
Appendix
A Proof of Theoretical results

A.1 Proof of Proposition 1 and 3

To prove Proposition 1, we first need the following lemma:
Lemma 1 (Alternative equivalent definition of functional KL divergence [47]). The KL-divergence
between two stochastic processes can be estimated by the supremum of marginal KL divergences over
all finite subset of inputs:

DKL[q(f)||p(f)] = sup
n,Xn

DKL[q(f
Xn)||p(fXn)], (21)

where Xn is the so called measurement points, fXn is the vector of function values evaluated on
Xn, and DKL[q(f

Xn)||p(fXn)] is the KL-divergence over random vectors typically used in machine
learning community.

Readers may refer to [47] for the proof of this lemma.

Proposition 1. Suppose c has full support on T Z+

. Then, Dgrid[q(f)||p(f |D)] Satisfies the following
conditions:

• Dgrid[q(f)||p(f |D)] ≥ 0

• Dgrid[q(f)||p(f |D)] = 0 if and only if q(f) = p(f |D)

Proof: First, according the the definition of

Dgrid[q(f)||p(f |D)] = En,Xn∼cDKL[q(f
Xn)||p(fXn |D)],

the positivity property holds since DKL[q(f
Xn)||p(fXn |D)] ≥ 0.

Next, to prove Dgrid[q(f)||p(f |D)] = 0 if and only if q(f) = p(f |D), we first show that

argmin
q(f)

DKL[q(f)||p(f |D)] = argmin
q(f)

En,Xn∼cDKL[q(f
Xn)||p(fXn |D)].

Let’s first consider the left handside, argminq(f) DKL[q(f)||p(f |D)]. When it reaches the optimum,
we have a unique solution, q⋆L(f) = p(f |D). According to Equation 21, we have:

argmin
q(f)

sup
n,Xn

DKL[q(f
Xn)||p(fXn |D)] = argmin

q(f)
DKL[q(f)||p(f |D)] = q⋆L(f).

Also, notice that

En,Xn∼cDKL[q(f
Xn)||p(fXn |D)] ≤ sup

n,Xn

DKL[q(f
Xn)||p(fXn |D)]

At q⋆L(f), we have

0 ≤ En,Xn∼cDKL[q
⋆
L(f

Xn)||p(fXn |D)] ≤ sup
n,Xn

DKL[q
⋆
L(f

Xn)||p(fXn |D)] = 0

Therefore, we have

q⋆L(f) ∈ argmin
q(f)

En,Xn∼cDKL[q(f
Xn)||p(fXn |D)]

On the other hand, assume that En,Xn∼cDKL[q
⋆
L(f

Xn)||p(fXn |D)] reaches its optimum 0 at some
optimal solution q⋆R(f). Since DKL[q

⋆
R(f

Xn)||p(fXn |D)] is non-negative and c has full support, we
have DKL[q

⋆
R(f

Xn)||p(fXn |D)] = 0 for all possible Xn ⊂ supp(c) = T Z+

. Therefore, we have

DKL[q
⋆
R(f)||p(f |D)] = sup

n,Xn

DKL[q
⋆
R(f

Xn)||p(fXn |D)] = 0

14

Therefore, we have
q⋆R(f) = p(f |D) = q⋆L(f)

That is,

argmin
q(f)

DKL[q(f)||p(f |D)] = argmin
q(f)

En,Xn∼cDKL[q(f
Xn)||p(fXn |D)] = p(f |D)

In other words, both the functional KL divergence and grid-functional KL divergence have the same
unique global optimal solution, q(f |D). At q(f |D), both divergence achieves minimum value, 0.
Therefore, DKL[q(f)||p(f |D)] = 0 implies that q(f) must be p(f |D).

Proposition 3. Let n,Xn ∼ c be a set of random measure points such that Xn always contains XD.
Define:

Lgrid
q := log p(D)−Dgrid[q(f)||p(f |D)]. (22)

Then we have:

Lgrid
q = Eq(f)[log p(D|f)]−Dgrid[q(f)||p(f)] (23)

and log p(D) ≥ Lgrid
q ≥ Lfunctional

q .

Proof: Since Dgrid ≥ 0, the the statement log p(D) ≥ Lgrid
q obviously holds. Then, notice that:

Lgrid
q

= log p(D)− En,Xn∼cDKL[q(f
Xn)||p(fXn |D)]

= En,Xn∼c{log p(D)−DKL[q(f
Xn)||p(fXn |D)]}

= En,Xn∼c{log p(D)− Eq[log
q(fXn)

p(fXn |D)
]}

= En,Xn∼c{log p(D)− Eq[log
q(fXn)p(D)

p(fXn ,D)
]}

= En,Xn∼c{Eq[− log q(fXn) + log p(fXn ,D)]}
= En,Xn∼c{Eq(fD) log p(D|fD)−DKL[q(f

Xn)||p(fXn)]}
= Eq(f)[log pπ(D|f)]− En,Xn∼cDKL[q(f

Xn)||p(fXn)]

This proves the statement that Lgrid
q = Eq(f)[log pπ(D|f)]−Dgrid[q(f)||p(f)].

Finally, since

En,Xn∼cDKL[q(f
Xn)||p(fXn)]

≤En,Xn∼c sup
n,Xn

DKL[q(f
Xn)||p(fXn)]

= sup
n,Xn

DKL[q(f
Xn)||p(fXn)]

=DKL[q(f)||p(f)],
Therefore we also have:

Eq(f)[log pπ(D|f)]− En,Xn∼cDKL[q(f
Xn)||p(fXn)] ≥ Lfunctional

q ,

which concludes the first part of the proposition.

A.2 Proof of Proposition 2

Proposition 2. Let p(f) and q(f) be two distributions for random functions. Assume that p(f) is
parameterized by the following sampling processes:

f = h+ ϵ, h(x) ∼ p(h|x; Θ),Θ ∼ p(Θ), ϵ ∼ N (0, σ2)

15

, And q(f) is parameterized by:

f = h+ ϵ, h(x) ∼ q(h|x; Γ),Γ ∼ q(Γ), η ∼ N (0, σ2).

Here,x ∈ T ⊂ Rd, h is the random latent function, Θ ∈ RI , Γ ∈ RJ are the parameters of each
random function distributions, respectively. Suppose p(h|x; Θ), q(h|x; Θ), p(Θ) and q(Γ) all have
compact supports w.r.t. h, h, Θ, and Γ, respectively (and their supports are denoted by A, B, W ,
and V). Then, there exist a sampling distribution c such that: 1, c has full support on T Z+

, and 2,
Dgrid[q(f)||p(f)] is finite.

