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Abstract

We study the Riemannian gradient method for PCA on which a crucial fact is
that despite the simplicity of the considered setting, i.e., deterministic version
of Krasulina’s method, the convergence rate has not been well-understood yet.
In this work, we provide a general tight analysis for the gap-dependent rate at
O( 1

∆ log 1
ϵ ) that holds for any real symmetric matrix. More importantly, when

the gap ∆ is significantly smaller than the target accuracy ϵ on the objective sub-
optimality of the final solution, the rate of this type is actually not tight any more,
which calls for a worst-case rate. We further give the first worst-case analysis
that achieves a rate of convergence at O( 1ϵ log

1
ϵ ). The two analyses naturally roll

out a comprehensively tight convergence rate at O( 1
max{∆,ϵ}log

1
ϵ ). Particularly,

our gap-dependent analysis suggests a new promising learning rate for stochastic
variance reduced PCA algorithms. Experiments are conducted to confirm our
findings as well.

1 Introduction

Gradient descent is a basic, well-established, and celebrated optimization method for minimizing
convex functions [11, 3], but remains far less understood theoretically for non-convex functions
though it has been proven useful in practice for many non-convex problems [22, 17]. In the past
decade, the research on gradient methods for non-convex problems has been gaining increasing
attention in optimization and especially machine learning [6, 8, 4]. In this work, we focus on a
notable example, namely the Riemannian gradient descent for the leading eigenvector computation
of a real symmetric matrix A ∈ Rn×n, which lays the foundation of Krasulina’s method for PCA.
This problem can be solved by either a traditional projection based method from the numerical
algebra, such as the well-known power method or Lanczos algorithm [13], or a gradient search based
method for the associated optimization problem such as the Riemannian gradient descent [18, 21].
The projected gradient descent (with constant step-sizes), as another closely related solver, can
be interpreted either as a projection method or as a search method in this case (see Section 6
for interpretations). Compared to projection methods which have arguably been well-understood
already [13, 9, 10], the search method, i.e., the Riemannian gradient descent, is lacking a clear and
deep theoretical understanding on their convergence behaviors. This may largely be because the
underlying optimization problem is geodesically non-convex:

min
x∈Sn−1

f(x) = −1

2
x⊤Ax, (1)

where the objective function f(x) is constrained on the (n−1)-dimensional unit sphere manifold
Sn−1 = {x ∈ Rn×1 : ∥x∥2 = 1} [1].
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Previous analyses of the Riemannian gradient descent for Problem (1) achieve a rate of (global1)
convergence at O( 1

∆2 log
1
ϵ ) which depends quadratically on the relative gap ∆ between A’s two

(distinct) largest eigenvalues [20, 19]2. The poor dependence of the rate on the gap characterizes a
loose upper bound on the iteration complexity of the method, due to the artifacts of the used analysis
techniques. Ding et al. [5] gave a tight convergence rate at O( 1

∆ log 1
ϵ ). However, the analysis is

limited to positive definite matrices. This means that the general tight convergence analysis for real
symmetric matrices, in fact, has not been settled. Our first goal in this work is to give a general
analysis for the tight rate of this type, i.e., dependent on the gap, which is termed as the (tight)
gap-dependent analysis hereafter. More importantly, when the gap is significantly smaller than the
target accuracy ϵ on the objective sub-optimality of the final solution rather than its point distance to
the optimal solutions, the rate of this type is actually not tight any more, which calls for a worst-case
rate independent of any gap. Our second goal is to further give the first worst-case or gap-independent
analysis being able to achieve a rate of convergence at O( 1ϵ log

1
ϵ ). The two analyses naturally roll out

a comprehensively tight rate of convergence at O( 1
max{∆,ϵ} log

1
ϵ ). Our analyses are based on novel

adaptations of the analyses for projection methods working for constant matrices [7, 10] to varying
matrices during iterations. We also make a comparison between projection and search methods to
help understand their subtle differences. Particularly, the gap-dependent analysis suggests a new
step-size for search methods which gives rise to a novel learning rate for stochastic variance reduced
PCA algorithms. Experiments verify our theoretical findings and demonstrate the effectiveness of the
new learning rate. The main contributions are summarized as follows:

• We prove the first comprehensively tight convergence rate of the Riemannian gradient
descent for Problem (1) at O( 1

max{∆,ϵ} log
1
ϵ ).

• We propose an adaptive learning rate scheme for stochastic variance reduced PCA algorithms
which can dramatically improve their convergence.

• We experimentally verify the established theory and demonstrate the effectiveness of the
proposed adaptive learning rate.

