

or equivalently, ∣∣∣∣log

(
x̄∗

x̄k

)∣∣∣∣ ≤ log

(
1 +

3

η
∆k

1

)
≤ 3

η
∆k

1 ≤
3

4

η

τ
.

29

Note that (pki)j = exp
(

(uk
i)j
τ

)
(aki)j and (pi)j = exp

(
(u∗i)j
τ

)
(a∗i)j , the second term can be

bounded as follows

τ

∣∣∣∣log

(
(pki)j
(pi)j

)∣∣∣∣ = τ

∣∣∣∣1τ ((uki)j − (u∗i)j)− log

(
(a∗i)j
(aki)j

)∣∣∣∣
≤ |(uki)j − (u∗i)j |+ τ

∣∣∣∣log

(
(a∗i)j
(aki)j

)∣∣∣∣
≤ ‖uki − u∗i ‖∞ +

τ

η

(
‖uki − u∗i ‖∞ + ‖vki − v∗i ‖∞

)
≤
(

2τ + η

η

)
∆k
i

≤
(

2τ + η

η

)(
η2

4τ

)
≤ η

(
1

2
+

1

12 log(n)

)
.

Therefore,∣∣∣∣∣∣ τx̄k
m∑
i=1

ωi

n∑
j=1

(aki)j log

(
(pki)j
(pi)j

)∣∣∣∣∣∣ ≤ η
(

1

2
+

1

12 log(n)

) 1

x̄k

m∑
i=1

ωi

n∑
j=1

(aki)j

= η

(
1

2
+

1

12 log(n)

)
.

Combining the above bounds of the two terms leads to

grsbp(Xk)− grsbp(X∗) ≤ η
(

5

4
+

1

3 log(n)

)
≤ 2η. (51)

Finally, from equations (50) and (51), we obtain

frsbp(Xk)− frsbp(X̂) ≤ η (2 + 2 log(n)) ≤ ηUrsbp = ε.

The complexity of Algorithm 2. Next, we will derive the computational complexity of Algorithm
2. By definition of Ursbp, the order of this quantity is O(log(n)). Rewriting the sufficient number of
iterations for obtaining an ε-approximation as below

2 + 2

(
τUrsbp

ε

[
log(4) + 2 log(τ) + log(ηRrsbp) + log

(Ursbp

ε

)])
,

which leads to

k = O
(
τ log(n)

ε

[
log(τ) + log(‖C1‖∞ + ‖C2‖∞) + log

(log(n)

ε

)])
.

Multiplying with O(n2) arithmetic operations per iteration, we get the final complexity.

D Robust Unconstrained Optimal Transport: Useful Lemmas and Omitted
Proofs

In this appendix, we continue to discuss in-depth the ROT problem, which is briefly introduced in
Section 3.2. Similar to RSOT, solving directly the optimization problem (9) would be computationally
expensive, particularly when n is large. This encourages us to work on the entropic version of the
problem (9), which admits the following form:

min
X∈Rn×n

+ ;‖X‖1=1
grot(X) := frot(X)− ηH(X), (52)

for some η > 0. We name this objective entropic ROT. A general approach to solve this optimization
problem is to derive its Fenchel duality, then performing alternating minimization on dual variables.
Lemma 13. The dual form of the entropic ROT problem in equation (52) admits the following form

min
u,v∈Rn

h(u, v) := η log ‖B(u, v)‖1 + τ
〈
e−u/τ ,a

〉
+ τ
〈
e−v/τ ,b

〉
. (53)

30

Proof of Lemma 13. The objective function (52) can be rewritten as follows
min

X∈Rn×n,‖X‖1=1;

X1n=y,X>1n=z

〈C,X〉 − ηH(X) + τKL(y||a) + τKL(z||b).

By introducing the dual variables u ∈ Rn and v ∈ Rn, the Lagrangian duality of the above objective
function takes the following form

max
u,v∈Rn

min
X∈Rn×n,‖X‖1=1;

y,z∈Rn

〈C,X〉 − ηH(X) + τKL(y||a) + τKL(z||b)

− u>(X1n − y)− v>(X>1n − z).
We can check that

min
y∈Rn

τKL(y||a) + u>y = −τ
〈
e−u/τ ,a

〉
+ a>1n,

min
z∈Rn

τKL(z||b) + v>z = −τ
〈
e−v/τ ,b

〉
+ b>1n.

Furthermore, for the minimization problem

min
X∈Rn×n,‖X‖1=1

〈C,X〉 − u>X1n − v>X>1n − ηH(X),

the objective function is strongly convex. Therefore, it has an unique global minima. Direct
calculations demonstrate that the optimal solution of that objective function takes the following form

X̄ =
B(u, v)

‖B(u, v)‖1
, where B(u, v)ij := exp

(ui + vj − Cij
η

)
.

Based on the above argument, we can check that

min
X∈Rn×n,‖X‖1=1

〈C,X〉 − u>X1n − v>X>1n − ηH(X) = −η log ‖B(u, v)‖1.

Combining all the above results, we obtain the conclusion.