Proof : Let Xn denote a set of n measure points {xk}1≤k≤n in T n. Also, let the sampling
distribution c to have the following form:

n ∼ p(n),xk ∼ U(T), ∀1 ≤ k ≤ n

That is, c first samples a positive integer n from the distribution p(n), and then draw n samples
from T independently and uniformly. Based on the choice of p(h|x; Θ) and q(h|x; Θ), we have two
possible cases: 1), p(h|x; Θ), q(h|x; Θ) are stochastic; 2) p(h|x; Θ) and q(h|x; Θ) are deterministic,
i.e., p(h|x; Θ) = δ(h− g(x,Θ)) and q(h|x; Θ) = δ(h− v(x,Θ)) for some functions g and v. We
will now discuss these two cases separately.

Case 1: p(h|x; Θ) are q(h|x; Θ) are non-deterministic In this case, let us consider
Dgrid[q(f)||p(f)]. According to the definition

Dgrid[q(f)||p(f)]
=En,Xn∼cDKL[q(f

Xn)||p(fXn |D)]

=En∼p(n)EXn∼U(T n)DKL[q(f
Xn)||p(fXn)]

=

∞∑
n=1

p(n)EXn∼U(T n)DKL[q(f
Xn)||p(fXn)]

Therefore, we only need to show that the series
∑∞

n=1 p(n)EXn∼U(T n)DKL[q(f
Xn)||p(fXn)] con-

verges. Notice that

EXn∼U(T n)DKL[q(f
Xn)||p(fXn)]

≤EXn∼U(T n)DKL[q(h
Xn)||p(hXn)]

=EXn∼U(T n)

∫
hXn

p(hXn) log
p(hXn)

q(hXn)
dhXn

≤EXn∼U(T n)

[
log p̄− log q

]
≤ sup

Xn∈T n

[
log p̄− log q

]
(24)

The first inequality is due to information processing inequality. The p̄ and q in the second inequality
is defined as

p̄ = sup
hXn∈An⊂Rn

p(hXn) > 0

q = inf
hXn∈Bn⊂Rn

q(hXn) > 0,

where An and Bn are the compact support of p(hXn) and q(hXn), respectively (since both p(h|x; Θ)
and q(h|x; Θ) have compact support in R, p(hXn) and q(hXn) have compact support in Rn). Note
that both p̄ and q are strictly greater than 0, due to the the fact that An and Bn is the support of

16

p(hXn) and q(hXn), respectively. Next, notice that

p̄

= sup
hXn∈An

p(hXn)

= sup
hXn∈An

∫
Θ

∏
1≤k≤n

p(hi|xi; Θ)p(Θ)dΘ

≤ sup
hXn∈An

sup
Θ∈W

sup
Xn∈T n

∏
1≤k≤n

p(hi|xi; Θ)

≤
∏

1≤k≤n

(
sup
hi∈A

sup
Θ∈W

sup
xi∈T

p(hi|xi; Θ)

)
=(p⋆)n > 0

Where we have used (p⋆) to denote
(
suphi∈A supΘ∈W supxi∈T p(hi|xi; Θ)

)
. The existence of (p⋆)

is due to the compactness of A, W , and T stated in our assumptions. Note that p⋆ is strictly greater
than 0 since A is the support of p(h|x; Θ). Similarly, we have

q

= inf
hXn∈Bn

q(hXn)

= inf
hXn∈Bn

∫
Γ

∏
1≤k≤n

q(hi|xi; Γ)q(Γ)dΓ

≥ inf
hXn∈Bn

inf
Γ∈V

inf
Xn∈T n

∏
1≤k≤n

q(hi|xi; Γ)

≥
∏

1≤k≤n

(
inf
hi∈B

inf
Γ∈V

inf
xi∈T

q(hi|xi; Γ)

)
=(q⋆)n > 0

Therefore, back to inequality 24, we have:

EXn∼U(T n)DKL[q(f
Xn)||p(fXn)]

≤ sup
Xn∈T n

[
log p̄− log q

]
≤n [log p⋆ − log q⋆]

Now, let us consider the series
∑∞

n=1 p(n)n [log p⋆ − log q⋆]. Apparently, based on d’Alembert’s
criterion, this series is absolute convergent if we can choose p(n) such that limn→∞ p(n+1)/p(n) <
1. For example,p(n) could be a geometric distribution with mean parameter greater than 1 (or success
probability that is strictly greater than 0, and strictly smaller than 1).. Since geometric distribution
has full support in Z+, it satisfies the claim of this proposition. Finally, given such p(n) distribution,∑∞

n=1 p(n)EXn∼U(T n)DKL[q(f
Xn)||p(fXn)] is also convergent due to direct comparison test.

Case 2: p(h|x; Θ) are q(h|x; Θ) are deterministic , i.e., p(h|x; Θ) = δ(h − g(x,Θ)) and
q(h|x; Γ) = δ(h − v(x,Γ)) for some functions g and v. Inequality 24 still holds. However,
the upper bounds for p̄ and q are different:

p̄

= sup
hXn∈An

p(hXn)

= sup
hXn∈An

∫
Θ∈W

I{Θ|hXn=g(X;Θ)}p(Θ)dΘ

≤ sup
hXn∈An

L(W) sup
Θ∈W

p(Θ)

=(p⋆) > 0

17

Where we have used (p⋆) to denote L(W) supΘ∈W p(Θ), and L is the Lebesgue measure on RI .
The existence of (p⋆) is due to the compactness of W stated in our assumptions. p⋆ is strictly greater
than 0 since W is the support of p(Θ). Similarly, we have:

q

= inf
hXn∈An

p(hXn)

= inf
hXn∈An

∫
Γ∈V

I{Γ|hXn=g(X;Γ)}p(Γ)dΓ

≥ inf
hXn∈An

L(V) inf
Γ∈V

p(Γ)

=(q⋆) > 0

Therefore, back to inequality 24, we have:
EXn∼U(T n)DKL[q(f

Xn)||p(fXn)]

≤ sup
Xn∈T n

[
log p̄− log q

]
p̄

≤ [log p⋆ − log q⋆] (p⋆)

Again, consider the series
∑∞

n=1 p(n) [log p
⋆ − log q⋆] (p⋆). Apparently, based on d’Alembert’s

criterion, this series is absolute convergent if we can choose p(n) such that limn→∞ p(n+1)/p(n) <
1. Similar to the first case, let p(n) be a geometric distribution with mean parameter greater than 1
(or success probability that is strictly greater than 0, and strictly smaller than 1). Finally, given such
p(n) distribution,

∑∞
n=1 p(n)EXn∼U(T n)DKL[q(f

Xn)||p(fXn)] is also convergent due to direct
comparison test.