2 Related Work

We focus on the gradient methods for the leading eigenvector computation. The classic Oja’s
algorithm and Krasulina’s method, as stochastic counterparts of the projected gradient descent and
Riemannian gradient descent with diminishing step-sizes, respectively, converge at a rate O( 1

∆2ϵ ) [2]
(Theorem 1.1 where E[ΨT ] = O( c

2

T ) and c = O( 1
∆ ) using their notations except for the iteration

number T ). The quadratic dependence on the gap was originally omitted there, probably because
the gap was regarded as a constant. However, as argued in Musco et al. [10], this is insufficient.
Interestingly, there are much fewer theoretical studies of the two methods in the deterministic setting.
Absil et al. [1] introduced the Riemannian gradient descent for Problem (1) (Algorithm 2 there) with
the Armijo line search for step-sizes, and implicitly stated a rate at O( 1

∆ log 1
ϵ ) (Theorem 4.6.3-iii)

which, however, is local (Theorem 4.6.3-ii). Wen et al. [17] proposed a special retraction for the
Riemannian gradient descent based on the Cayley transform (Algorithm 1). It was empirically
found comparable and more stable than the Lanczos algorithm, however, only with the guarantee of
convergence to a critical point (Theorem 2). Since Problem (1) is geodesically non-convex, theories
established for geodesically convex functions [23] can’t be applied unless locally. Note that we only
consider global convergence in this work. Xu et al. [19] specifically analyzed the Riemannian gradient
descent for Problem (1), and originally stated a rate O(min{ 1

∆2 log
1
ϵ ,

1
ϵ }) (Theorem 1). However,

the constituent part O( 1ϵ ) resulted from the same mistake3 as made in Balsubramani et al. [2] and
mentioned at the beginning of this section. This means that their analyses are all gap-dependent and
the better one of the rates is O( 1

∆2 log
1
ϵ ). It is also the case for the work of Xu and Gao 2018 [20]

(Theorem 4.1). Particularly, Ding et al. [5] improved the dependence of these rates on the gap from
quadratic to linear at O( 1

∆ log 1
ϵ ). As explained in the previous section, however, it is not general. In

1Only global convergence is considered throughout the paper.
2It needs be noted there that the rate O( 1

ϵ
) was mistakenly stated and actually should be O( 1

∆2ϵ
) according

to their analyses. See the next section for explanations.
3Precisely, ψ(xT ) = O( c

2

T
), where c = O( 1

∆p
) implied by a’s expression, using their notations.
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Table 1: Comparison of convergence rates of the Riemannian gradient descent for Problem (1).

RATE A TIGHT GAP-FREE COVERED

XU ET AL. [19] O( 1
∆2 log 1

ϵ
) REAL SYMMETRIC NO NO

DING ET AL. [5] O( 1
∆
log 1

ϵ
) POSITIVE DEFINITE YES NO

THIS WORK O( 1
max{∆,ϵ} log 1

ϵ
) REAL SYMMETRIC YES YES

addition, to the best of our knowledge, before our work, there has been no worst-case or gap-free
analysis of the Riemannian gradient descent for Problem (1). Comparisons are summarized in Table 1.

Shamir [14] proposed a learning rate scheme for stochastic variance reduced PCA algorithm, namely
VR-PCA, based on Oja’s algorithm. It can be used for VR-PCA’s variant as well that is based on
Krasulina’s method [2, 16]. In this work, we put forward yet another learning rate scheme which
we find much more effective than that suggested by [14] for these stochastic variance reduced PCA
algorithms.

3 Notions and Notations

The only assumption on the given matrix A, made in our analyses, is real symmetry, i.e., A⊤ = A ∈
Rn×n. Let A’s orthonormal eigenvectors be v1,v2, · · · ,vn ∈ Sn−1, corresponding to eigenvalues
λ1, λ2, · · · , λn ∈ R, i.e., Avi = λivi, in descending order. If λ1 > λn, then let ∆p (1 ≤ p ≤ n− 1)
be the first nonzero eigenvalue gap, i.e., ∆p = λp − λp+1 > 0, such that λ1 = · · · = λp > λp+1.
Particularly, the first nonzero relative eigenvalue gap is defined as ∆ =

∆p

λ1−λn
if λ1 > λn, otherwise

as ∆ = +∞. The update equations of the two gradient methods for Problem (1) with constant
step-sizes are as follows:

Projected gradient descent (PGD) : xt+1 =
xt − η∇f(xt)

∥xt − η∇f(xt)∥2
, (2)

Riemannian gradient descent (RGD) : xt+1 =
xt − η∇̃f(xt)

∥xt − η∇̃f(xt)∥2
, (3)

where ∇f(x)=−Ax and ∇̃f(x)=−(I−xx⊤)Ax (throughout the paper I stands for an appropriately
sized identity matrix) represent the Euclidean and Riemannian gradients of f(x), respectively, η>0
constant step-size, and denominators for normalization, i.e., xt+1 ∈ Sn−1.

Consider Algorithm that the Riemannian gradient descent for Problem (1) with constant step-size η
starts from a random initial point x0 = x̂0

∥x̂0∥2
∈ Sn−1 (where x̂0 is entry-wise standard Gaussian),

and then repeatedly runs Equation (3) for T iterations. We will focus on the analysis of this algorithm
next. The results for the projected gradient descent are immediate by a much simpler path through
the same analysis.

