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A Proofs

A.1 Proofs of Propositions 1-2

Proof of Proposition 1.

Part (a). The strictly monotonicity of g implies that the inverse function g−1 : R→ R is well-defined.
When g is strictly increasing, the mapping x 7→ g(x) is sign preserving. Specifically, if x ≥ 0, then
g(x) ≥ g(0) = 0. Conversely, if g(x) ≥ 0 = g(0), then applying g−1 to both sides gives x ≥ 0.
When g is strictly decreasing, the mapping x 7→ g(x) is sign reversing. Specifically, if x ≥ 0, then
g(x) ≤ g(0) = 0. Conversely, if g(x) ≥ 0 = g(0), then applying g−1 to both sides gives x ≤ 0.
Therefore, Θ ' g(Θ), or Θ ' −g(Θ). Since constant multiplication does not change the tensor rank,
we have srank(Θ) = srank(g(Θ)) ≤ rank(g(Θ)).

Part (b). See Section B.2 for constructive examples.

Proof of Proposition 2. Fix π ∈ [−1, 1]. Based on the definition of classification loss L(·, ·), the
function Risk(·) relies only on the sign pattern of the tensor. Therefore, without loss of generality,
we assume both Θ̄,Z ∈ {−1, 1}d1×···×dK are binary tensors. We evaluate the excess risk

Risk(Z)− Risk(Θ̄) = Eω∼Π EY(ω)

{
|Y(ω)− π|

[∣∣Z(ω)− sgn(Ȳ(ω))
∣∣− ∣∣Θ̄(ω)− sgn(Ȳ(ω))

∣∣]}︸ ︷︷ ︸
def
= I(ω)

. (1)

Denote y = Y(ω), z = Z(ω), θ̄ = Θ̄(ω), and θ = Θ(ω). The expression of I(ω) is simplified as

I(ω) = Ey|ω
[
(y − π)(θ̄ − z)1(y ≥ π) + (π − y)(z − θ̄)1(y < π)

]
= Ey|ω

[
(θ̄ − z)(y − π)

]
= [sgn(θ − π)− z] (θ − π)

= |sgn(θ − π)− z||θ − π| ≥ 0, (2)

where the third line uses the fact Ey = θ and θ̄ = sgn(θ − π), and the last line uses the assumption
z ∈ {−1, 1}. The equality (2) is attained when z = sgn(θ − π) or θ = π. Combining (2) with (1),
we conclude that, for all Z ∈ {−1, 1}d1×···×dK ,

Risk(Z)− Risk(Θ̄) = Eω∼Π|sgn(Θ(ω)− π)−Z(ω)||Θ(ω)− π| ≥ 0. (3)
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In particular, setting Z = Θ̄ = sgn(Θ− π) in (3) yields the minimum. Therefore,

Risk(Θ̄) = min{Risk(Z) : Z ∈ Rd1×···×dK} ≤ min{Risk(Z) : rank(Z) ≤ r}.

Since srank(Θ− π) ≤ r by assumption, the last inequality becomes equality. The proof is complete.

A.2 Proof of Theorem 1

Proof of Theorem 1. Fix π /∈ N . Based on (3) in Proposition 2, we have

Risk(Z)− Risk(Θ̄) = E
[
|sgnZ − sgnΘ̄||Θ̄|

]
. (4)

The Assumption 1 states that

P
(
|Θ̄| ≤ t

)
≤

{
ctα, for all ∆s ≤ t < ρ(π,N ),

C∆s, for all 0 ≤ t < ∆s.
(5)

Without further specification, all relevant probability statements, such as E and P, are with respect
to ω ∼ Π.

We divide the proof into two cases: α > 0 and α =∞.
• Case 1: α > 0.

By (4), for all 0 ≤ t < ρ(π,N ),

Risk(Z)− Risk(Θ̄) ≥ tE
(
|sgnZ − sgnΘ̄|1{|Θ̄| > t}

)
≥ 2tP

(
sgnZ 6= sgnΘ̄ and |Θ̄| > t

)
≥ 2t

{
P
(
sgnZ 6= sgnΘ̄

)
− P

(
|Θ̄| ≤ t

)}
≥ t
{

MAE(sgnZ, sgnΘ̄)− C∆s− 2ctα
}
, (6)

where the last line follows from the definition of MAE and (5). We maximize the lower bound (6)
with respect to t, and obtain the optimal topt,

topt =

ρ(π,N ), if MAE(sgnZ, sgnΘ̄) > cut-off,[
1

2c(1+α)(MAE(sgnZ, sgnΘ̄)− C∆S)
]1/α

, if MAE(sgnZ, sgnΘ̄) ≤ cut-off.

where we have denoted the cut-off = 2c(1 + α)ρα(π,N ) + C∆s. The corresponding lower bound
of the inequality (6) becomes

Risk(Z)− Risk(Θ̄) ≥

{
c1ρ(π,N )

[
MAE(sgnZ, sgnΘ̄)− C∆s

]
, if MAE(sgnZ, sgnΘ̄) > cut-off,

c2

[
MAE(sgnZ, sgnΘ̄)− C∆s

] 1+α
α , if MAE(sgnZ, sgnΘ̄) ≤ cut-off,

where c1, c2 > 0 are two constants independent of Z. Combining both cases gives

MAE(sgnZ, sgnΘ̄) . [Risk(Z)− Risk(Θ̄)]
α

1+α +
1

ρ(π,N )