Strong duality holds for the problem (52), and its optimal solution can be obtained via the optimal
solution of the problem (53), i.e., X∗ = B(u∗, v∗). To solve the latter, we can set the partial
derivatives of its objective with respect to u and v to zero, resulting in

B(u, v)1n
‖B(u, v)‖1

= e−u/τ � a,
B(u, v)T1n
‖B(u, v)‖1

= e−v/τ � b,

where � denoting element-wise multiplication. It is challenging to derive closed-form solutions for
each coordinate ui and vj for i, j ∈ [n] from this system of equations. Consequently, we do not get
a direct update for ui and vj in the coordinate descent algorithm. Therefore, developing directly
Sinkhorn algorithm for solving entropic ROT like the RSOT case could be non-trivial.

Algorithm 3: ROBUST-SINKHORN

Input: C,a,b, τ, η, kiter
Output: X
Initialization: u0 = v0 = 0n, k = 0
while k < kiter do
ak = B(uk, vk)1n
bk = (B(uk, vk))>1n
if k is even then
uk+1 ← ητ

η+τ

[
uk

η + log(a)− log(ak)
]

vk+1 ← vk

else
uk+1 ← uk

vk+1 ← ητ
η+τ

[
vk

η + log(b)− log(bk)
]

end if
k = k + 1

end while
return Xk = B(uk, vk)/‖B(uk, vk)‖1

31

It is worth noting that the required iteration to reach an ε-approximation of UOT is not identical to
that of ROT, or in a broader sense, it is not trivial to derive one from the other. Hence, in the following
theorem, we present one of our main results regarding the complexity of ROBUST-SINKHORN
algorithm in reaching an ε-approximation of ROT.
Theorem 3. For η = εU−1

rot where

Urot = max
{3(τ + 2)

4(τ + 1)
+ 2 log(n), 2ε,

5ε log(n)

τ

}
,

Algorithm 3 returns an ε-approximation of the optimal solution X̂rot for the problem (9) in time

O
(
τn2

ε
log(n)

[
log

(
τ‖C‖∞
ε

)
+ log(log(n))

])
.

The result of Theorem 3 shows that the complexity of ROBUST-SINKHORN algorithm for computing
ROT is at the order of Õ(n

2

ε), which is near-optimal and at the same order as that of the Sinkhorn
algorithm for solving UOT [27]. Furthermore, similar to the RSOT case, the complexity of ROBUST-
SINKHORN algorithm is also better than that of the Sinkhorn algorithm for computing the standard
optimal transport problem.

D.1 Useful Lemmas

Prior to presenting the proof of Theorem 3, in this section, we provide the proof of Lemma 1 as well
as several useful properties of ROT and UOT that will be used later on.

Proof of Lemma 1. Using the equation for grot(tX) in (54), we have that

grot(X
∗
uot) = grot

(
(x∗uot)

(
X∗uot

x∗uot

))
= x∗uotgrot

(X∗uot

x∗uot

)
+ τ
(
1− x∗uot

)
(α+ β) + (2τ + η)x∗uot log(x∗uot)

grot(x
∗
uotX

∗
rot) = x∗uotgrot(X

∗
rot) + τ

(
1− x∗uot

)
(α+ β) + (2τ + η)x∗uot log(x∗uot).

In terms of the left-handed sides, grot(X
∗
uot) ≤ grot(x

∗
uotX

∗
rot) by definition ofX∗uot. On the right-handed

sides, the second and third are the same. Thus, from the above two equations we obtain

grot

(X∗uot

x∗uot

)
≤ grot(X

∗
rot).

As the optimization problem of ROT has an unique solution, X∗rot =
X∗uot
x∗uot

.

Lemma 14 (Convergence rate for ukuot and vkuot). For any k ≥ 1 +
(
τ
η + 1

)
log
(

8Rτ(τ+1)
η2

)
, the

updates (ukuot, v
k
uot) from Algorithm 3 can be bounded as follows,

∆k
uot := max{‖ukuot − u∗uot‖∞, ‖vkuot − v∗uot‖∞} ≤

η2

8(τ + 1)
.

Proof of Lemma 14. This lemma is the combination of Theorem 1 and Lemma 5 part (a) in [27].

Lemma 15. Let x∗uot := ‖X∗uot‖1, then the quantity grot(X
∗
uot) is presented as

grot(X
∗
uot) + 2(τ + η)x∗uot = τ(α+ β).

Proof of Lemma 15. The proof of this lemma can be found in Lemma 4 of [27].

Lemma 16. We have the following relation between the optimal value of entropic ROT and other
parameters

grot(X
∗
rot) = τ(α+ β − 2)− η − (2τ + η) log(x∗uot).

Furthermore, let gkrot(X) := 〈C,X〉−ηH(X)+τKL (X1n‖a)+τKL
(
X>1n‖bkuot

)
, with bkuot :=

exp
(
vkuot
τ

)
�
[(
Xk

uot

)T
1n

]
and βkuot := ‖bkuot‖1. If k is odd, we have that

gkrot(X
k
rot) = τ(α+ βkuot − 2)− η − (2τ + η) log(xkuot).

32

Proof of Lemma 16. First, we recall from Lemma 4 [27] that, for t ∈ R+ and X ∈ Rn×n+ ,

grot(tX) = tgrot(X) + τ(1− t)(α+ β) + (2τ + η)xt log(t). (54)

Applying this equation with X = X∗rot and t = x∗uot, we obtain

grot(X
∗
uot) = x∗uotgrot(X

∗
rot) + τ(1− x∗uot)(α+ β) + (2τ + η)x∗uot log(x∗uot).