4 Gap-Dependent Analysis

Let Vp=[v1 · · · vp]. The solution space to Problem (1) then is {Vpα: α ∈ Sp−1} ≜ V , where
S0 = {±1}. To study the convergence of iterates to V , it suffices to analyze the principal angle
between xt and Vp, i.e., θ(xt,Vp) = cos−1(∥V⊤

p xt∥2). Let V−p = [vp+1 · · · vn] and □†

represent the pseudo-inverse of a matrix. Then tan θ(x0,Vp) = ∥(V⊤
−px̂0)(V

⊤
p x̂0)

†∥2. Suppose
that T iterations are sufficient for sin2 θ(xt,Vp) = 1− ∥V⊤

p xt∥22 to reach the target accuracy ϵ > 0,
i.e., sin2 θ(xT ,Vp) < ϵ. The goal of our job here is to upper bound T with the gap information and
show that the bound is tight, namely

Theorem 1 The Riemannian gradient descent for Problem (1) with step-size η = Θ( 1
λ1−λn

) ≤
1

λ1−λn
converges in T = Θ( 1

∆ log n
ϵ ) iterations, i.e., sin2 θ(xT ,Vp) < ϵ, w.h.p. (with high proba-

bility).
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Proof First, it is trivial and T = 0 for the case that λ1 = λn since f(x) is a constant. Thus,
it is always assumed that λ1 > λn in what follows. Let ht(x) = 1 + η(x − x⊤

t Axt) and write
ht(A) =

∑n
i=1 ht(λi)viv

⊤
i = Vnht(Σn)V

⊤
n , where ht(Σn) = diag(ht(λ1), · · · , ht(λn)). We

can write that

xT =
hT−1(A)xT−1

∥hT−1(A)xT−1∥2
= · · · =

∏0
t=T−1 ht(A)x0

∥∏0
t=T−1 ht(A)x0∥2

=

∏T−1
t=0 ht(A)x0

∥∏T−1
t=0 ht(A)x0∥2

, (4)

where the second last equality is equivalently renormalized. Noting that the initial point x0 can be
expressed as x0=

∑n
i=1(v

⊤
i x0)vi, the last numerator above can be written as

∏T−1
t=0 ht(A)x0 =

∑n
i=1(v

⊤
i x0)

∏T−1
t=0 ht(A)vi =

∑n
i=1(v

⊤
i x0)

∏T−1
t=0 ht(λi)vi.

Accordingly, it holds that

∥V⊤
p

∏T−1
t=0 ht(A)x0∥22 =

∑p
i=1(v

⊤
i x0)

2
∏T−1

t=0 h2
t (λi),

∥∏T−1
t=0 ht(A)x0∥22 =

∑n
i=1(v

⊤
i x0)

2
∏T−1

t=0 h2
t (λi).

By the fact that x⊤Ax ∈ [λn, λ1] for x ∈ Sn−1 (Corollary 4.7 in [15]), we have that ht(λi) ≥
1 + η(λn − λ1) for all i and t. If 1 + η(λn − λ1) ≥ 0, i.e., η ≤ 1

λ1−λn
, it then holds that ht(λi) ≥ 0

for all i and t. When η ≤ 1
λ1−λn

, we can get that

sin2 θ(xT ,Vp) = 1− ∥V⊤
p xT ∥22

= 1−
∑p

i=1(v
⊤
i x0)

2
∏T−1

t=0 h2
t (λi)∑n

i=1(v
⊤
i x0)

2
∏T−1

t=0 h2
t (λi)

=

∑n
i=p+1(v

⊤
i x0)

2
∏T−1

t=0 h2
t (λi)

∑n
i=1(v

⊤
i x0)

2
∏T−1

t=0 h2
t (λi)

(5)

≤
∏T−1

t=0 h2
t (λp+1)

∑n
i=p+1(v

⊤
i x0)

2

∏T−1
t=0 h2

t (λ1)
∑p

i=1(v
⊤
i x0)

2
=

T−1∏

t=0

(
ht(λp+1)

ht(λ1)
)2 tan2 θ(x0,Vp)

≤ (
1 + η(λp+1 − λn)

1 + η(λ1 − λn)
)2T tan2 θ(x0,Vp)

≤ exp{− 2η∆pT

1 + η(λ1 − λn)
} tan2 θ(x0,Vp) ≜ ϵ,

where the second last inequality have used the fact that 1+η(λp+1−x)
1+η(λ1−x) is nonnegative and mono-

tonically decreasing for x ∈ [λn, λ1]. Solving the last equality about ϵ for T yields that
T = 1+η(λ1−λn)

2η∆p
log

tan2 θ(x0,Vp)
ϵ . Note that V⊤

−px̂0 and (V⊤
p x̂0)

† are entry-wise standard Gaussian
since V−p and Vp are orthonormal. By standard Gaussian matrix concentration theory [12], w.h.p.
∥V⊤

−px̂0∥22 ≤ c1n and ∥(V⊤
p x̂0)

†∥22 ≤ c2p for some fixed constants c1, c2. We then have w.h.p.
that tan2 θ(x0,Vp) ≤ cnp for some fixed constant c and log tan2 θ(x0,Vp) = O(log(n)). Hence,
T = O( 1

∆ log n
ϵ ) for η = Θ( 1

λ1−λn
).