[
Risk(Z)− Risk(Θ̄)

]
+ ∆s

≤ C(π)[Risk(Z)− Risk(Θ̄)]
α

1+α + ∆s,

where C(π) > 0 is a multiplicative factor independent of Z.
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• Case 2: α =∞. The inequality (6) now becomes

Risk(Z)− Risk(Θ̄) ≥ t
[
MAE(sgnΘ̄, sgnZ)− C∆s

]
, for all 0 ≤ t < ρ(π,N ). (7)

The conclusion follows by taking t = ρ(π,N )
2 in the inequality (7).

Remark A.1. The proof of Theorem 1 shows that, under global α-smoothness of Θ,

MAE(sgnZ, sgnΘ̄) . [Risk(Z)− Risk(Θ̄)]
α

1+α +
1

ρ(π,N )

[
Risk(Z)− Risk(Θ̄)

]
+ ∆s, (8)

for all Z ∈ Rd1×···×dK . For fixed π, the second term is absorbed into the first term.

A.3 Proof of Theorem 2

The following lemma provides the variance-to-mean relationship implied by the α-smoothness of Θ.
The relationship plays a key role in determining the convergence rate based on empirical process
theory (Shen and Wong, 1994); also see Theorem A.1.

Lemma A.1 (Variance-to-mean relationship). Consider the same setup as in Theorem 2. Fix
π /∈ N . Let L(Z, ȲΩ) be the π-weighted classification loss

L(Z, ȲΩ) =
1

|Ω|
∑
ω∈Ω

|Ȳ(ω)|︸ ︷︷ ︸
weight

× |sgnZ(ω)− sgnȲ(ω)|︸ ︷︷ ︸
classification loss

=
1

|Ω|
∑
ω∈Ω

`ω(Z, Ȳ), (9)

where we have denoted the function `ω(Z, Ȳ)
def
= |Ȳ(ω)||sgnZ(ω)− sgnȲ(ω)|. Under Assumption 1

of the α-smoothness of Θ, we have

Var[`ω(Z, ȲΩ)− `ω(Θ̄, ȲΩ)] . [Risk(Z)− Risk(Θ̄)]
α

1+α +
1

ρ(π,N )
[Risk(Z)− Risk(Θ̄)] + ∆s, (10)

for all tensors Z ∈ Rd1×···×dK . Here the expectation and variance are taken with respect to both Y
and ω ∼ Π.

Proof of Lemma A.1. We expand the variance by

Var[`ω(Z, ȲΩ)− `ω(Θ̄, ȲΩ)] . E|`ω(Z, ȲΩ)− `ω(Θ̄, ȲΩ)|2

. E|`ω(Z, ȲΩ)− `ω(Θ̄, ȲΩ)|
≤ E|sgnZ − sgnΘ̄| = MAE(sgnZ, sgnΘ̄), (11)

where the second line comes from the boundedness of classification loss L(·, ·), and the third
line comes from the inequality ||a − b| − |c − b|| ≤ |a − b| for a, b, c ∈ {−1, 1}, together with the
boundedness of classification weight |Ȳ(ω)|. Here we have absorbed the constant multipliers in ..
The conclusion (10) then directly follows by applying Remark A.1 to (11).
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Proof of Theorem 2. Fix π /∈ N . For notational simplicity, we suppress the subscript π and write
Ẑ in place of Ẑπ. Denote n = |Ω| and ρ = ρ(π,N ).

Because the classification loss L(·, ·) is scale-free, i.e., L(Z, ·) = L(cZ, ·) for every c > 0, we
consider the estimation subject to ‖Z‖F ≤ 1 without loss of generality. Specifically, let

Ẑ = arg min
Z : rank(Z)≤r,‖Z‖F≤1

L(Z, ȲΩ). (12)

We next apply the empirical process theory to bound Ẑ. To facilitate the analysis, we view the
data ȲΩ = {Ȳ(ω) : ω ∈ Ω} as a collection of n independent random variables where the randomness
is from both Ȳ and ω ∼ Π. Write the index set Ω = {1, . . . , n}, so the loss function (9) becomes

L(Z, ȲΩ) =
1

n

n∑
i=1

`i(Z, Ȳ).

We use fZ : [d1]×· · ·× [dn]→ R to denote the function induced by tensor Z such that fZ(ω) = Z(ω)
for ω ∈ [d1]× · · · × [dK ]. Under this set-up, the quantity of interest

L(Z, ȲΩ)− L(Θ̄, ȲΩ) =
1

n

n∑
i=1

[
`i(Z, Ȳ)− `i(Θ̄, Ȳ)

]︸ ︷︷ ︸
def
= ∆i(fZ ,Θ̄)

,

is an empirical process induced by function fZ ∈ FT where T = {Z : rank(Z) ≤ r, ‖Z‖F ≤ 1}.
Note that there is an one-to-one correspondence between sets FT and T .

Let Ln denote the desired convergence rate to seek. By definition of Ẑ in (12), we have,

L(Ẑ, ȲΩ)− L(Θ̄, ȲΩ) =
1

n

n∑
i=1

∆i(fZ , Θ̄) ≤ 0.