Remark (grid-functional KL using BNN as priors). The compactness assumption in Proposition 2
seems restrictive, since BNNs with Gaussian priors on weights will break the compactness assumption.
Indeed, the assumptions in proposition 2 are merely sufficient conditions. However, we here note that
the proof still holds under BNN priors. Assume p(hi|xi; Θ = w) = N (hi; gw(xi), ς

2), where gw(·)
is a Bayesian neural network parameterized by w, and p(w) is some suitable prior on weights such
as factorized Gaussians. In this case, it is trivial to see that p⋆ = suphi

supw supxi
p(hi|xi; Θ) =

1√
2πς2

> 0, hence the rest of the proof still holds.

A.3 Grid-Functional KL between a parametric model and a Gaussian process

In this section, we discuss the non-parametric counter part of Proposition 2, i.e., is the grid functional
KL between a parametric model and a Gaussian process is still finite? Without loss of generality,
let us consider the example of the approximate inference problem considered in variational implicit
processes (VIP), where a GP is used as a variational distribution to approximate another stochastic
process. To be concrete, assume p(f) is a parametric model parameterized as in Proposition 1, and
q(f) is a zero mean Gaussian process with kernel function K(·, ·). Assume that K(·, ·) is a stationary
kernel, i.e., K(x1,x2) = Φ(∥x1 − x2∥) for some function Φ (e.g., radial basis function). In fact, we
have the following Corollary:
Corollary 1. Let p(f) and q(f) be two distributions for random functions. Assume that p(f) is
parameterized by the following sampling processes:

f = h+ ϵ, h(x) ∼ p(h|x; Θ),Θ ∼ p(Θ), ϵ ∼ N (0, σ2),

and q(f) is parameterized by a zero mean Gaussian process with kernel function K(·, ·).
Assume further that: i), p(f) satisfies the assumptions in Proposition 2; ii), K(·, ·) is a stationary
kernel, i.e., K(x1,x2) = Φ(∥x1 − x2∥) for some function Φ (e.g., radial basis function). and iii),
the smallest eigen value of KXn,Xn , denoted by λn, decays in the order of O(n−γ) for some constant
γ > 1 (see the literature of eigen value distribution/lower bounding smallest eigen value of kernel
matrices, and/or norm estimation for inverse matrices. For example, [51, 2, 52, 3, 42, 33] to name a
few).

Then, there exist a sampling distribution c such that: 1, c has full support on T Z+

, and 2,
Dgrid[q(f)||p(f)] is finite.

18

Proof We can basically apply most of the proof of Proposition 2. In our case, the key ingredient is
to derive a lower bound for

q = inf
hXn∈Bn⊂Rn

q(hXn).

Since q(hXn) is a GP as described before, its likelihood function is given by

log q(hXn) = −
hXn

T
K−1

Xn,Xn
hXn

2
− n

2
log 2π − 1

2
log |KXn,Xn |

. Without loss of generality, assume that ∥hXn∥ ≤ A for some constant A. Then, we have

hXn
T
K−1

Xn,Xn
hXn ≤ 1

λn
∥hXn∥ ≤ A

λn
,

where λn denotes the smallest eigen value for KXn,Xn
(or equivalently, 1

λn
is the largest eigen value

for K−1
Xn,Xn

).

Notice also that
log |KXn,Xn | ≤ n log

1

n
Tr(KXn,Xn) = n log Φ(0).

Therefore, we can write

log q ≥ −n

2
(log 2π + logΦ(0))− A

2λn

By the same argument used in Proposition 2, we have

EXn∼U(T n)DKL[q(f
Xn)||p(fXn)]

≤n

[
log p⋆ +

1

2
(log 2π + logΦ(0))

]
+

A

2λn

Since λn decays in the order of O(n−γ) for some constant γ > 1, by running the same argument as
in the proof of Proposition 2,

∑∞
n=1 p(n)EXn∼U(T n)DKL[q(f

Xn)||p(fXn)] is absolute convergent
if limn→∞ p(n+ 1)/p(n) < 1.

A.4 Proof of Proposition 4

Proposition 4 (Expressiveness of SPGs). Let p(f) be a square-integrable stochastic process defined
on probability space (X ,B), and its index set T is a compact subset of Rd. Here, X is a compact
metric space, B is the Borel set on X . Then, for ∀ϵ > 0, there exists a SPG qϵSPG(f) with a Gaussian
prior on latent space, such that:

MMD(p, qϵSPG;F) < ϵ for ∀x ∈ T ,

where MMD is the maximum mean discrepancy between p and q, F is the MMD function class
defined to be a unit ball in a reproducing kernel Hilbert space (RKHS) with a universal kernel [46]
k(·, ·) as its reproducing kernel.

Proof Since p(f) is a stochastic process defined on L2(T), we can apply Karhunen–Loeve expan-
sion to f(x). Specifically, we have:

f(x) = lim
N→∞

LN , LN :=

N∑
i

Ziϕi(x),

∞∑
i

λi < +∞.

Where the limit is in the sense of (uniform) convergence in L2(T), Zi are zero-mean, uncorrelated
random variables with variance λi. Here {ϕi}∞i=1 is an orthonormal basis of L2(Rd) that are also
eigen functions of the operator OC(f) defined by OC(f)(x) =

∫
C(x,x′)z(x′)dx′, C(x,x′) is the

covariance function of f(·). The variance λi of Zi is the corresponding eigen value of ϕi(x).

Then, notice that since we have assumed that k is universal and T is a compact metric space,
by Theorem 23 of [45] we have that MMD(·, ·;F) metrizes the weak convergence of probability

19

measures on P , where P is the set of all Borel measures on (X ,B). Here, “metrization” means that
for any sequence of measures P1,P2, ...,Pn, ... ∈ P , we have

Pn
w→ P ⇔ lim

n→∞
MMD(Pn,P;F) = 0.