To justify the tightness of this upper bound, we now show that the Riemannian gradient descent for
Problem (1) requires Ω( 1

∆ log n
ϵ ) iterations to converge. To this end, we resume the analysis from Eq.

(5) as follows:

sin2 θ(xT ,Vp) = 1− ∥V⊤
p xT ∥22 =

∑n
i=p+1(v

⊤
i x0)

2
∏T−1

t=0 h2
t (λi)

∑n
i=1(v

⊤
i x0)2

∏T−1
t=0 h2

t (λi)

≥ (v⊤
p+1x0)

2
∏T−1

t=0 h2
t (λp+1)∑p+1

i=1 (v
⊤
i x0)2

∏T−1
t=0 h2

t (λi)
=

1

1 +
∑p

i=1(v
⊤
i x0)2

(v⊤
p+1x0)2

·∏T−1
t=0 ( ht(λ1)

ht(λp+1)
)2

≥ 1

1 +
∑p

i=1(v
⊤
i x0)2

(v⊤
p+1x0)2

·∏T−1
t=0 ( 1

1−η∆p
)2

=
(1− η∆p)

2T tan2 θ̂

1 + (1− η∆p)2T tan2 θ̂

≥ exp{−2η∆pT/(1− η∆p)} tan2 θ̂
1 + exp{−2η∆pT/(1− η∆p)} tan2 θ̂

,
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where tan2 θ̂ =
(v⊤

p+1x0)
2

∑p
i=1(v

⊤
i x0)

2 and we have used for the last inequality that (1 − η∆p)
2T =

exp{2T log(1 − η∆p)} ≥ exp{− 2η∆pT
1−η∆p

} by log(1 + x) ≥ x
1+x for x > −1. Setting

exp{− 2η∆pT
1−η∆p

} tan2 θ̂ = 2ϵ yields that T =
1−η∆p

2η∆p
log tan2 θ̂

2ϵ and sin2 θ(xT ,Vp) ≥ 2ϵ
1+2ϵ ≥ ϵ,

assuming ϵ < 1
2 . Hence, for η = Θ( 1

λ1−λn
), we need T = Ω( 1

∆ log n
ϵ ) iterations to get

sin2 θ(xT ,Vp) < ϵ, which completes the proof. □

Remark 1 In the gap-dependent analysis above, from the optimization point of view, we care
more about the distance of the iterate xt to the optimal solution set V , i.e., sin2 θ(xt,Vp) =
1
2 minv∈V ∥xt − v∥22, with emphasis on the eigenvector computation. In fact, it is also common to
consider the objective sub-optimality gap, i.e., (f(xt)−minx∈Sn−1 f(x)) = 1

2 (λ1 − x⊤
t Axt), with

emphasis on the eigenvalue computation. From the proof of Lemma 4.6 in Xu and Gao 2018 [20],
we know that λ1 − x⊤

TAxT ≤ (λ1 − λn) sin
2 θ(xT ,Vp). By Theorem 1, with ϵ-rescaling, we then

have that λ1 − x⊤
TAxT < ϵ for T = O( 1

∆ log n
ϵ ).

5 Gap-Independent Analysis

The issue of the gap-dependent rate in Theorem 1 is that when the gap ∆ is significantly smaller than
the target accuracy ϵ, the convergence in terms of sin2 θ(xT ,Vp) is too slow, e.g., T = Θ( 1

ϵ2 log
n
ϵ )

for ∆ = Θ(ϵ2). In this case, it is often acceptable to swap the true leading eigenvector for any
ϵ-accurate solution xT ∈ Sn−1 in terms of the objective sub-optimality gap, i.e., λ1 − x⊤

TAxT < ϵ.
In this section, by extending the analysis of Musco et al. 2015 [10] for constant matrices (i.e.,
ht(x) = x), we show without the need of the eigenvalue gap information that even if the gap ∆ is
significantly smaller than the target accuracy, we only need O( 1ϵ log

n
ϵ ) (far less than O( 1

∆ log n
ϵ )

for, e.g., ∆ = Θ(ϵ3/2), see Remark 1) iterations to achieve that λ1 − x⊤
TAxT < ϵ, as stated in the

following theorem on the worst-case performance.

Theorem 2 The Riemannian gradient descent for Problem (1) with step-size η = O(1) ≤ 1
λ1−λn

converges in T = O( 1ϵ log
n
ϵ ) iterations, i.e., λ1 − x⊤

TAxT < ϵ.