Therefore, we have the following inclusion of probability events,{
(ω,Yω) : Risk(Ẑ)− Risk(Θ̄) ≥ Ln

}
⊂

{
(ω,Yω) : ∃Z s.t. rank(Z) ≤ r,Risk(Z)− Risk(Θ̄) ≥ Ln, and

1

n

n∑
i=1

∆i(fZ , Θ̄) ≤ 0

}

⊂

(ω,Yω) : sup
rank(Z)≤r

Risk(Z)−Risk(Θ̄)≥Ln

− 1

n

n∑
i=1

∆i(fZ , Θ̄) ≥ 0


⊂
∞⋃
`=1

{
(ω,Yω) : sup

Z∈A`
− 1

n

n∑
i=1

∆i(fZ , Θ̄) ≥ 0

}
, (13)

where we have partitioned {Z : rank(Z) ≤ r and Risk(Z)− Risk(Θ̄) ≥ Ln} in to union of A` with

A` = {Z : rank(Z) ≤ r and `Ln ≤ Risk(Z)− Risk(Θ̄) < (`+ 1)Ln},

for ` = 1, 2, . . .. Let Γ denote the target probability for the first line in (13). To bound Γ, we bound
the sum of probability over the sets A`. For each A`, we consider the centered empirical process,

vn(fZ) := − 1

n

n∑
i=1

(
∆i(fZ , Θ̄)− E∆i(fZ , Θ̄)

)
. (14)
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Notice (`+ 1)Ln ≥ E∆i(fZ , Θ̄) = Risk(Z)− Risk(Θ̄) ≥ `Ln for all Z ∈ A`. Combining (13), (14)
and union bound yields

Γ ≤
∞∑
`=1

P

{
sup
Z∈A`

vn(fZ) ≥ `Ln =: M(`)

}
. (15)

Notice that, based on Lemma A.1, the variance of empirical process is bounded by

sup
Z∈A`

Var∆i(fZ , Θ̄) . sup
Z∈A`

([
E∆i(fZ , Θ̄)

] α
1+α +

1

ρ
E∆i(fZ , Θ̄)

)
+ ∆s

≤M(`+ 1)
α

1+α +
1

ρ
M(`+ 1) + ∆s =: V (`).

We next bound the right-hand side of (15) by choosing Ln that satisfies conditions in Theorem A.1
(The specification of Ln is deferred to the next paragraph). One such Ln is chosen, Theorem A.1
gives us

Γ .
∞∑
`=1

exp

(
− nM2(`)

V (`) + 2M(`)

)
(16)

.
∞∑
`=1

exp(−ρ`nLn)

≤
(

e−nρLn

1− e−nρLn

)
.

Now, we specify Ln that satisfies the condition of Theorem A.1. The quantity Ln is determined
by the solution to the following inequality,

sup
`≥1

1

x

∫ √xα/(α+1)+x/ρ+∆s

x

√
H[ ](ε,FT , ‖·‖2)dε . n1/2, where x = `Ln. (17)

In particular, the smallest Ln satisfying (17) yields the best upper bound of the error rate. Here
H[ ](ε,FT , ‖·‖2) denotes the L2-norm, ε-bracketing number (c.f. Definition A.1) for function family
FT .

Based on Lemma A.2, the inequality (17) is satisfied with the choice

Ln � t(α+1)/(α+2)
n +

tn
ρ
, where tn =

(
dmaxrK log n

n

)
and dmax := max

k∈[K]
dk.

Finally, it follows from Theorem A.1 and (16) that

P
{

Risk(Ẑ)− Risk(Θ̄) ≥ Ln
}
.

(
e−nρLn

1− e−nρLn

)
. e−ntn ,

where the last inequality uses the fact that ρLn & tn & 1
n by our choice of Ln and tn.

Inserting the above bound into (8) gives that, with high probability at least 1− exp(−ntn),

MAE(sgnẐ, sgnΘ̄) . [Risk(Ẑ)− Risk(Θ̄)]α/(α+1) +
1

ρ
[Risk(Ẑ)− Risk(Θ̄)] + ∆s

. tα/(α+2)
n +

1

ρα/α+1
tα/(α+1)
n +

1

ρ
t(α+1)/(α+2)
n +

1

ρ2
tn

≤ 4tα/(α+2)
n +

4

ρ2
tn, (18)
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where the second line uses the fact that ∆s � tn, and the last line follows from the fact that

a(b2 + b(α+2)/(α+1) + b + 1) ≤ 4a(b2 + 1) with a = tn
ρ2

and b = ρt
−1/(α+2)
n . We plug tn into (18)

and absorb the term K into the constant. The conclusion is then proved by noting n = |Ω| by
definition.

Definition A.1 (Bracketing number). Consider a family of functions F , and let ε > 0. Let X denote
the domain space equipped with measure Π. We call {(f lm, fum)}Mm=1 an L2-metric, ε-bracketing
function set of F , if for every f ∈ F , there exists an m ∈ [M ] such that

f lm(x) ≤ f(x) ≤ fum(x), for all x ∈ X ,

and

‖f lm − fum‖2
def
=
√
Ex∼Π|f lm(x)− fum(x)|2 ≤ ε, for all m = 1, . . . ,M.