Combining with the fact that grot (X∗uot) + (2τ + η)x∗uot = τ(α+ β) stated in Lemma 15, we get the
final equality for grot(X

∗
rot). Finally, note that Xk

uot = arg min gkrot(X), the same argument thus can
be applied, and we obtain the equality for gkrot(X

k
rot).

D.2 Proof of Theorem 3

First, we will show that Xk
rot is an ε-approximation of X̂rot for all k ≥ 1 +

(
τ
η + 1

)
log
(

8Rτ(τ+1)
η2

)
.

By definitions of frot and grot, we have

frot(X
k
rot)− frot(X̂rot) = grot(X

k
rot) + ηH(Xk

rot)− grot(X̂rot)− ηH(X̂rot)

≤
[
grot(X

k
rot)− grot(X

∗
rot)
]

+ η
[
H(Xk

rot)−H(X̂rot)
]
, (55)

Upper bound of H(Xk
rot)−H(X̂rot). Since ‖Xk

rot‖1 = ‖X̂rot‖1 = 1, applying the lower and upper
bounds for the entropy in (27), we have

H(Xk
rot)−H(X̂rot) ≤ 2 log(n). (56)

Upper bound of grot(X
k
rot)− grot(X

∗
rot). WLOG, we consider the case where k is odd. By Lemma

16,

grot(X
∗
rot) = τ(α+ β − 2)− η − (2τ + η) log(x∗uot) (57)

gkrot(X
k
rot) = τ(α+ βkuot − 2)− η − (2τ + η) log(xkuot). (58)

Writing grot(X
k
rot) − grot(X

∗
rot) =

[
grot(X

k
rot)− gkrot(X

k
rot)
]

+
[
gkrot(X

k
rot)− grot(X

∗
rot)
]
. For the first

term, we have

grot(X
k
rot) = 〈C,Xk

rot〉+ τKL(Xk
rot1n‖a) + τKL((Xk

rot)
T1n‖b)− ηH(Xk

rot)

gkrot(X
k
rot) = 〈C,Xk

rot〉+ τKL(Xk
rot1n‖a) + τKL((Xk

rot)
T1n‖bkuot)− ηH(Xk

rot).

Then, we find that

grot(X
k
rot)− gkrot(X

k
rot) = τ

[
KL((Xk

rot)
T1n︸ ︷︷ ︸

:=bkrot

‖b)−KL((Xk
rot)

T1n‖bkuot)
]

= τ

 n∑
j=1

(bkrot)j log

(
(bkuot)j

bj

)
+ (β − βkuot)

 . (59)

Combining equations (57), (58) and (59), we obtain

grot(X
k
rot)− grot(X

∗
rot) = (2τ + η) log

(
x∗uot

xkuot

)
+ τ

 n∑
j=1

(bkrot)j log

(
(bkuot)j

bj

) . (60)

Using the following result

max
{x∗uot

xkuot
,
xkuot

x∗uot

}
≤
(
‖ukuot − u∗uot‖∞

η

)(
‖vkuot − v∗uot‖∞

η

)
in the proof of Lemma 5 part (b) in [27], the first term is bounded by 2(2τ+η)

η ∆k
uot.

33

Let bkuot := (Xk
uot)
>1n and b∗uot := (X∗uot)

>1n. Note that (bkuot)j = exp
(

(vkuot)j
η

)
(bkuot)j and bj =

exp
(

(v∗uot)j
η

)
(b∗uot)j . Applying part (b) of Lemma 4, we find that∣∣∣∣log

(
(bkuot)j

bj

)∣∣∣∣ =

∣∣∣∣− log

(
(b∗uot)j
(bkuot)j

)
+

1

τ
[(vkuot)j − (v∗uot)j]

∣∣∣∣
≤ 2

η
∆k

uot +
1

τ
∆k

uot =

(
2

η
+

1

τ

)
∆k

uot,

which leads to∣∣∣∣∣∣
n∑
j=1

(bkrot)j log

(
(bkuot)j

bj

)∣∣∣∣∣∣ ≤
 n∑
j=1

(bkrot)j

︸ ︷︷ ︸

=‖Xk
rot‖1=1

max
1≤j≤n

∣∣∣∣log

(
(bkuot)j

bj

)∣∣∣∣ ≤ (2

η
+

1

τ

)
∆k

uot.

Collecting all the inequalities for each term in (60), we obtain

grot(X
k
rot)− grot(X

∗
rot) ≤

3

η
(2τ + η)∆k

uot.

Furthermore, from Lemma 14, we get ∆k
uot ≤

η2

8(τ+1) . Then,

grot(X
k
rot)− grot(X

∗
rot) ≤

3η(2τ + 4)

8(τ + 1)
= η

[3(τ + 2)

4(τ + 1)

]
. (61)

Putting the results from equations (56) and (61) leads to

frot(X
k
rot)− frot(X̂rot) ≤ η

[
3(τ + 2)

4(τ + 1)
+ 2 log(n)

]
≤ ηUrot = ε.

The complexity of Algorithm 3. Next, we will compute the complexity of Algorithm 3 under the
assumption that R = O

(
1
η‖C‖∞

)
. The sufficient number of iterates to obtain an ε-approximation

of X̂rot can be rewritten as(
τUrot

ε
+ 1

)[
log(ηR) + log(τ(τ + 1)) + log

(Urot

ε

)]
.