Since convergence of LN → f in L2 implies weak convergence, we can apply this theorem to p(f),
and show that:

lim
n→∞

MMD(pLn , p;F) = 0

holds uniformly in L2(T). Next, given a SPG qSPG, we have:
MMD(qSPG, p;F) ≤ MMD(pLn

, p;F) +MMD(qSPG, pLn
;F), ∀n ∈ Z+

The above triangle inequality holds since k is universal [16]. Hence, to prove our theo-
rem, it sufficies to show that there exits a sequence of SPGs qSPG,1, ..., qSPG,n′ , ... such that
limn′→∞ MMD(qSPG,n′ , pLn

;F) = 0, ∀n ∈ Z+, x ∈ T . To prove this, let us fix n for now,
and consider the random coefficients {Zi}ni=1 of Ln. Based on the results from [7], there exists a
sequence of Gaussian VAEs qVAE,1({Zi}ni=1), ..., qVAE,n′′({Zi}ni=1), ... of latent size n, such that

qVAE,n′′({Zi}ni=1)
w→ p({Zi}ni=1).

Then, define our sequence of SPGs to be:

qSPG,n′ =

n∑
i

Z̃iϕi, , {Z̃i}ni=1 ∼ qVAE,n′({Zi}ni=1).

Based on our definition in Section 4.2, qSPG,n′ is indeed a SPG. Since the linear summation over ϕi

using linear weights {Zi}ni=1 is a continuous mapping, we also have:

qSPG,n′
w→ pLn , ∀n ∈ Z+, x ∈ T

due to continuous mapping theorem. Again, from the MMD metrization, we have
lim

n′→∞
MMD(qSPG,n′ , pLn ;F) = 0, ∀n ∈ Z+, x ∈ T .

To finally prove our theorem, consider an arbitrary error ϵ. Then, there exists Ln such
that MMD(pLn , p;F) < ϵ/2. Next, given this particular Ln, there exits n′ such that
MMD(pLn , qSPG,n′ ;F) < ϵ/2. Together, we have:

MMD(qSPG,n′ , p;F) ≤ MMD(pLn
, p;F) +MMD(qSPG,n′ , pLn

;F) < ϵ/2 + ϵ/2 = ϵ

which completes the proof our theorem.

A.5 Proof of Proposition 5

Proposition 5 (functional KL divergence on measurement points for SPGs). Let qSPG(f) and p̃SPG(f)
be the SPGs defined in Equation 12 and 15. Then we have:

DKL[qSPG(f
Xn)||p̃SPG(f

Xn)] = Ef∼qSPG(f)
logZ(fXn),

where Z(fXn) is the partition function, Z(fXn) =
∫
h
p̃SPG(h|fXn)

qη(h)
p0(h)

dh.

Proof First, we have
DKL[qSPG(f

Xn)||p̃SPG(f
Xn)]

=DKL[qη(h)||p0(h)]− Ef∼qSPG(f)
DKL[qSPG(h|fXn)||p̃SPG(h|fXn)]

=DKL[qη(h)||p0(h)]− Ef∼qSPG(f)
DKL[p̃SPG(h|fXn)

qη(h)

Z(fXn)p0(h)
||p̃SPG(h|fXn)]

=DKL[qη(h)||p0(h)]− Ef∼qSPG(f),h∼qSPG(h|fXn) log
qη(h)

p0(h)
+ Ef∼qSPG(f)

logZ(fXn)

=Ef∼qSPG(f)
logZ(fXn)

where the first equality directly follows from the chain rule of KL-divergence, and the sec-
ond equality follows from the fact that qSPG(h|fXn)) ∝ qSPG(h)p̃SPG(f

Xn |h), p̃SPG(h|fXn) ∝
p0(h)p̃SPG(f

Xn |h).

20

A.6 Proof of Proposition 6

Proposition 6 (Biased Mini-batch estimation of log-partition function).
En,Xn∼cEf∼qSPG(f) log Z̃(fXn) can be estimated by the following mini-batch estimator:

JK :=
1

2

H∑
i=1

Ef∼qSPG(f)

[
log σ−2

ηi
+ log σ̂−2

λi

− log (σ−2
ηi

+ σ̂−2
λi

− 1)− µ̂2
λi
σ̂−2
λi

− µ2
ηi
σ−2
ηi

+ (σ̂−2
ηi

µ̂ηi
+ σ̂−2

λi
µ̂λi

)2(σ−2
ηi

+ σ̂−2
λi

− 1)−1
]
,

(25)

where H is the dimensionality of h, N (h;µηi , σ
2
ηi
) = qη(hi), N (h;µλi , σ

2
λi
) = q̃λ(hi|fXn). σ̂−2

λi

and µ̂λi
are the mini-batch approximators for µλi

and σ2
λi

, respectively:

σ̂−2
λi

:=
∑
k∈K

|D|
K

σ−2
hi|fxk

+
∑

xl∈Xn\XD

σ−2
hi|fxl

µ̂λi

σ̂2
λi

:=
∑
k∈K

|D|
K

σ−2
hi|fxk

µhi|fxb +
∑

xl∈Xn\XD

σ−2
hi|fxl

µhi|fxl

where K is a mini-batch of size K sampled from {1, ..., |D|}, xl ∈ Xn \XD is a set of OOD samples
sampled from T using c in Eq. 7, and µhi|fxk and σ2

hi|fxk are the mean and variance parameter
returned from q̃λ(hi|f(xk)).

Proof To derive the mini-batch estimator, we first compute the expression for Z̃(fXn). Since
q̃λ(h|fXn) is a product of Gaussian encoder, its mean and variance can be computed by:

Σ−1
λ =

∑
x∈Xn

Σ−1
hi|fx

µλ = Σλ

∑
x∈Xn

Σ−1
hi|fxµhi|fx

where Σhi|fx is a diagonal matrix with component
(
Σhi|fx

)
ii

= σ2
hi|fx . Let Ση and µη be the

covariance and mean of qη(h). By our assumptions, Ση is also a diagonal matrix with (Ση)ii = σ2
ηi

.