The bracketing number with L2-metric, denoted H[ ](ε,F , ‖·‖2), is the logarithm of the smallest
cardinality of the ε-bracketing function set of F .

Lemma A.2 (Bracketing complexity of low-rank tensors). Define the family of rank-r bounded
tensors T = {Z ∈ Rd1×···×dK : rank(Z) ≤ r, ‖Z‖F ≤ 1} and the induced function family FT =
{fZ : Z ∈ T }. Set

Ln �
(
dmaxrK log n

n

)(α+1)/(α+2)

+
1

ρ(π,N )

(
dmaxrK log n

n

)
, where dmax = max

k∈[K]
dk.

Then, the following inequality is satisfied provided that ∆s . n−1,

sup
`≥1

1

`Ln

∫ √
`L
α/(α+1)
n + `Ln

ρ(π,N )
+∆s

`Ln

√
H[ ](ε,FT , ‖·‖2)dε ≤ Cn1/2, (19)

where C > 0 is a constant independent of r,K and dmax.

Proof of Lemma A.2. To simplify the notation, we denote ρ = ρ(π,N ). Notice that

‖fZ1 − fZ1‖2 ≤ ‖fZ1 − fZ1‖∞ ≤ ‖Z1 −Z1‖F for all Z1,Z2 ∈ T .

It follows from Kosorok (2007, Theorem 9.22) that the L2-metric, (2ε)-bracketing number of FT is
bounded by

H[ ](2ε,FT , ‖·‖2) ≤ H(ε, T , ‖·‖F ) ≤ CdmaxrK log
K

ε
.

The last inequality is from the covering number bounds for rank-r bounded tensors; see Mu et al.
(2014, Lemma 3). Inserting the bracketing number into (19) gives

g(L, `) =
1

`L

∫ √`Lα/(α+1)+ρ−1`L+∆s

`L

√
dmaxrK log

(
K

ε

)
dε. (20)

Define g(L) := sup`≥1 g(L, `). By the monotonicity the integrand in (20), we bound g(L) by

g(L) ≤ sup
`≥1

√
dmaxrK

`L

∫ √`Lα/(α+1)+ρ−1`L+n−1

`L

√
log

(
K

`L

)
dε

≤ sup
`≥1

√
dmaxrK log

(
K

`L

)(
(`L)α/(2α+2) +

√
ρ−1`L+ n−1

`L
− 1

)

.
√
dmaxrK log(1/L)

[
1

L(α+2)/(2α+2)
+

1√
ρL

(
1 +

ρ

2nL

)]
, (21)
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where the the second line follows from
√
a+ b ≤

√
a+
√
b for a, b > 0 and the last line comes from

the fact that the bound achieves maximum when ` = 1. It remains to verify that g(Ln) ≤ Cn1/2 for
Ln specified in (19). Plugging Ln into the last line of (21) gives

g(Ln) ≤
√
dmaxrK log(1/Ln)

(
1

L
(α+2)/(2α+2)
n

+
2√
ρLn

)

≤
√
dmaxrK log n

[(dmaxrK log n

n

)α+1
α+2

]− α+2
2α+2

+

[
2ρ

(
dmaxrK log n

ρn

)]− 1
2


≤ Cn1/2,

where C > 0 is a constant independent of r,K and dmax. The proof is therefore complete.

Theorem A.1 (Theorem 3 in Shen and Wong (1994)). Let F be a class of functions defined on X
with supf∈F ‖f‖∞ ≤ T . Let (Xi)

n
i=1 be i.i.d. random variables with distribution PX over X . Set

supf∈F Varf(X) = V <∞. Define the empirical process Êf = 1
n

∑n
i=1 f(Xi). Define x∗n to be the

solution to the following inequality

1

x

∫ √V
x

√
H[ ](ε,F , ‖·‖2)dε .

√
n.

Suppose
√
V ≤ T and

x∗n .
V

T
, and H[ ](

√
V ,F , ‖·‖2) .

n(x∗n)2

V
.

Then, we have

P

(
sup
f∈F

Êf − Ef ≥ x∗n

)
. exp

(
− n(x∗n)2

V + Tx∗n

)
.

A.4 Proof of Theorem 3

Proof of Theorem 3. By definition of Θ̂, we have

MAE(Θ̂,Θ) = E

∣∣∣∣∣ 1

2H + 1

∑
π∈H

sgnẐπ −Θ

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

2H + 1

∑
π∈H

(
sgnẐπ − sgn(Θ− π)

)∣∣∣∣∣+ E

∣∣∣∣∣ 1

2H + 1

∑
π∈H

sgn(Θ− π)−Θ

∣∣∣∣∣
≤ 1

2H + 1

∑
π∈H

MAE(sgnẐπ, sgn(Θ− π)) +
1

H
, (22)

where the last line comes from the triangle inequality and the inequality∣∣∣∣∣ 1

2H + 1

∑
π∈H

sgn(Θ(ω)− π)−Θ(ω)

∣∣∣∣∣ ≤ 1

H
, for all ω ∈ [d1]× · · · × [dK ].