By the definition of Urot, we find that Urot = O(log(n)). Overall,

k = O
(
τ log(n)

ε

[
log(‖C‖∞) + log(τ) + log(log(n)) + log

(1

ε

)])
.

By multiplying the above bound of k with O(n2) arithmetic operations per iteration, we get the
desired complexity.

E Details on Low-Rank Approximation

Though previous complexity analyses of standard Sinkhorn algorithms are favorable in terms of
ε, they exhibit quadratic growth with regards to n in both time and space complexity. Therefore,
they are unscalable when n is huge in practice. As the robust Sinkhorn algorithms mainly involve
matrix-vector multiplications, the computational cost can be reduced by utilizing special structures
of some factors, such as the Gaussian kernel matrix K := exp

(−C
η

)
. By approximating K with a

low-rank matrix, we show that the proposed robust Sinkhorn algorithms can be sped up considerably
with a high probability while still reaching a nearly-optimal solution. A similar approach based on
Nyström method had been studied in the optimal transport problem [2]. In this section, building
on these analyses, we provide some novel results for scaling up the robust algorithms developed
in previous sections. The idea of Nyström approximation is that given a kernel matrix K where
Kij = k(xi, xj) are constructed from n data points X = {x1, . . . , xn} ⊂ Rd, with k : X × X → R
being a kernel function, we select r points {xp1 , . . . , xpr} ⊂ X to construct two matrices: V ∈ Rn×r

34

where Vij = k(xi, xpj) and A ∈ Rr×r where Aij = k(xpi , xpj). An approximation of K is given
by K̃ = V A−1V >, which is the kernel matrix of the dataset after being projected onto the space of
the chosen subset. Whether K̃ is a good approximation of K depends on r and the art of selecting r
data points. In Algorithm 5, we make use of the adaptive procedure namely ADAPTIVENYSTRÖM

from [2] to obtain K̃, which subsequently is used in the ROBUST-SEMISINKHORN (or ROBUST-
SINKHORN) algorithm. We show in Theorem 4 that, with some specific choices of parameters, we
could obtain matrix K̃ such that an ε-approximation is achievable in almost linear time.

Algorithm 4: ADAPTIVENYSTRÖM

Input: X = {x1, x2, ..., xn}, η > 0, τ > 0

Output: K̃ ∈ Rn×n, r ∈ N
err← +∞, r ← 1
while err > τ do
r → 2r
K̃ ← NYSTRÖM (X , η, r)
err← 1−mini∈[n] K̃ii

end while
return (K̃, rank(K̃))

Algorithm 5: ROBUST-NYSSINK

Input: X = {x1, . . . , xn : ‖xi‖2 ≤ R},a,b, η, τ, ε, k
Z ← 1 + 2(τ + η) or 2 + η + 2τ

η (RSOT or ROT)
ε′ ← min(1, εZ)

(K̃, r)← ADAPTIVENYSTRÖM(X , η, ε
′

2 e
−4η−1R2

)

C̃ ← −η log K̃

X̂ ← ROBUST-(SEMI)SINKHORN(C̃,a,b, η, τ, k)

Output: X̂

Theorem 4. We denote by fC the objective function of RSOT (5) and ROT (9) problems regarding
some cost matrix C. Furthermore, let X̂C be the corresponding optimal solution, and Xk

C̃
be the

output of Algorithm 5 for k Sinkhorn iterations. Then, for 0 < ε < 1, Algorithm 5 achieves an
ε-approximation Xk

C̃
of X̂C , i.e., fC(Xk

C̃
)− fC(X̂C) ≤ ε, in Õ(nr2 + nr

ε) calculations.

Theorem 4 indicates that using Nyström approximation reduces the original complexity of the robust
algorithms by a factor n/r2. As a side note, [2] provides a probabilistic bound on r (for more detail
see Appendix E). Furthermore, in terms of space complexity, Algorithm 5 uses O(n(r + d)) space,
where d is the dimension of data constructing the cost matrix C.

Subsequently, we derive the complexity of Sinkhorn-based algorithms using Nyström approximation
in both RSOT and ROT problems. As the proof for both problems share many similarities, we abuse
the notation by using the same notations for both cases. In particular, we denote fC to be the objective
functions of RSOT and ROT as in (5) and (9) , respectively, with C is the cost matrix. Similarly we
denote gC to be the objective functions with entropic regularization of RSOT and ROT as in (6) and
(52), respectively. We recall and define some other quantities as follow:

X̂C = arg min fC(X),

X∗C = arg min gC(X),

X∗
C̃

= arg min gC̃(X);

where C̃ is the matrix produced by the Nyström method. For other notations, we remove the index
rsot and rot in quantities i.e. ukrsot in order to keep them simple.

35

Proof of Theorem 4. Assume that we have following bounds

‖Xk
C̃
‖1 ≤ Sx, (62)

gC̃(Xk
C̃

)− gC̃(X∗
C̃

) ≤ ηSg, (63)

H(Xk
C̃

)−H(X̂C) ≤ SH , H(Xk
C̃

)−H(X̂C̃) ≤ SH , (64)∣∣gC̃(X∗
C̃

)− gC(X∗C)
∣∣ ≤ SC∥∥C − C̃∥∥∞, (65)

where Sx, Sg, SH , SC are constants that may contain α, β, η, τ or C, varying between cases.