Since q̃λ(h|fXn)
qη(h)
p0(h)

is a product of three Gaussian distributions, its log normalization constant

log Z̃ can be computed using the results from, for example Appendix A.2 of [18]:

En,Xn∼cEf∼qSPG(f) log Z̃(fXn)

=En,Xn∼cEf∼qSPG(f)

[
1

2
log |Σ−1

η |+ 1

2
log |Σ−1

λ | − 1

2
log |Σ−1

η +Σ−1
λ − I|

− 1

2
µT
λΣ

−1
λ µλ − 1

2
µT
η Σ

−1
η µη +

1

2
(Σ−1

λ µλ +Σ−1
λ µλ)

T (Σ−1
η +Σ−1

λ − I)−1(Σ−1
λ µλ +Σ−1

λ µλ)

]
=
1

2

H∑
i=1

En,Xn∼cEf∼qSPG(f)

[
log σ−2

ηi
+ log σ−2

λi
− log (σ−2

ηi
+ σ−2

λi
− 1)

− µ2
λi
σ−2
λi

− µ2
ηi
σ−2
ηi

+ (σ−2
λi

µλi
+ σ−2

λi
µλi

)2(σ−2
ηi

+ σ−2
λi

− 1)−1
]

where σ2
ηi

,σ2
λi

,µηi ,µλi are the ith element of diag−1Ση, diag−1Σλ, µη, µλ, respectively. To ef-
fectively estimate σ−2

λi
=

∑
x∈Xn

σ−2
hi|fx and µλi

= σ2
λi

∑
x∈Xn

σ−2
hi|fxµhi|fx , we can uniformly

sample a mini-batch XK of size K from XD, and then compute the following noisy mini-batch

21

estimation:

σ−2
λi

=
∑

x∈Xn

σ−2
hi|fXn

= NEx∈XDσ
−2
hi|fx +

∑
xl∈Xn\XD

σ−2
hi|fxl

≈
∑
k∈K

N

K
σ−2
hi|fxk

+
∑

xl∈Xn\XD

σ−2
hi|fxl

,

µλi
σ−2
λi

=
∑

x∈Xn

σ−2
hi|fxµhi|fx = NEx∈XDσ

−2
hi|fxµhi|fx +

∑
xl∈Xn\XD

σ−2
hi|fxl

µhi|fxl

≈
∑
k∈K

N

K
σ−2
hi|fxk

µhi|fxk +
∑

xl∈Xn\XD

σ−2
hi|fxl

µhi|fxl ,

We denote the estimators for σ−2
λi

and µλi
by σ̂−2

λi
and µ̂λi

, respectively. Then, applying these noisy
estimations to En,Xn∼cEf∼qSPG(f) log Z̃(fXn), we have

En,Xn∼cEf∼qSPG(f) log Z̃(fXn)

≈1

2

H∑
i=1

Ef∼qSPG(f)

[
log σ−2

ηi
+ log σ̂−2

λi
− log (σ−2

ηi
+ σ̂−2

λi
− 1)

− µ̂2
λi
σ̂−2
λi

− µ2
ηi
σ−2
ηi

+ (σ̂−2
λi

µ̂λi
+ σ̂−2

λi
µ̂λi

)2(σ−2
ηi

+ σ̂−2
λi

− 1)−1
]
,Xn ∼ c(T Z+

)

The symbol ≈ in the last line means that it is a consistent estimator, due to multivariate continuous
mapping theorem.

A.7 Proof of Proposition 7

Proposition 7 (Debiasing). Let R be a random integer from a distribution P(N) that has sup-
port over the integers larger than K, and x0 is a random location sampled from T . Then
En,Xn∼cEf∼qSPG(f) log Z̃(fXn) can be estimated by:

E

[
JK +

R∑
k=K

∆k

P(N ≥ k)

]
(26)

where ∆k = Jk+1 − Jk, and the expectation E is taken over R, n, Xn, and all mini-batches used
by each Jk terms.

Proof By definition, we have limk→∞ EJK = EJN = En,Xn∼cEf∼qSPG(f) log Z̃(fXn). Appar-
ently, E

∑R
k=0

∆k

P(N≥n) constructs an Russian Roulette estimator [22]. Based on lemma 3 from [6],
in order prove our result we only have to show that E

∑∞
k=0 |∆k| < ∞. In fact, since the data

distribution is assumed to be an empirical distribution, we have
∞∑
k=0

|∆k| =
∞∑
k=0

|Jk+1 − Jk|

=

N−1∑
k=0

|Jk+1 − Jk| < ∞

holds for all possible mini-batches used by each ∆k. The second equality is based on the fact that
Jk+1 = Jk = log Z̃(fXn) for all k ≥ N . Therefore, we have E

∑∞
k=0 |∆k| =

∑N−1
k=0 E|∆k| < ∞.

B Further details of experiments

B.1 General settings

Data split/Cross-validation schemes For UCI experiments, each dataset was randomly split into
train (90%) and test sets (10%). This was repeated 10 times. In contextual bandits, we used the code

22

open-sourced by [47], therefore the data sampling process described in [47] was exactly executed.
For classification experiment for MNIST and CIFAR 10, since the train/test set are predefined, we
have only run experiments with 5 different random seeds (for initialization). For interpolation with
implicit prior experiment, see for details.

Choice of sampling distribution 3 One example of c that satisfies the requirement of Propositions
1, 2, and 3 takes the following form:

(n− |D|) ∼ Geom(p),xk ∼ U(T), ∀1 ≤ k ≤ n− |D|,

Xn := XD
⋃

{xk}1≤k≤n−|D| (27)

where we first sample n from a geometric distribution, such that (n−|D|) ∼ Geom(p) with parameter
p. Here, we use the parameter p = 0.5. Then, (n− |D|) out of distribution (OOD) measure points
are sampled independently from a uniform distribution on T .

Choice of prior processes p(f) Note that since FVI is an inference method instead of a new model,
we will assume that FVI and most of the baselines will be using the same priors, whenever applicable.
For example, in the interpolation structured prior tasks, both FVI and f-BNN will use the same
piecewise implicit prior. In multivariate regression and image classification tasks, all algorithms will
use the same BNN prior with the same structures, therefore we can isolate the difference caused by
inference algorithms.

Construction of the compact space T The construction of T depends on specific tasks. If we
know the range of the input , we can directly set to be such interval. For example, in synthetic
datasets of Experiment 6.1, we already know that the input lies in the interval between 0 and 1,
therefore T = [0, 1]. If we don’t know the range of the inputs, then we can simply set T to be a
hyperrectangle, with each xi ∈ [xi

min, x
i
max], where xi

min and xi
max are the empirical min and max

of the i-th variable of input dataset.