Write n = |Ω|. Now it suffices to bound the first term in (22). For any given t ≥ tn = dmaxrK logn
n ,

define the event

A =

{
MAE(sgnẐπ, sgn(Θ− π)) . tα/(2+α) +

t

ρ2(π,N )
for all π ∈ H

}
.
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We shall prove that under the event A,

1

2H + 1

∑
π∈H

MAE(sgnẐπ, sgn(Θ− π)) . tα/(α+2) +
1 + |N |
H

+Ht. (23)

Theorem 2 implies that the sign estimation accuracy depends on the closeness of π ∈ H to the mass
points in N . Therefore, we partition the level set π ∈ H based on their closeness to N . Specifically,

Define H1
def
= {π ∈ H : ρ(π,N ) < 1

H } and H2 = H \ H1. Notice |H1| ≤ 2|N |. We expand the left
hand side of (23) by

1

2H + 1

∑
π∈H

MAE(sgnẐπ, sgn(Θ− π))

=
1

2H + 1

∑
π∈H1

MAE(sgnẐπ, sgn(Θ− π)) +
1

2H + 1

∑
π∈H2

MAE(sgnẐπ, sgn(Θ− π)). (24)

The first term involves only 2|N | many number of sumnmands thus can be bounded by 4|N |/(2H+1).
We bound the second term using the explicit forms of ρ(π,N ) in the sequence π ∈ H2. Under the
event A, we have

1

2H + 1

∑
π∈H2

MAE(sgnẐπ, sgn(Θ− π)) .
1

2H + 1

∑
π∈H2

tα/(α+2) +
t

2H + 1

∑
π∈H2

1

ρ2(π,N )

≤ tα/(α+2) +
t

2H + 1

∑
π∈H2

∑
π′∈N

1

|π − π′|2

≤ tα/(α+2) +
t

2H + 1

∑
π′∈N

∑
π∈H2

1

|π − π′|2

≤ tα/(α+2) + 2CHt,

where the first inequality uses the property of event A, and the last inequality follows from Lemma A.3.
Combining the bounds for the two terms in (24) completes the proof for conclusion (23); that is

P
(

MAE(Θ̂,Θ) . tα/(α+2) +
1 + |N |
H

+Ht

)
≥ P(A). (25)

Based on the proof of Theorem 2 and union bound over π ∈ H, we have, for all t ≥ tn,

P(A) ≥ 1−
∑
π∈H

P
(

MAE(sgnẐπ, sgn(Θ− π)) & tα/(α+2) +
t

ρ(π,N )2

)
& 1− (2H + 1) exp(−nt) & 1− exp(−nt+ logH). (26)

We choose t � tn logH in (26) so that logH is negligible compared to nt. Finally, combining (25)
and (26) with the choice of t yields

MAE(Θ̂,Θ) .

(
dmaxrK log |Ω| logH

|Ω|

)α/(α+2)

+
1 + |N |
H

+
dmaxrK log |Ω|

|Ω|
H logH,

with at least probability 1− exp(−dmaxrK log |Ω| logH) ≥ 1− exp(−dmaxrK log |Ω|).
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Lemma A.3. Fix π′ ∈ N and a sequence Π = {−1, . . . ,−1/H, 0, 1/H, . . . , 1} with H ≥ 2. Then,∑
π∈H2

1

|π − π′|2
≤ 4H2.

Proof of Lemma A.3. Notice that all points π ∈ H2 satisfy |π−π′| & 1
H for all π′ ∈ N by definition

and the fact that ∆s is negligible compared to 1/H. We use this fact to compute the sum∑
π∈H2

1

|π − π′|2
=
∑
h
H
∈H2

1

| hH − π′|2

≤ 2H2
H∑
h=1

1

h2

≤ 2H2

{
1 +

∫ 2

1

1

x2
dx+

∫ 3

2

1

x2
dx+ · · ·+

∫ H

H−1

1

x2
dx

}
= 2H2

(
1 +

∫ H

1

1

x2
dx

)
≤ 4H2,

where the third line uses the monotonicity of 1
x2

for x ≥ 1.

A.5 Formal statement and proof of Theorem 4

Write Ȳ = Y − π, Θ̄ = Θ− π, and n = |Ω|. Here we consider the estimation

Ẑπ = arg min
rank(Z)≤r

∑
ω∈Ω

|Ȳ(ω)| × F (Z(ω)sgn(Ȳ(ω)) + λ‖Z‖2F , (27)

where λ > 0 is the penalty parameter and F is a large-margin loss satisfying the following assumption.

Assumption A.1 (Assumptions on surrogate loss).

(a) (Approximation error) For any given π ∈ [−1, 1], assume there exist a sequence of tensors

Z(n)
π ∈Psgn(r), such that RiskF (Z(n)

π )−RiskF (Θ̄) ≤ an, for some sequence an → 0 as n→∞.

Furthermore, assume ‖Z(n)
π ‖F ≤ J for some constant J > 0.

(b) F (z) = (1− z)+ is hinge loss.

Assumption A.1(a) quantifies the representation capability of and Psgn(r). Assumption A.1(b)
implies the Fisher consistency bound for the weighted risk (Scott, 2011),

Risk(Z)− Risk(Θ̄) . RiskF (Z)− RiskF (Θ̄), for all π ∈ [−1, 1] and all Z.