By definitions of X̂C and X∗
C̃

, we have

fC(X̂C) = gC(X̂C) + ηH(X̂C) ≥ gC(X∗C) + ηH(X̂C),

and

fC(Xk
C̃

) ≤
∣∣fC(Xk

C̃
)− fC̃(Xk

C̃
)
∣∣+ fC̃(Xk

C̃
)

=
∣∣〈C − C̃,Xk

C̃
〉
∣∣+ ηH(Xk

C̃
) + gC̃(Xk

C̃
).

For the first term, using Holder’s inequality and (62) we get
∣∣〈C − C̃,Xk

C̃
〉
∣∣ ≤ ∥∥C − C̃∥∥∞∥∥Xk

C̃

∥∥
1
≤∥∥C − C̃∥∥∞Sx. Combining with (63), we have fC(Xk

C̃
) is bounded by∥∥C − C̃∥∥∞Sx + ηH(Xk

C̃
) + ηSg + gC̃(X∗

C̃
).

We thus obtain

fC(Xk
C̃

)− fC(X̂C) ≤
∥∥C − C̃∥∥∞Sx + η

(
H(Xk

C̃
)−H(X̂C)

)︸ ︷︷ ︸
≤SH

+ηSg + (gC̃(X∗
C̃

)− gC(X∗C))︸ ︷︷ ︸
≤SC‖C−C̃‖∞

≤ ‖C − C̃‖∞Sx + ηSH + ηSg + SC
∥∥C − C̃∥∥∞

= (ηSH + ηSg︸ ︷︷ ︸
≤ε′

) + (Sx + SC) ‖C − C̃‖∞︸ ︷︷ ︸
=η‖log(K)−log(K̃)‖∞

≤ ε′ + (Sx + SC)η‖log(K)− log(K̃)‖∞
≤ ε′ + (Sx + SC)ηε′

= ε′(1 + ηSx + ηSC)

= ε,

where the third inequality ηSH + ηSg ≤ ε′ comes from using ROBUST-(SEMI)SINKHORN algorithm
on the approximated cost C̃ with the error ε′, and the fourth inequality ‖log(K)− log(K̃)‖∞ ≤ ε′ is
a result of the ADAPTIVENYSTRÖM procedure (see Lemma L, [2]).

Time complexity. Since Sx = Õ(1) and SC = Õ(1), we get Õ(1
ε′) = Õ(1+ηSX+ηSC

ε) = Õ(1
ε) .

The ADAPTIVENYSTRÖM routine takes O(nr2) time, while the ROBUST-(SEMI)SINKHORN routine
runs through Õ(1

ε′) iterations. Each iteration then takes O(n+nr) = O(nr) time, in which O(n) for
vector additions, and O(nr) for low-rank matrix vector multiplications. In total, the time complexity
is Õ(nr2 + nr

ε′).

Space complexity. As we only need to save the implicit form of K̃ via two matrices KS ∈ Rn×r
and (STKS)+ ∈ Rr×r (where S is the column selection matrix, i.e. KS comprises r columns of
K), n data points of dimension d as well as other n-dimensional vectors, the total space required is
O(nr + r2 + nd) = O(nr + nd).

Now we take a look at the cases of RSOT and ROT. In particular, we derive the upper bounds for Sx,
Sg , SH and SC .

36

E.1 Robust Unbalanced Optimal Transport

In this case, the constants are

Sx = 1, Sg =
3 (τ + 2)

4(τ + 1)
, SH = 2 log(n), SC =

2τ + η

η2
.

Proofs of Inequalities. The inequalities for Sx, Sg and SH comes from the fact that the Xk
C̃

was
normalized, inequality (61) and inequality (56) respectively in the section D of ROT’s proofs.
Regarding to SC , we have

gC(X∗C) = τ(α+ β − 2)− η − (2τ + η) log(x∗C),

gC̃(X∗
C̃

) = τ(α+ β − 2)− η − (2τ + η) log(x∗
C̃

).

Consequently,
∣∣gC̃(X∗

C̃
)− gC(X∗C)

∣∣ = (2τ + η)
∣∣∣log

(
x∗
C̃

x∗C

)∣∣∣.
Upper bound for

∣∣∣log
(
x∗
C̃

x∗C

)∣∣∣. For any u, v ∈ Rn and C ∈ Rn×n, defining B(u, v;C) is a matrix

with entries B(u, v;C)ij = exp
(
ui+vj−Cij

η

)
, we have the following lemma

Lemma 17. For τ > 0 and a ∈ Rn, if uτ = log a−B(u, v;C)1n and u′

τ = log a−B(u′, v′;C ′)1n,
then (1

τ
+

1

η

)
‖u′ − u‖∞ ≤

1

η
‖v′ − v‖∞ +

1

η
‖C ′ − C‖∞.

Proof of Lemma 17. Taking the difference between u/τ and u′/τ , for i ∈ [n],

u′i − ui
τ

= log

(
B(u, v;C)i
B(u′, v′;C ′)i

)
= −u

′
i − ui
η

+ log

∑j exp
(
v′j−C

′
ij

η

)
∑
j exp

(
vj−Cij

η

)

≤ −u
′
i − ui
η

+
‖v′ − v‖∞

η
+
‖C ′ − C‖∞

η
,

which results in the final statement.