Proof Sketch Due to space limit, we only give proof sketch here. The complete proof and all
the missing proofs can be found in the supplementary material. We assume again that λ1 > λn,
and η ≤ 1

λ1−λn
such that ht(λi) = 1 + η(λi − x⊤

t Axt) ≥ 0 for all i and t. It suffices to show
that λ1 − x⊤

TAxT < 2
η ϵ always holds no matter whether λ1 is significantly larger than λ2 in the

sense that h0(λ1) ≥ (1 + δ/2)h0(λ2) for 0 < δ ≤ 2. We take T = ⌈ 2
δ log

n(1+tan2 θ0)
ϵ ⌉+ 1, where

θ0 = θ(x0,v1).
Case 1 that h0(λ1)≥(1 + δ/2)h0(λ2). Consider the polynomial

pT (x) =
√

(1 + δ/2)h0(λ2)
∏T−1

t=0
ht(x)

(1+δ/2)ht(λ2)
≥ 0, x ∈ [λn, λ1]

and matrix form pT (A) =
∑n

i=1 pT (λi)viv
⊤
i =VnpT (Σn)V

⊤
n , where pT (Σn)=diag(pT (λ1),

· · · , pT (λn)). We have

Fact 1. For x ∈ [λn, λ2], h0(λ1) ≥ (1 + δ/2)h0(x) implies ht(λ1) ≥ (1 + δ/2)ht(x) for all t, by

Lemma 3 If η ≤ 2
λ1−λn

then x⊤
t+1Axt+1 ≥ x⊤

t Axt.

Hence, pT (λ1) ≥
√
h0(λ1). Also, pT (λi) ≤

√
h0(λ2)(1 + δ/2)−T+ 1

2 , i = 2, · · · , n. Eq. (4) can
be rewritten as xT = pT (A)x0

∥pT (A)x0∥2
, where the rank-1 approximation inequality for pT (A) holds:

∥pT (A)− xTx
⊤
T pT (A)∥2F ≤ (1 + tan2 θ0)∥pT (A)− pT (λ1)v1v

⊤
1 ∥2F

= (1 + tan2 θ0)
∑n

i=2 p
2
T (λi)

≤ (1 + tan2 θ0)(n− 1)h0(λ2)(1 + δ/2)−2T+1 < h0(λ2)ϵ.
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At the same time,

∥pT (A)− xTx
⊤
T pT (A)∥2F = ∥pT (A)∥2F − ∥xTx

⊤
T pT (A)∥2F =

∑n
i=1(1− (x⊤

T vi)
2)p2T (λi)

≥ (1− (x⊤
T v1)

2)p2T (λ1) ≥ (1− (x⊤
T v1)

2)h0(λ1).

Thus, λ1 − x⊤
TAxT < 2

η ϵ holds by noting that

h0(λ1)− x⊤
T h0(A)xT = h0(λ1)−

∑n
i=1(x

⊤
T vi)

2h0(λi) ≤ (1− (x⊤
T v1)

2)h0(λ1) < ϵh0(λ2).

Case 2 that h0(λ1) < (1+ δ/2)h0(λ2). Consider the polynomial qT (x) =
√

h0(λ1)
∏T−1

t=0
ht(x)
ht(λ1)

.

and write xT = qT (A)x0

∥qT (A)x0∥2
. Define the index set α = {i : 1

1+δ/2h0(λ1) ≤ h0(λi) < h0(λ1)} and
rewrite

xT =

∑
i∈α qT (λi)viv

⊤
i x0

∥qT (A)x0∥2
+

∑
i/∈α qT (λi)viv

⊤
i x0

∥qT (A)x0∥2
≜ x̃

(α)
T + x̃

(−α)
T .

We then have ∥h
1
2
0 (A)x

(α)
T ∥22 ≥ 1

1+δ/2h0(λ1) ≥ (1 − ϵ)h0(λ1) for δ = 2ϵ, where the first

inequality is by the definition of the index set. For x
(−α)
T ≜ x̃

(−α)
T

∥x̃(−α)
T ∥2

= qT (A−α)x0

∥qT (A−α)x0∥2
and

A−α ≜
∑

i/∈α λiviv
⊤
i , a similar argument to Case 1 can be applied to get that h0(λ1) −

(x
(−α)
T )⊤h0(A−α)x

(−α)
T < h0(λ1)ϵ. Then ∥h

1
2
0 (A)x

(−α)
T ∥22 = (x

(−α)
T )⊤h0(A−α)x

(−α)
T >

(1− ϵ)h0(λ1). Thus, λ1 − x⊤
TAxT < 2

η ϵ holds by noting that

x⊤
T h0(A)xT = ∥h

1
2
0 (A)x̃

(α)
T ∥22 + ∥h

1
2
0 (A)x̃

(−α)
T ∥22

= ∥x̃(α)
T ∥22 ∥h

1
2
0 (A)x

(α)
T ∥22 + ∥x̃(−α)

T ∥22 ∥h
1
2
0 (A)x

(−α)
T ∥22

> ( ∥x̃(α)
T ∥22 + ∥x̃(−α)

T ∥22 )(1− ϵ)h0(λ1) = (1− ϵ)h0(λ1).