Structure of SPGs Unless specified otherwise, we use 10 basis functions for our SPGs, and each
basis function is a two-layer neural network that maps from Rd to R1. The structure of these networks
is input-100-100-output. Note that these neural network parameters are not part of the variational
parameters, since they are frozen forever after we have finished distilling p(f) using p̃SPG(f). To
further reduce the number of free parameters, the parameters of the first two layers of all basis
functions can be shared (this is applied only to larger scale experiments such as image classification).
The encoder q̃λ(h|f) for p̃SPG(f) is also a two-layer neural network (input-500-200-latent statistics),
whose parameters are also fixed after distilling p(f). The decoders also have two hidden layers
(latent variables-50-100-output). The latent dimension is different depending on the tasks so that the
comparison between baselines will be fair. This will be detailed later. For the stationary GP white
noise process used in SPGs, we assume that they have isotropic noise level σ2

ν = 0.1.

Optimization Unless otherwise specified, we use Adam optimizer with learning rate lr = 0.001.
We use a slightly larger learning rate in the contextual Bandit experiment since the learning rates
used for each baseline is tuned from [0.001, 0.05], as specified in the experiment section. When
training p̃SPG(f), we use 5k epochs unless otherwise noticed. For the inference phase where qSPG(f)
is optimized to maximize the functional ELBO, the number of iterations is determined by the other
baselines. For example in contextual Bandits, all baselines are trained for 100 epochs, so is FVI. In
terms of batch size, unless specified otherwise, we choose the batch size to be 100. This batch size
is also used to perform MC estimation of the likelihood term in Equation 20, and training p̃SPG in
Equation 13.

Hyperparameters of the likelihood function pπ(y|f) Regarding the likelihood function pπ(y|f),
since we only deal with continuous outputs in this paper, we simply choose pπ(y|f) to be a Gaussian
noise with homogeneous standard deviation σ and mean µ just like all the other baselines. The value
of σ is set to be 0.02 except for multivariate regression experiments, since we follow the setting of
[28], where the noise variance is determined individually for all BNN baselines, including FVI. For
FVI, we found that making the mean function µ of pπ(y|f) to be optimizable will accelerate the
convergence (which is equivalent to adding an additional basis/bias in SPGs).

23

Optimize prior or not Sometimes, it would be interesting to see how inference methods would
perform given their respectively “best" prior. That is, we may further optimize the parameters of prior,
p(f). However, our paper mainly treats FVI/f-BNN/VIPs/MFVIs, etc as inference methods rather
than standalone models. From this perspective, we are more interested in the case where the prior is
fixed (hence the ground truth posterior is given). That being said, if we were to treat the approximate
predictive distribution q(f) as a standalone model, then indeed it makes sense to seek the optimal
prior for each method. We leave this topic for more future works.

Computational resources Synthetic experiment/contextual bandits are mostly run on a laptop
using only the CPUs. Other experiments are mostly done on a machine with NVIDIA Quadro P5000
GPU plus 30GB of memory.

B.2 Individual settings for each experiments

Interpolation with structured implicit priors To sample a random function from piecewise
constant priors, we first sample the number of change points n from a Poisson distribution Poisson(3).
The exact location of each change point is uniformly sampled from [0, 1]. Then, for each interval
specified by the change points, we sample n + 1 function values uniformly to specify constant
function values in each interval. This results in piecewise constant functions. For the piecewise linear
prior, the function values are sampled similarly and we draw straight lines to connect each function
value. In this experiment, for FVI, we draw 1k samples from the implicit priors that are used to
optimize the FVI parameters. The basis function for FVI are directly obtained by sampling from
the implicit prior. We use 200 basis functions, with a latent dimension of 10. To train our p̃SPG(f),
we sample 1k random function samples and optimize p̃SPG(f) for 5k epochs. For inference, the
variational parameters are trained for 1k epochs.

UCI Multivariate regression For this experiment, we follow [28]. The functional prior is a fully
connected ReLU BNN with two hidden layers (input-10-10-output). We train FVI for 1k epochs. We
use 10 basis functions for FVI and a batch size of 100. The latent size is set to 100.

Gaussian Processes in UCI regression On UCI datasets, variational sparse GPs and exact GPs are
implemented using GPflow. VSGPs uses 50 inducing points. Both variations of GP models use the
RBF kernel.

VIPs, Bayes-by-Backprop, variational dropout, α-dropout for Bayesian neural networks on
UCI VIP and Weight-space inference methods for BNNs are based on reimplementations provided
by [28]. For details of othese, readers may refer to Appendix F.3 of [28]. Results in Table 1 are taken
from [28], as they have used exactly the same data split scheme and BNN prior structures.

Contextual Bandits We use similar settings to [47], where we use a batchsize = 32, training epochs
= 100, training frequency = 50, and contexual points = 2000. We use ReLU BNNs as functional priors.
It has two hidden layers, each with 50 hidden units. For FVI, we use 100 basis functions (with shared
weights until the last layer), a learning rate of 0.005. For details of the algorithms mentioned in Table
2, readers may refer to [37] for details. Here we briefly explain the meaning of the abbreviations. FVI:
functional variational inference; FBNN: functional Bayesian neural networks; Uniform: uniform
sampling; RMS: trains a neural network and acts greedily using RMSprop; Boot RMS: Bootsrapped
RMS; Neural Linear: Bayesian linear regression over deep NN features; ParamNoise: just a regular
DNN, but when making decisions, an isotropic Gaussian perturbation is added to the NN weights;
Dropout: variational dropout BNNs; BBB: Bayes-by-Backprop BNNs; BB α: Black-box alpha
divergence minimization.

Image classification and OOD detection For all models in this experiment, the CNN structures are
the same as in [21]. That is, the 3 convolutional layers plus 3 fully connected layers in the DeepOBS
benchmark [43]. Similar to [21], we apply standard isotropic Gaussian prior on all weight parameters.
We use Adam with learning rate of 0.001 and batch size of 100, and run the training procedure for
100 epochs. For FVI, we use 100 basis functions in the SPGs on both datasets. Note that each basis
function is a there-layer convolutional network that maps from Rd to R10. To significantly reduce the
memory usage, the parameters of the convolutional layers of all basis functions are shared.