Therefore, it suffices to bound the excess F -risk in order to bound the usual 0-1 risk. Under
Assumption A.1, we establish the estimation accuracy guarantee for the large-margin estimators
(27).

Theorem A.2 (Large-margin estimation). Consider the same setup as in Theorem 3, and denote

tn = dmaxrK logn
n . Suppose the surrogate loss F satisfies Assumption A.1 with an . t

(α+1)/(α+2)
n . Set

λ � t(α+1)/(α+2)
n + tn/ρ(π,N ) in (27). Then, with high probability at least 1− exp(−ntn), we have:
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(a) (Sign tensor estimation). For all π ∈ [−1, 1] except for a finite number of levels,

MAE(sgn(Ẑπ, sgn(Θ̄)) . t
α

2+α
n +

1

ρ2(π,N )
tn. (28)

(b) (Tensor estimation).

MAE(Θ̂,Θ) . (tn logH)
α

2+α +
1 + |N |
H

+ tnH logH. (29)

In particualr, setting H � (1 + |N |)1/2t
−1/2
n yields the tightest upper bound in (29).

Proof of Theorem A.2. The tensor estimation error (29) directly follows from sign tensor estimation
error (28) and the proof of Theorem 3. Therefore, it suffices to prove (28). Our proof uses the same
techniques used in the proof of Theorem 2. We summarize only the key difference.

Fix π /∈ N . For notational simplicity, we suppress the subscript π and write Ẑ in place of Ẑπ.
Denote n = |Ω| and ρ = ρ(π,N ). Define `ω,F (Z) = |Ȳ(ω)| × F (Z(ω)sgn(Ȳ(ω)) and `ω,F ′(Z) =
|Ȳ(ω)| × F ′(Z(ω)sgn(Ȳ(ω)) where F ′ is T-truncated version of F such that F ′(x) = min(F (x), T )
with T = max(2, J2). We focus on the following two empirical processes induced by function
fZ ∈ FT where T = {Z : rank(Z) ≤ r},

1

n

n∑
i=1

[
`i,F (Z, Ȳ)− `i,F (Θ̄, Ȳ)

]︸ ︷︷ ︸
def
= ∆i,F (fZ ,Θ̄)

, and
1

n

n∑
i=1

[
`i,F ′(Z, Ȳ)− `i,F ′(Θ̄, Ȳ)

]︸ ︷︷ ︸
def
= ∆i,F ′ (fZ ,Θ̄)

.

Note that there is an one-to-one correspondence between sets FT and T .
By definition of Ẑ in (27), we have

1

n

n∑
i=1

∆i,F (fẐ ,Z
(n)) ≤ λJ2 − λ‖Ẑ‖2F ,

where Z(n) is a sequence of function in Assumption A.1(a). Let Ln denote the desired convergence
rate to seek. Then, we have the following inclusion of probability events,{

(ω,Yω) : RiskF ′(Ẑ)− RiskF ′(Θ̄) ≥ 2Ln

}
⊂
{

(ω,Yω) : ∃Z s.t. rank(Z) ≤ r,RiskF ′(Z)− RiskF ′(Θ̄) ≥ 2Ln,

and − 1

n

n∑
i=1

∆i,F (fZ ,Z(n)) + λJ2 − λ‖Ẑ‖2F ≥ 0

}
(∗)
⊂
{

(ω,Yω) : ∃Z s.t. rank(Z) ≤ r,RiskF ′(Z)− RiskF ′(Θ̄) ≥ 2Ln,

and − 1

n

n∑
i=1

∆i,F ′(fZ ,Z(n)) + λJ2 − λ‖Ẑ‖2F ≥ 0

}

⊂

(ω,Yω) : sup
rank(Z)≤r

RiskF ′ (Z)−RiskF ′ (Θ̄)≥2Ln

− 1

n

n∑
i=1

∆i,F ′(fZ ,Z(n)) + λJ2 − λ‖Ẑ‖2F ≥ 0


⊂

∞⋃
`1,`2=1

{
(ω,Yω) : sup

Z∈A`1,`2
− 1

n

n∑
i=1

∆i,F ′(fZ ,Z(n)) + λJ2 − λ‖Ẑ‖2F ≥ 0

}
, (30)
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where (∗) comes from the fact

`ω,F ′(Z, Ȳ) ≤ `ω,F (Z, Ȳ) for all Z, and `ω,F ′(Z(n), Ȳ) = `ω,F (Z(n), Ȳ),

because the truncation constant T = max(2, J2) ≥ max(2, supn‖Z(n)‖2F ). In the last line of (30),
we have partitioned {Z : rank(Z) ≤ r and RiskF ′(Z)− RiskF ′(Θ̄) ≥ 2Ln} into union of A`1,`2 with

A`1,`2 =

{
Z : rank(Z) ≤ r, (`1 + 1)Ln ≤ RiskF ′(Z)− RiskF ′(Θ̄) < (`1 + 2)Ln,

and (`2 − 1)J2 ≤ ‖Z‖2F < `2J
2

}
,

for `1, `2 = 1, 2, . . ..
Let Γ denote the target probability for the first line in (30). For each A`1,`2 , we consider the

centered empirical process,

vn(fZ) := − 1

n

n∑
i=1

(
∆i,F ′(fZ ,Z(n))− E∆i,F ′(fZ ,Z(n))

)
. (31)

Notice that

E∆i,F ′(fZ ,Z(n)) = RiskF ′(Z)− RiskF ′(Θ̄) + RiskF ′(Θ̄)− RiskF ′(Z(n))

≥ (`1 + 1)Ln − an
≥ `1Ln,

where the first inequality is from the fact that Z ∈ A`1,`2 and Assumption A.1(a), and the last
inequality uses the condition that an . Ln.