From the fixed-point equations for (u∗C , v
∗
C) and (u∗

C̃
, v∗
C̃

) and Lemma 17, we have(1

τ
+

1

η

)
‖u∗

C̃
− u∗C‖∞ ≤

1

η
‖v∗
C̃
− v∗C‖∞ +

1

η
‖C̃ − C‖∞(1

τ
+

1

η

)
‖v∗
C̃
− v∗C‖∞ ≤

1

η
‖u∗

C̃
− u∗C‖∞ +

1

η
‖C̃ − C‖∞,

leading to ‖u∗
C̃
− u∗C‖∞ + ‖v∗

C̃
− v∗C‖∞ ≤ 2τ

η ‖C̃ − C‖∞.

Hence, we find that

∣∣∣∣log

(
x∗
C̃

x∗C

)∣∣∣∣ =

∣∣∣∣∣∣∣log

∑n
i,j=1 exp

(
(u∗

C̃
)i+(v∗

C̃
)j−C̃ij

η

)
∑n
i,j=1 exp

(
(u∗C)i+(v∗C)j−Cij

η

)

∣∣∣∣∣∣∣

≤ 1

η
‖u∗

C̃
− u∗C‖∞ +

1

η
‖v∗
C̃
− v∗C‖∞ +

1

η
‖C̃ − C‖∞.

≤ 2τ + η

η2
‖C̃ − C‖∞.

37

E.2 Robust Semi-Optimal Transport

In this case, the constants are

Sx = 1, Sg = log(n), SH = 2 log(n), SC =
2τ + η

η
.

Proofs of Inequalities. The inequalities regarding Sx, Sg and SH comes from the fact that ‖Xk
C̃
‖1 =

1, inequality (34) and inequality (28) of Section B, respectively. In terms of SC , from equation (29)
we have

gC(X∗C) = −η − τ(1− α) + 〈v∗C , b∗〉, gC̃(X∗
C̃

) = −η − τ(1− α) + 〈v∗
C̃
, b∗〉.

Recall that it is the RSOT problem, thus b∗ = (X∗rsot)
>1n = b, thus∣∣gC̃(X∗

C̃
)− gC(X∗C)

∣∣ =
∣∣〈v∗

C̃
− v∗C , b∗〉

∣∣ ≤ ‖v∗
C̃
− v∗C‖∞‖b∗‖1 = ‖v∗

C̃
− v∗C‖∞.

Upper bound for ‖v∗
C̃
− v∗C‖∞. Defining B(u, v;C) is a matrix with entries B(u, v;C)ij =

exp
(
ui+vj−Cij

η

)
. The fixed-points u∗C and u∗

C̃
satisfy the following equations

u∗C
τ

= log a− logB(u, v;C),
u∗
C̃

τ
= log a− logB(u′, v′;C ′).

By Lemma 17, (1

τ
+

1

η

)
‖u∗

C̃
− u∗C‖∞ ≤

1

η
‖v∗
C̃
− v∗C‖∞ +

1

η
‖C̃ − C‖∞ (66)

By the fixed-point theorem, B(u∗C , v
∗
C ;C)T1n = b and B(u∗

C̃
, v∗
C̃

; C̃)T1n = b, and similarly we
obtain

1

η
‖v∗
C̃
− v∗C‖∞ ≤

1

η
‖u∗

C̃
− u∗C‖∞ +

1

η
‖C̃ − C‖∞. (67)

Combining (66) and (67), we have ‖u∗
C̃
− u∗C‖∞ ≤ 2τ

η ‖C̃ − C‖∞, and consequently ‖v∗
C̃
− v∗C‖∞ ≤

2τ+η
η ‖C̃ − C‖∞, completing the proof.

F Additional Experiments

F.1 The Complexity of ROBUST-SINKHORN Algorithms on Synthetic Data

First, we investigate the runtime of Algorithm 3 (ROBUSTSINKHORN) for solving ROT, with the
same synthetic setting of RSOT described in the main text (which will be repeated here for the sake
of completion).

Synthetic Data. We let n = 100, τ = 1, generate entries of C uniformly from the interval [1, 50]
and draw entries a, b uniformly from [0.1, 1] then normalizing them to form probability vectors. η is
set according to Theorem 1. For each ε varying from 5× 10−2 to 5× 10−5, we calculate the number
of theoretical and empirical iterations described above, as well as their ratio.

This experiment is run 10 times and we report their mean and standard deviation values in Figure 4,
which shows that ROT lines experience a similar trend to those of RSOT in Section 5, with the ratio
decreasing in the direction of ε toward zero.

F.2 The Complexity of ROBUST-SEMISINKHORN and ROBUST-SINKHORN Algorithms on
Realistic Data

MNIST Data. We consider each 28×28 MNIST image as a discrete distribution by flattening it into
a 784-dimensional vector then performing normalization. For any pair of this MNIST distribution,
the distance between their support equals to the Manhattan distance between corresponding pixel
locations. Here, we let τ = 1 and vary ε from 10−2 to 10−5 (which is relatively small compared

38

4 6 8
5

10

15

lo
g

ite
ra

tio
n

ROT - theor.
ROT - empir.

4 6 8

20

30

40

50 ratio (theor.
em

pir.)