□

Remark 2 When the gap is significantly larger than the target accuracy ϵ, e.g., ∆ = O(1), and
sin2 θ(xT ,Vp) ≥ ϵ

(λ1−λn)∆
for T = Θ( 1

∆ log n(λ1−λn)∆
ϵ ) (see the proof of Theorem 1 on the

tightness), we have that λ1 − x⊤
TAxT ≥ (λ1 − λn)∆ sin2 θ(xT ,Vp) ≥ ϵ by Lemma 2 in Xu

et al. [19]. Thus, we need T = Ω( 1
∆ log n

ϵ ) iterations to get λ1 − x⊤
TAxT < ϵ. Otherwise,

it needs O( 1ϵ log
n
ϵ ) iterations to make it. Thus, a comprehensively tight rate can be stated as

O( 1
max{∆,ϵ} log

n
ϵ ).

Remark 3 The analysis of Case 1 in the proof of Theorem 2 can give us a gap-dependent rate:

h0(λ1) = 1 + η(λ1 − x⊤
0 Ax0) = (1 +

η∆1

1 + η(λ2 − x⊤
0 Ax0)

)(1 + η(λ2 − x⊤
0 Ax0))

≥ (1 +
η∆1

1 + η(λ2 − λn)
)h0(λ2) ≥ (1 +

η∆1

2
)h0(λ2).

Taking δ = η∆1 in T = ⌈ 2
δ log

n(1+tan2 θ0)
ϵ ⌉+ 1 gives us T = O( 1

η∆1
log n

ϵ ). It is straightforward
to extend to the setting λ1 = · · · = λp > λp+1 of the previous section to get T = O( 1

∆ log n
ϵ )

with ∆p and η = Θ( 1
λ1−λn

). But it is worth mentioning this is about the convergence in terms of
λ1 − x⊤

TAxT < ϵ, rather than sin2 θ(xT ,Vp) < ϵ.

Remark 4 Compared to ht(A) ≡ A which leads to simple monomials in [7, 10], ht(A) =
I+ η(A− x⊤

t Axt · I) varies with iterations and requires complicated polynomials in our analysis.
In addition, from Remark 1-2, it holds for ∥x∥2 = 1 that 1

2∆p sin
2 θ(x,Vp) ≤ f(x) − f(v1) ≤

1
2 (λ1 − λn) sin

2 θ(x,Vp). Note that either these inequalities or Wedin’s theorem can’t be used to
translate results between Theorem 1 and Theorem 2, because the translated results by these inequalities
may possibly be worse and Wedin’s theorem (which upper bounds perturbation of eigenspace in
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subspace distance by those of both the given matrix and corresponding gap) is inapplicable here. For
example, by the second inequality and Theorem 1, we can get λ1−xTAxT < ϵ for T = O( 1

∆ log n
ϵ ).

But when ∆ is much less than ϵ, T will clearly be worse than the results in Theorem 2. On the other
hand, by the first inequality and Theorem 2, we can get sin2 θ(xT ,Vp) < ϵ for T = O( 1

ϵ∆p
log n

ϵ∆p
),

which is worse than the results in Theorem 1.

6 Projection Versus Search

To be specific, in this section, we refer to the power iteration (PI) and Riemannian gradient descent
(RGD) as the projection and search methods for Problem (1), respectively, and the projected gradient
descent (PGD) belongs to both classes.

The above analyses for the search method apply to the PGD by simply setting ht(x) = 1 + ηx.
In this case, η represents the step-size and needs satisfy 0 < η ≤ 1

ρ to make sure ht(λi) ≥ 0

for all i, where ρ = maxi |λi| is A’s spectral radius. Assuming that ∆1 > 0, it will converge to
v1. On the other hand, the analyses [7, 10] of the PI apply to the PGD as well. Then η can be
any nonzero real value and the PGD converges to vσ(1) assuming that the largest two values of
{|ht(λj)| : j = 1, · · · , n} are distinct, where σ maps i to j such that |ht(λj)| is the i-th largest value
of {|ht(λj)| : j = 1, · · · , n}. In addition, the PI can be seen as the PGD with constant step-size
η = ±∞, and can also be interpreted as the RGD with varying step-sizes ηt = 1

x⊤
t Axt

when A is

positive definite.

Table 2: Comparison of the PI, PGD, and RGD.

xt+1 η ∆ T xT x⊤
T AxT

PI (I+ηA)xt

∥(I+ηA)xt∥2 {±∞} 1−|λσ(2)

λσ(1)
| O( 1

max{∆,ϵ} log n
ϵ
) vσ(1) λσ(1)

PGD xt+η∇f(xt)
∥xt+η∇f(xt)∥2 (0, 1

ρ
] ∆1

ρ
O( 1

max{∆,ϵ} log n
ϵ
) v1 λ1

RGD xt+η∇̃f(xt)

∥xt+η∇̃f(xt)∥2
(0, 1

λ1−λn
] ∆1

λ1−λn
O( 1

max{∆,ϵ} log n
ϵ
) v1 λ1

Table 3: Contraction factors of the PI, PGD, and RGD on positive definite matrices.