24

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(a) VIP, 5 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(b) VIP, 10 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(c) VIP, 20 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(d) VIP, 50 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y
VIP posterior samples (linear)

(e) VIP, 100 basis
functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(f) VIP, 150 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(g) VIP, 200 basis
functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

VIP posterior samples (linear)

(h) VIP, 500 basis
functions

Figure 4: The posterior samples from VIPs with different number of basis functions. As more
basis functions are used, the posterior samples from VIP become more and more noisy, and finally
converges to GP-like behaviour when 500 basis functions are used. Compared to the ground truth
estimate from Figure 3 in the paper, VIP clearly under-estimates the predictive uncertainties in-
between the training samples.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(a) FVI, 5 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(b) FVI, 10 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4
y

FVI posterior samples (linear)

(c) FVI, 20 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(d) FVI, 50 basis func-
tions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(e) FVI, 100 basis
functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(f) FVI, 150 basis
functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

FVI posterior samples (linear)

(g) FVI, 200 basis
functions

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4
y

FVI posterior samples (linear)

(h) FVI, 500 basis
functions

Figure 5: The posterior samples from FVI with different number of basis functions. FVI is still
able to learn the piecewise linear behaviour from the prior as more basis functions are used. As the
number of basis functions is increased to 500, FVI converges to a solution that is much closer to the
ground truth (compared with VIP), and is still able to exhibit non-Gaussian behaviours from the prior.

C Additional Experiments

C.1 Impact of number of basis functions on SPGs and VIPs

As discussed in Section 4.2, the SPGs used the proposed FVI can be treated as a non-Gaussian
extension of the VIP variational family, by removing the Gaussian assumption on a. One natural
question that arises in this setting will be that, does the advantage of FVI over VIP vanish as the
number of basis function increases? How does the number of basis functions affect the performance
of each method? To provide more intuition for FVI and VIPs, we consider again the 1-D function
interpolation task with piecewise-linear implicit prior. In Figure 4 and Figure 5, we show how the
posterior samples from FVI and VIPs evolve when the number of basis functions gradually increase
from 5 to 500. Note that for a fair comparison, the basis functions for both FVI and VIP are obtained
by drawing random function samples from the implicit prior. Since the piecewise-linear implicit
functional prior is not reparameterizable, once the basis functions for FVI and VIP are sampled,
they will be frozen forever (in contrast, when the prior is reparameterizable, both FVI and VIP can
optimize the basis functions, therefore the number of basis functions required will be much smaller
than this experiment).

25

3 2 1 0 1 2 33

2

1

0

1

2

3

y(
x(

))

(a) functional BNN

3 2 1 0 1 2 33

2

1

0

1

2

3

y(
x(

))

(b) MFVI BNN

3 2 1 0 1 2 33

2

1

0

1

2

3

y(
x(

))

(c) GP

3 2 1 0 1 2 33

2

1

0

1

2

3

y(
x(

))

(d) HMC

3 2 1 0 1 2 33

2

1

0

1

2

3

y(
x(

))

(e) Ours (FVI-BNN)

Figure 6: A regression task on a synthetic dataset (red crosses) reproduced from [10]. We plot
predictive mean and uncertainties for each algorithms. This tasks is used to demonstrate the theoretical
finding on the pathologies of weight-space VI for single-layer BNNs: there is no setting of the
variational parameters that can model the in-between uncertainty between two data clusters. The
functional BNNs [47] also has this problem, since BNNs are use as part of the model. On the contrary,
our functional VI method can produce sensible in-between uncertainties for out-of-distribution data.
See Appendix C.2 for more details.

From Figure 4 and Figure 5, we can first observe that as the number of basis function increases, the
predictive uncertainty of both FVI and VIP also increase, until around when 200 basis functions
are reached. However, as more basis functions are used, the posterior samples from VIP become
noisier, and finally converges to GP-like behavior when 500 basis functions are used. Compared to
the ground truth estimate from Figure 3 in the paper, VIP under-estimates the predictive uncertainties
in-between the training samples. This is due to that the piecewise linear behavior of the function
samples violates the Gaussian assumption of VIP, such that the correlation level between points will
be lower than expected. On the other hand, FVI is still able to learn the piecewise linear behavior
from the prior as more basis functions are used. As the number of basis functions is increased to
500, FVI converges to a solution that is much closer to the ground truth (compared with VIP) and is
still able to exhibit non-Gaussian behaviors from the prior. We can conclude that the advantage of
FVI over VIP does not vanish as the number of basis functions increases. In contrast, the difference
between FVI and VIP becomes even more distinct and recognizable.

C.2 On in-between uncertainty pathologies of BNNs

In figure 6, we presented a 2-D regression tasks on a synthetic dataset (red crosses), reproduced from
[10]. This tasks is used to demonstrate the pathologies of weight-space inference for single-layer
BNNs (including f-BNNs where BNNs are use as part of the model): there is no setting of the
variational parameters that can model the in-between uncertainty between two data clusters. To be
concrete, we have the following proposition:

Proposition 8 (Limitations for single-hidden layer BNNs [10]). Consider any single-hidden layer
fully-connected ReLU NN f : RD → R. Let xd denote the dth element of the input vector x. Suppose
we have a fully factorised Gaussian distribution over the weights and biases in the network. Consider
any points p,q, r ∈ RD such that r ∈ −→pq and either:

i. −→pq contains 0 and r is closer to 0 than both p and q.

ii. −→pq is orthogonal to and intersects the plane xd = 0, and r is closer to the plane xd = 0
than both p and q.

Then Var[f(r)] ≤ Var[f(p)] + Var[f(q)].

That is, the weight space inference of a single-hidden layer variational BNNs (using mean-field
VI) fails to represent the in-between uncertainty, and become over-confident on out-of-distribution
data. In this experiment, the training data is sampled as follows: the 2-D input locations of training
data are generated by sampling 100 points, 50 each from two separate clusters that follow Gaussian
distributions. The inputs of the cluster on the left of Figure 1 around (−1,−1), and the other cluster
is centered around (1, 1). Both have isotropic Gaussian noise with zero mean and variance 0.01.
The outputs (y) are -1 and 1 for the left and right clusters, respectively. We further add a Gaussian
observational noise of variance 0.1 to the outputs. To test whether the baselines can learn the in-
between uncertainties between clusters, we use a fully connected ReLU BNN of a single hidden layer
(50 units). The FVI also uses this prior as functional prior and has 50 basis functions and 50 latent
dimensions. The settings of MFVI are determined according to [10]. The settings of F-BNN are
determined similarily.

26

In figure 1, the λ axis is the 1-D parameter that parameterizes the 1-dimensional straight line
embedded in the 2-D plane, that connects (−3,−3) and (3, 3). The value of the λ-coordinate implies
that its actual 2-D coordinate in the 2-D plane is (λ, λ). The results in Figure 1 show that both
Mean-field variational BNN and functional BNN suffers from the limitations of single hidden layer
BNN. On the contrary, FVI can produce a sensible in-between uncertainty that is similar to GPs and
HMC. For GPs, we use infinite-width BNN kernel following [10]

C.3 CPU time comparison, FVI vs f-BNN on implicit priors

FVI fBNN0

1

2

3

4

5

6 1e3 CPU time comparison (piecewise const)

(a) CPU time (s), piecewise constant prior

FVI fBNN0

1

2

3

4

5

6 1e3 CPU time comparison (piecewise linear)

(b) CPU time (s), piecewise linear prior

Figure 7: CPU time comparison, FVI vs f-BNN on implicit priors. Although f-BNNs are only trained
for 100 epochs, its running time is still 100x slower than FVI.