Combining (30), (31) and the union bound yields

Γ ≤
∞∑

`1,`2=1

P

{
sup

Z∈A`1,`2
vn(fZ) ≥ `1Ln + λ(`2 − 2)J2 =: M(`1, `2)

}
. (32)

Similar to the proof of Lemma A.1 and Lemma 2 with T -truncated hinge loss in Lee et al. (2021),
the variance of empirical process is bounded by

sup
Z∈A`1,`2

Var∆i,F ′(fZ , Θ̄) . sup
Z∈A`1,`2

([
E∆i,F ′(fZ , Θ̄)

] α
1+α +

1

ρ
E∆i,F ′(fZ , Θ̄)

)
+ ∆s

.M(`1, `2)
α

1+α +
1

ρ
M(`1, `2) + ∆s =: V (`1, `2).

To apply Theorem A.1, we choose the pair (Ln, λ) satisfying

sup
`1,`2≥1

1

x

∫ √xα/(α+1)+x/ρ+∆s

x

√
H[ ](ε,FT (`2), ‖·‖2)dε . n1/2, (33)

where x = `1Ln +λ(`2− 2)J2 and FT (`2) := {fZ : rank(Z) ≤ r, ‖Z‖2F ≤ `2J2}. Similar to the proof
of Lemma A.2, we solve the pair (Ln, λ) satisfying (33) as

Ln � t(α+1)/(α+2)
n +

tn
ρ
, and λ =

Ln
2J2

, (34)
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where tn = dmaxrK logn
n . With the choice (34), we bound the right-hand side of (32) based on

Theorem A.1,

Γ .
∞∑

`1,`2=1

exp

(
− nM2(`1, `2)

V (`1, `2) + 2M(`1, `2)

)

.
∞∑

`1,`2=1

exp(−ρnM(`1, `2))

≤
(

e−nρLn

1− e−nρLn

)(
enρλJ

2

1− e−nρλJ2

)
. e−nρLn ≤ e−ntn ,

where the last line uses the fact that 2ρλJ2 = ρLn & tn & n−1 from (34). The proof is then
completed by (18).

B Additional results

B.1 Sensitivity of tensor rank to monotonic transformations

In Section 1 of the main paper, we have provided a motivating example to show the sensitivity of
tensor rank to monotonic transformations. Here, we describe the details of the example set-up.

The step 1 is to generate a rank-3 tensor Z based on the CP representation

Z = a⊗3 + b⊗3 + c⊗3,

where a, b, c ∈ R30 are vectors consisting of N(0, 1) entries, and the shorthand a⊗3 = a ⊗ a ⊗ a
denotes the Kronecker power. We then apply f(z) = (1 + exp(−cz))−1 to Z entrywise, and obtain
a transformed tensor Θ = f(Z).

The step 2 is to determine the rank of Θ. Unlike matrices, the exact rank determination for
tensors is NP hard. Therefore, we choose to compute the numerical rank of Θ as an approximation.
The numerical rank is determined as the minimal rank for which the relative approximation error is
below 0.1, i.e.,

r̂(Θ) = min

{
s ∈ N+ : min

Θ̂ : rank(Θ̂)≤s

‖Θ− Θ̂‖F
‖Θ‖F

≤ 0.1

}
.

We compute r̂(Θ) by searching over s ∈ {1, . . . , 302}, where for each s, we (approximately) solve
the least-square minimization using built-in cp function in R package rTensor with default setting
(iteration = 25, tolerance = 10−5). We repeat steps 1-2 ten times, and plot the averaged numerical
rank of Θ versus transformation level c in Figure 1a.

B.2 Tensor rank and sign-rank

In the main paper, we have provided several tensor examples with high tensor rank but low sign-rank.
This section provides more examples and their proofs. Unless otherwise specified, let Θ be an
order-K (d, . . . , d)-dimensional tensor.

Example B.1 (Structured tensors with repeating entries). Suppose the tensor Θ takes the form

Θ(i1, . . . , iK) = log

(
1 +

1

d
max(i1, . . . , iK)

)
, for all (i1, . . . , iK) ∈ [d]K .
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Then
rank(Θ) ≥ d, and srank(Θ− π) ≤ 2 for all π ∈ R.

Remark B.1 (Connection with hypergraphon models). This example is related to hypergraphons
(Zhao, 2015; Lovász and Szegedy, 2006). Hypergraphon is a limiting function based on a sequence
of uniform hypergraphs in cut distance (Zhao, 2015). Though hypergraphon is an important
application, the implication of our results should be interpreted with cautions for two reasons:

(i) Unlike the matrix case where graphon is represented as a bivariate function, general hyper-
graphons for order- tensors should be represented as (2K − 2)-variate function (Zhao, 2015,
Section 1.2). Our example depends on K coordinates only, and in this sense, our example
shares the common ground as simple hypergraphons (Kallenberg, 1999).