PI PGD RGD

ht(x) x 1 + ηx 1 + η(x− x⊤
t Axt)

ht(λ2)
ht(λ1)

1− ∆1
λ1

1− ∆1
1
η
+λ1

1− ∆1

1
η
+λ1−x⊤

t Axt

Table 2 summarizes the comparisons between these methods for Problem (1), where ϵ represents
the target accuracy for λ1 − x⊤

TAxT , and (x⊤
TAxT ,xT ) describes which eigenpair it approximates.

Table 3 shows that the PGD even with varying step-sizes 0 < ηt ≤ 1
ρ always gets a larger contraction

factor ht(λ2)
ht(λ1)

(see the equation right below Eq. (5)) than the PI, but the RGD can achieve a smaller
one when step-sizes satisfy that ηt > 1

x⊤
t Axt

. In practice, it may be worth a try to set ηt = τ
x⊤
t Axt

with τ > 1. However, the Riemannian gradient descent update requires more computations than the
power iteration in each step, possibly leading to an even worse wall-clock running time. This can be
easily seen from the equivalence between the two methods with ηt =

1
x⊤
t Axt

.

In the next section, we will investigate the effect of this step-size scheme ηt =
τ

x⊤
t Axt

(τ > 1) on
both projected and Riemannian gradient descent for eigenvector computation as well as the stochastic
variance reduced algorithms for PCA (VR-PCA) based on Oja’s algorithm or Krasulina’s method.
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7 Experiments

The purpose of the experimental study for corroborating our findings in above sections is twofold.
One is to verify the rate O((1/max{∆, ϵ}) log(n/ϵ)) of the Riemannian gradient descent on real
symmetric matrices in the form of A ∈ Rn×n. The other is to experiment on the step-size scheme for
both projected and Riemannian gradient descent methods on PCA data in the form of C ∈ Rd×n such
that A = 1

nCC⊤. Experiments were done on a laptop (dual-core 2.30GHZ CPU and 8GB RAM).

The constituent part O((1/∆) log(n/ϵ)) of the rate has been experimentally verified in Ding et
al. [5]. Hence, only the worst-case rate O((1/ϵ) log(n/ϵ)) needs verification, for which we generate
synthetic data A=VΣV⊤ as follows. Given n=1000, s=100,∆=0.01 and entry-wise i.i.d. standard
normal U ∈ Rn×n,a ∈ R(n−s−1)×1, we consider orthogonal V = U(U⊤U)−1/2 and diagonal
Σ = diag(2I−∆diag(0, 1, · · · , s), 1

ndiag(|a1|, · · · , |an−s−1|)). In this case, the convergence for
each method considered in this work should behave differently in terms of different measures, i.e.,
O((1/ϵ) log(n/ϵ)) for (λ1 − x⊤

TAxT ) versus O((1/∆) log(n/ϵ)) for sin2 θ(xT ,v1).
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Figure 1: Test on synthetic data.

We implemented the PGD with η=1
ρ , ηt = 0.6

x⊤
t Axt

, 1
x⊤
t Axt

, 1.6
x⊤
t Axt

, and RGD with step-size schemes

η = 1
λ1−λn

, ηt = 0.6
x⊤
t Axt

, 1
x⊤
t Axt

, 1.6
x⊤
t Axt

, in MATLAB. Each is compared to the PI. All the methods
start from the same random initial point x0 and run for T = 100 iterations. Figure 1 reports their
performance across iterations (or the average performance over time on 10 runs) in two measures,
where the y-axis of the figures in the first and third columns is in log scale of (λ1 −x⊤

t Axt)/λ1. It is
clear for each method that (λ1 − x⊤

t Axt) converges sub-linearly while sin2 θ(xt,v1) is decreasing
even more slowly, matching their respective theoretical rates. Consider the case that ∆ = 0.01 and
accuracy ϵ = 0.1 here. First, from the figures on the left in Figure 1, it is clear that the (relative)
target in objective converges sub-linearly (note that y-axis is log scale here), roughly matching
O((1/ϵ) log(n/ϵ)) iterations. From the figures on the right, the target sin2 θ(xt,v1) converges about
one order of magnitude slower than the target in objective, roughly matching O((1/ϵ)2 log(n/ϵ))
iterations which is basically consistent with O((1/∆) log(n/ϵ)) for ϵ = 0.1.

We also experiment on two real datasets4 Schenk that was used in [19, 5] and GHS_indef. Schenk is
a 10728× 10728 real symmetric matrix with 85000 nonzero entries. The performance is depicted
in Figure 2, where all the methods converge linearly due to a large gap ∆ and their differences are
sharper. Particularly, we add the plot of the average performance over time on 10 runs. Although
the RGD with ηt =

1
x⊤
t Axt

is theoretically the same as the PI (thus performing exactly the same
over iterations in Figures 1-2), it needs more computational costs reflected by the wall-clock time in
Figure 2. Nonetheless, Figures 1-2 showcase the great potential of the RGD with aggressive step-size
schemes to outperform the PI, e.g., ηt = 1.6

x⊤
t Axt

here, in practice. In the meanwhile, the performance
of the PGD even with adaptive step-sizes is worse than that of the PI. We tested significantly larger

4https://sparse.tamu.edu/
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Figure 2: Deterministic Krasulina’s method on Schenk and GHS_indef with adaptive step-sizes.

constant τ in τ
x⊤
t Axt

. PGD’s performance is still worse than that of the PI. Similar results appear on
GHS_indef which is a 76638× 76638 real symmetric matrix with 859520 nonzero entries.