C.4 CPU time comparison, FVI vs f-BNN on Census

In order to compare the efficiency between FVI and f-BNN, we provide the CPU time comparison
of running contextual bandits on Census dataset [1], one of the largest contextual bandits dataset
that we have tested. It has more than 2 million data points, each with 389 dimensional features as
input (including dummy binary variables for categorical variables). The output has 9 different classes
(actions). The CPU time consumed by each algorithm on Census is listed as follows:

Table 4: CPU time performance comparison of running contextual bandit on Census dataset
FVI f-BNN BBB

Run time (s) 28.14 ± 2.604 9648.19 ± 957.3 19.98 ± 1.238

Based on Table 4, we can see that FVI is nearly 500 times faster than f-BNN. The run time of FVI is
similar to Bayes-by-Backprop, indicating that FVI is very efficient and scalable.

C.5 Improved results of f-BNN on implicit priors

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

(a) F-BNN, piecewise constant
prior

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

(b) F-BNN, pieacewise linear
prior

Figure 8: F-BNN on structured implicit priors, trained with 10k epochs

In experiment 6.1, we have only run f-BNNs for 100 epochs due to its computational costs. Here,
we provide improved results of fully-trained f-BNNs after 10k epochs. Note that this epoch number

27

is much larger than the FVI setting (5k), since we found that after 5k epochs, the f-BNN posteriors
do not seem to improve over the results in experiment 6.1. As shown in Figure 8, after 10k epochs,
the posterior uncertainty estimates of f-BNNs become much loser to the ground truth in Figure
compared with its 100 epochs version. However, this comes with the cost of significantly increased
computational time. Moreover, f-BNNs seem to provide less convincing posterior samples in terms
of mimicking the piece-wise constant/linear behaviours of the implicit priors.

C.6 Large scale experiments on deeper Bayesian neural networks

To demonstrated the scalability and applicability of FVIs to larger datasets and deeper Bayesian
neural networks, in this section we perform regression experiments using a Bayesian DNN with 5
hidden layers of 100 units. We compare our results to f-BNNs and BBB with the same DNN structure,
which are cited directly from [47]. For fair comparison, we increase the size of the basis functions
used by SPGs to neural networks with 5 hidden units and 100 units. An additional hidden layer
is added to the decoder and encoder of the VAE used by SPGs. We follow the settings of Section
6.2, except that we train FVI using 30000 iterations using mini-batch stochastic optimization. We
report results on Naval dataset, protein datset, and GPU dataset. We also include results of FVI on
shallow networks used in Section 6.2. From Table 6, we notice that the performance of FVI on deeper
networks is generally competitive to f-BNNs and BBBs, indicating that FVI is scalable to larger
datasets and deeper neural networks.

C.7 Comparison to function space particle optimization (f-SVGD) and GPs

In this section, we further compare FVI to function space particle optimization (f-SVGD) and GPs:

Table 5: Regression experiment: Average test negative log likelihood
Dataset N FVI f-SVGD GP
boston 506 2.33±0.04 2.30±0.05 2.63±0.04
concrete 1030 2.88±0.06 2.90±0.02 3.4±0.01
energy 768 0.58±0.05 0.69±0.03 2.31±0.02
kin8nm 8192 -1.15±0.01 -1.11±0.01 -0.76±0.00
power 95684 2.69±0.00 2.73±0.00 2.82±0.00
protein 45730 2.85±0.00 2.85±0.00 3.01±0.00
red wine 1588 0.97±0.06 0.89±0.01 0.98±0.02
yacht 308 0.59±0.11 0.75±0.01 2.29±0.03
naval 11934 -7.21±0.06 -4.82±0.10 -7.81±0.00

Note that f-SVGD is not included in our main experiments in Table 1, since it is a particle optimization-
based inference method. On the other hand, GP is not included since it is not a BNN-based model.
For GPs, we used variational sparse GP with 50 inducing points plus an RBF kernel. The additional
results in Table 5 shows that FVI performs the best in 6 out of 9 datasets. Moreover, FVI outperforms
f-SVGD in 6 out of 9 datasets and outperforms GP in 8 out of 9 datasets in terms of NLLs.

Table 6: larger scale regression experiment: Average test negative log likelihood
Dataset N FVI f-BNNs BBB FVI shallow
GPU 241600 2.93±0.03 2.97±0.02 2.99±0.01 3.10±0.04
Protein 45730 2.82±0.01 2.72±0.01 2.72±0.01 2.85±0.00
Naval 11934 -7.42±0.01 -7.24±0.01 -6.96±0.01 -7.38±0.04

28

C.8 Out-of-distribution detection visualization on CIFAR10

Figure 9: Histograms of predictive entropies on CIFAR10/SVHN OOD detection. Left: MFVI. Right:
FVI.

29

	Introduction
	Backgrounds
	Problem setting and the functional KL divergence
	Functional Variational Inference using Stochastic Process Generators
	The grid-functional KL divergence
	Choosing q(f): stochastic process generators
	Efficient estimation of grid-functional KL
	The final algorithm: Mini-batching and de-biasing

	Related Works
	Experiments
	Interpolation with non-Gaussian priors: structured implicit priors
	Multivariate regression with BNNs priors
	Contextual Bandits
	Image classification and out-of-distribution detection

	Conclusion
	Proof of Theoretical results
	Proof of Proposition 1 and 3
	Proof of Proposition 2
	Grid-Functional KL between a parametric model and a Gaussian process
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7

	Further details of experiments
	General settings
	Individual settings for each experiments

	Additional Experiments
	Impact of number of basis functions on SPGs and VIPs
	On in-between uncertainty pathologies of BNNs
	CPU time comparison, FVI vs f-BNN on implicit priors
	CPU time comparison, FVI vs f-BNN on Census
	Improved results of f-BNN on implicit priors
	Large scale experiments on deeper Bayesian neural networks
	Comparison to function space particle optimization (f-SVGD) and GPs
	Out-of-distribution detection visualization on CIFAR10