ROT

log 1/
Figure 4: Complexity demonstration for ROBUSTSINKHORN on synthetic data. All the plots presented in this
figure are set up similarly to those in Figure 3.

to frsot(X
∗
rsot) = 1.86± 0.59 and frot(X

∗
rot) = 1.15± 0.33 in this setting). For each value of ε, the

regularized parameter η is set accordingly as presented in Theorem 1. The theoretical and empirical
values for the number of necessary iterations, as well as their ratio, are computed similar to the
synthetic case, and their mean and standard variation values over 5 random MNIST pairs are reported
in Figure 5. It can be seen from Figure 5 (compared to Figure 3 and 4) that the theory-practice relation

6 8 10

10

15

lo
g

ite
ra

tio
n

RSOT-MNIST - theor.
RSOT-MNIST - empir.

ROT-MNIST - theor.
ROT-MNIST - empir.

6 8 10
10

20

30

40 ratio (theor.
em

pir.)

ROT-MNIST
RSOT-MNIST

log 1/
Figure 5: Complexity demonstration for ROBUST-SEMISINKHORN (blue) and ROBUST-SINKHORN (red)
algorithms used to compute Robust Optimal Transport between MNIST images. All the plots presented in this
figure are set up similarly to those in Figure 3.

of the two discussed algorithms (regarding the total iterations needed to reach an ε-approximation)
behave quite similarly in both real and synthetic settings: two theoretical and empirical lines in the
left plot run almost linearly while coming close to each other as ε goes toward zero.

F.3 Robust Comparison between Different Formulations

In this section, we compare the marginals induced by using different variants of optimal transport
in the presence of corrupted measures. With the setting described in Figure 1, four following
formulations are considered:

• Robust optimal transport with KL divergence (see Problem (9))

min
X

〈C,X〉

s.t. X ≥ 0, ‖X‖1 = 1,KL(X1n||a) ≤ τ,KL(X>1n||b) ≤ τ,

• Partial optimal transport [14]

min
X

〈C,X〉

s.t. X ≥ 0, ‖X‖1 = s,X1n ≤ a, X>1n ≤ b,

• Robust optimal transport with total variation distance [23]

min
X

〈C,X〉

s.t. X ≥ 0, ‖X‖1 = 1,TV(X1n,a) ≤ τ,TV(X>1n,b) ≤ τ,

39

• Robust optimal transport with χ2 divergence [5]

min
X

〈C,X〉

s.t. X ≥ 0, ‖X‖1 = 1, χ2(X1n,a) ≤ τ, χ2(X>1n,b) ≤ τ.

The results are plotted in Figure 6. It is apparent that all the variants approximate the corrupted
measures well with a proper choice of hyperparameter τ or s, and those with f -divergence relaxation
have different behaviors when τ goes to infinity.

Figure 6: Comparison between robust optimal transport (ours, using KL divergence), partial optimal transport
and robust formulations in [23] (using total variation distance) and [5] (using χ2-divergence), in that order from
the first row to the fourth row, with different hyperparameter settings. The experiment setup is similar to the one
in Figure 1.

F.4 Some Applications of Robust Optimal Transport

In this section we demonstrate the robustness of two discussed versions of Robust Optimal Transport
in two applications: color transfer and generative modeling.

F.4.1 Color Transfer

Here, the optimal transport problem is conducted between the histograms of two images. Considering
a source RGB image of size hs × ws × 3, and the a target RGB image of size ht × wt × 3, we can

40

present all the pixels in these images as point clouds in 3-dimensional RGB space (see the second
row in Figure 7). To transfer the color from the target image into the source image, we compute the
optimal transportation plan between the two corresponding point clouds and and use it to perform
mapping from the source cloud to another point cloud that resembles the target cloud (i.e., transferring
from the histogram in the first column to the third and fourth columns in Figure 7). As the total
number of pixels in source/target image is large, it is a common practice to just sample a subset
of pixels from each image, namely Isrc = {x1, . . . , xn} and Itar = {y1, . . . , ym}. We consider
two discrete measure formed by these two point clouds, α =

∑
i aixi and β =

∑
j bjyi and let

a = [a1, . . . , an],b = [b1, . . . , bm]. To compute the optimal transportation plan, we solve

(for standard optimal transport) X∗ = arg min
X1n=a,

XT 1n=b

〈C,X〉,

(for robust optimal transport) X∗ = arg min
X∈Rn×n

+ ,

‖X‖1=1

〈C,X〉+ τKL(X1n‖a) + τKL(XT1n‖b),

where C is the cost matrix with each entry Cij := ‖xi − yj‖22. This optimal plan X∗ is then
extended to cover all possible pixels using mapping estimation in [25]. In the experiment, we let
m = n = 1000, τ = 1 and a,b being uniform mass vectors. Additionally, we approximate solutions
of two optimal transport problems above using Sinkhorn algorithms on their entropic formulations
with η = 0.001. To demonstrate the robustness when dealing with outliers in support points, we
corrupt both source and target image by randomly changing their pixel intensities to other values
(see Figure 7). It can be seen from the figure that the transferred color histogram induced by the OT
solution still contains noisy values (see the bottom-right of the histogram visualization on the third
column), while the transferred histogram resulted from ROT is clean as expected. As a consequence,
the twilight scene corresponding to OT contains red noises at corners and is not as visually appealing
as its ROT counterpart.