Algorithm 1 VR-PCA (Oja)
1: Input: C = (c1, · · · , cn) ∈ Rd×n, x̃0,

τ , b = |αt|, m = ⌈n
b ⌉, S, where [n] =

{1, 2, · · · , n}
2: Output: xS

3: for s = 0, 1, · · · , S − 1 do
4: gs =

1
nCC⊤x̃s, x0 = x̃s, ηs = nτ

∥C⊤x̃s∥2
2

5: for t = 0, 1, · · · ,m− 1 do
6: Pick αt ⊂ [n] uniformly at random
7: gt =

1
b

∑
i∈αt

cic
⊤
i (xt − x̃s) + gs

8: xt+1 = xt+ηsgt

∥xt+ηsgt∥2

9: end for
10: x̃s = xm

11: end for

Algorithm 2 VR-PCA (Krasulina)
1: Input: C = (c1, · · · , cn) ∈ Rd×n, x̃0, τ ,

b = |αt|, m = ⌈n
b ⌉, S

2: Output: xS

3: for s = 0, 1, · · · , S − 1 do
4: g̃s =

1
n (CC⊤x̃s−∥C⊤x̃s∥22x̃s), x0 = x̃s,

ηs =
nτ

∥C⊤x̃s∥2
2

5: for t = 0, 1, · · · ,m− 1 do
6: Pick αt ⊂ [n] uniformly at random
7: g̃t = 1

b

∑
i∈αt

(cic
⊤
i (xt − x̃s) −

((c⊤i xt)
2xt − (c⊤i x̃s)

2x̃s) + g̃s

8: xt+1 = xt+ηsg̃
∥xt+ηsg̃t∥2

9: end for
10: x̃s = xm

11: end for

Table 4: Statistics of PCA data

DATA DESCRIPTION d n

MMILL MULTI-LABEL IMAGES 221 30000
JW11 ACOUSTIC AND ARTICULATION 385 30000

MNIST IMAGES OF HANDWRITTEN DIGITS 784 70000

We now check the performance of two versions of the VR-PCA based on Oja’s algorithm and
Krasulina’s method, corresponding to Algorithm 1 in the work of Shamir 2015 [14] (Algorithm 1
above) and variance reduced version (see the supplementary material) of Algorithm 1 in the work of
Tang 2019 [16] (Algorithm 2 above), respectively, where the constant learning rate is replaced with
the proposed adaptive learning rate scheme. The common PCA datasets are used and summarized in
Table 4. We use b = 100. Note that we only update the learning rate at the epoch level and keep it
unchanged within each epoch, similar to the case of the computation of the full gradient. Figure 3
reports the average performance of the VR-PCA with our adaptive learning rate on three real datasets,
following the previous experimental setting on Schenk except for 5 runs used for average. It is easy
to see that the proposed learning rate scheme (i.e., ηs = τn

∥Cx̃s∥2
2

) in the PCA setting consistently
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Figure 3: VR-PCA on MMILL, JW11, and MNIST with adaptive learning rates.

works far better than that proposed in Shamir 2015 [14] (i.e., η =
√
n

∥C∥2
F

) across the datasets, for both
versions of the VR-PCA. Interestingly, an opposite case (see Figure 2 for the deterministic setting)
happens that the performance of the Oja-based VR-PCA performs significantly better than that based
on Krasulina’s method. This shows that the proposed learning rate scheme is very promising for the
practitioners of the VR-PCA.

8 Conclusions

We presented two analyses of the Riemannian gradient descent for eigenvector computation. Specifi-
cally, the gap-dependent one is the first general analysis that achieves a tight rate O( 1

∆ log n
ϵ ) in terms

of the point distance to the optimal solutions. However, if we are only concerned with the objective
distance to the optimal solutions, the rate of this type is not worst-case optimal. We succeeded in
establishing a worst-case rate O( 1ϵ log

n
ϵ ) independent of any gap, by adapting an existing analysis for

projection methods to our context of which a prominent characteristic lies in varying matrices ht(A)
during iterations, and ended up with a comprehensively tight rate O( 1

max{∆,ϵ} log
n
ϵ ). In addition,

we discussed the equivalence and subtle differences between projection and search methods that
give rise to new insights on the step-size schemes, and conducted experimental studies to verify the
established theories. Particularly, the proposed adaptive learning rate scheme for the VR-PCA works
far better than those proposed previously. One limitation of our analyses lies in the great difficulties
of their extensions to the block setting where X ∈ Rn×k for k ≥ 1 (this work corresponds to k = 1),
because X⊤

t AXt is no longer a scalar but a matrix and the key matrix function ht(A) then is not
well-defined for the analysis. We consider overcoming the underlying difficulties in this setting as an
important future work.
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