Source Target Transferred (OT) Transferred (ROT)Transferred (Relaxed-OT)

Figure 7: Demonstration for robust color transfer. The first row, from left to right, consists of source image,
target image, and three last ones that are source images with each pixel replaced by its mapped value via standard
optimal transport, relaxed optimal transport [28] and robust optimal transport (ours) respectively. The second
row comprises corresponding (RGB) histograms of images on the first row. Note that the source (or target)
image is corrupted by replacing pixels at random positions by green (or red) pixels, resulting in two green and
red point clouds in corners in the first two histograms.

F.4.2 Generative Modeling

Next, we utilize the robust formulation of optimal transport in the problem of generative modeling.
Assume that we have finite samples from a data distribution, which are x1, . . . , xn ∼ pdata(x), the
goal is to find a parametric mapping from a latent space Z to the data space X , namely gθ : Z → X ,
so that the pushforward measure gθ#pZ is close to the data distribution pdata as much as possible.
This problem can be formulated as to find θ∗ = arg minθ D(pdata, gθ#pz), where D is a divergence
between probability measures. Usually, pZ is taken to be a simple distribution that we can easily
sample from, such as an isotropic Gaussian distribution N (0, I), and the divergence D(pdata, gθ#pz)
is approximated via samples from two distributions, i.e. by D(α, β) where α and β are two discrete

41

TargetSource

Transferred (Relaxed-OT) - Varying Dispersion Parameter

RSOT - Varying Regularization Parameter

Figure 8: Comparison between relaxed optimal transport [28] and robust optimal transport in the color transfer
problem. The setting is the same as in Figure 7, but here the "robust" parameters of both methods are varied (from
left to right, the dispersion parameter of relaxed OT is set to 0.003, 0.03, 0.3 respectively, and the parameter τ
of robust OT is set to 0.1, 1, 10 respectively). It is noticeable that the histogram of transferred image induced
by the relaxed OT is not as diverse and exact as the one produced by our robust OT, resulting in a less visually
appealing output.

measures supported on n data samples {xi}ni=1 and m generated samples {g(zi) : zi ∼ pZ(z)}mi=1,
with probability histograms a and b respectively. We consider three versions of D, which are

• Sinkhorn divergence in [15], which reads

SDη(α, β) =Wη(α, β)− 1

2
Wη(α, α)− 1

2
Wη(β, β),

whereWη(α, β) is the Wasserstein distance, a special case of optimal transport where the cost
comes from a metric,

• Entropic robust unconstrained optimal transport in Section 3.2, i.e.

ROTη(α, β) = min
X∈Rn×n,
‖X‖1=1

〈C,X〉+ τKL(X1n‖a) + τKL(X>1n‖b)− ηH(X),

• Robust Sinkhorn divergence inspired from the above Sinkhorn divergence, which has the form

RSDη(α, β) = ROTη(α, β)− 1

2
ROTη(α, α)− 1

2
ROTη(β, β).

We train different generators corresponding to three different objectives, which are based on three vari-
ants of D listed above. Consider that data comes from a mixture of isotropic, two-dimensional Gaus-
sians with four modes located at (10, 0), (0, 10), (−10, 0) and (0,−10). To demonstrate robustness,
we corrupt the data by letting 10% of them come from the uniform distribution on [20, 25]. We parame-
terize gθ by a fully-connected neural network (2→ 64→ LeakyReLU→ 128→ LeakyReLU→ 2),
and minimize the objective via stochastic gradient descent, where D(α, β) at each iteration is com-
puted by sampling a batch of data and generated samples then running k Sinkhorn updates. We set
η = 100, τ = 1, k = 10,Z ≡ R2 and use Adam optimizer [18] with a learning rate of 0.001. The
generated distributions during the training process in three cases of interest are reported in Figure 9.

42

As shown in this figure, the objective derived from robust optimal transport can help the generator
learn to ignore outliers in data distribution (see the third row), while the model based on standard
optimal transport still generates noises (see the first row).

In addition to the simple Gaussian setting, we also demonstrate the generative capacity of robust
optimal transport on the contaminated set of real MNIST images. Particularly, the dataset is 10%-
corrupted by random image noises uniformly drawn from [0, 1]28×28. The generator is a fully-
connected neural network mapping from 16-d Gaussian to [0, 1]784 (the full architecture is 16 →
500 → Softplus → 500 → Softplus → 784 → Sigmoid). We train this network with the same
procedure described in the previous paragraph, using the normal and the robust formulation of
Sinkhorn divergence as the objective. The generated images are shown in Figure 10. As expected,
while the network trained with the standard Sinkhorn divergence still generates noises (appearing as
a mixed version of a MNIST image and a noise image), the network learned with the robust optimal
transport ignores the noise and only produce clean digit pictures.

Robust
Sinkhorn
Divergence

Entropic
ROT

Sinkhorn
Divergence

Figure 9: Generative modeling with three different objectives: Sinkhorn divergence (first row), entropic ROT
(second row) and Robust Sinkhorn divergence (last row). In each image, we show 1000 points created by first
sampling z ∼ N (02, I2) then generating xgen = gθ(z). At each row, from left to right, we present generated
distributions at several iterations in the chronological order.

43

Figure 10: Generating contaminated MNIST data. The left and the right figures are the outputs of the generator
trained with Sinkhorn divergence and with robust Sinkhorn divergence respectively.

44