(ii) Unlike typical simple hypergraphons where the design points are random variables xi ∼
Uniform[0, 1] , our example uses deterministic design points xi = i/d . These two choices lead
to a notable difference in the RMSE rate d−(K−1)/3 (ours) vs. d−1 (simple hypergraphon)
(Balasubramanian, 2021). This improvement stems from the distinction of fixed vs. random
designs. Whether it is possible to extend our theory to general hypergraphon is an interesting
question for future research.

Proof of Example B.1. We first prove the results for K = 2. The full-rankness of Θ is verified from
elementary row operations as follows


(Θ2 −Θ1)/(log(1 + 2

d)− log(1 + 1
d))

(Θ3 −Θ2)/(log(1 + 3
d)− log(1 + 2

d))
...

(Θd −Θd−1)/(log(1 + d
d)− log(1 + d−1

d ))

Θd/ log(1 + d
d)

 =


1 0

. . .
. . . 0

1 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .

1 1 1 1 0
1 1 1 1 1


,

where Θi denotes the i-th row of Θ. Now it suffices to show srank(Θ − π) ≤ 2 for π in the
feasible range (log(1 + 1

d), log 2). In this case, there exists an index i∗ ∈ {2, . . . , d}, such that

log(1 + i∗−1
d ) < π ≤ log(1 + i∗

d ). By definition, the sign matrix sgn(Θ− π) takes the form

sgn(Θ(i, j)− π) =

{
−1, both i and j are smaller than i∗;

1, otherwise.
(35)

Therefore, the matrix sgn(Θ− π) is a rank-2 block matrix, which implies srank(Θ− π) = 2.
We now extend the results to K ≥ 3. By definition of the tensor rank, the rank of a tensor is

lower bounded by the rank of its matrix slice. So we have rank(Θ) ≥ rank(Θ(: , : , 1, . . . , 1)) = d.
For the sign rank with feasible π, notice that the sign tensor sgn(Θ− π) takes the similar form as
in (35),

sgn(Θ(i1, . . . , iK)− π) =

{
−1, ik < i∗ for all k ∈ [K];

1, otherwise,
(36)

where i∗ denotes the index that satisfies log(1 + i∗−1
d ) < π ≤ log(1 + i∗

d ). The equation (36) implies
that sgn(Θ − π) = −2a⊗K + 1, where a = (1, . . . , 1, 0, . . . , 0)T takes 1 on the i-th entry if i < i∗

and 0 otherwise. Henceforth srank(Θ− π) = 2.

In fact, Example B.1 is a special case of the following proposition.
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Proposition B.1 (Structured tensors with repeating entries). Let g : R → R be a continuous

function such that g(z) = 0 has at most r ≥ 1 distinct real roots. For given numbers x
(k)
ik
∈ [0, 1] for

all ik ∈ [dk], define a tensor Θ ∈ Rd1×···×dK with entries

Θ(i1, . . . , iK) = g(max(x
(1)
i1
, . . . , x

(K)
iK

)), (i1, . . . , iK) ∈ [d1]× · · · × [dK ]. (37)

Then, the sign rank of (Θ− π) satisfies

srank(Θ− π) ≤ 2r.

The same conclusion holds if we use min in place of max in (37).

Proof of Proposition B.1. We reorder the tensor indices along each mode such that x
(k)
1 ≤ · · · ≤ x(k)

dk
for all k ∈ [K]. Based on the construction of Zmax, the reordering does not change the rank of Zmax

or (Θ− π). Let z1 < · · · < zr be the r distinct real roots for the equation g(z) = π. We separate
the proof for two cases, r = 1 and r ≥ 2.

• When r = 1. The continuity of g(·) implies that the function (g(z) − π) has at most one sign
change point. Using similar proof as in Example B.1, we have

sgn(Θ− π) = 1− 2a(1) ⊗ · · · ⊗ a(K) or sgn(Θ− π) = 2a(1) ⊗ · · · ⊗ a(K) − 1,

where a(k) are binary vectors defined by

a(k) = ( 1, . . . , 1,︸ ︷︷ ︸
positions for which xkik < z1

0, . . . , 0)T , for k ∈ [K].

Therefore, srank(Θ− π) ≤ rank(sgn(Θ− π)) = 2.
• When r ≥ 2. By continuity, the function (g(z)− π) is non-zero and remains an unchanged sign in

each of the intervals (zs, zs+1) for 1 ≤ s ≤ r − 1. Define the index set

I = {s ∈ N+ : the interval (zs, zs+1) in which g(z) < π}.

We now prove that the sign tensor sgn(Θ− π) has rank bounded by 2r − 1. To see this, consider
the tensor indices for which sgn(Θ− π) = −1,

{ω : Θ(ω)− π < 0} = {ω : g(Zmax(ω)) < π}
= ∪s∈I{ω : Zmax(ω) ∈ (zs, zs+1)}

= ∪s∈I
(
{ω : x

(k)
ik

< zs+1 for all k ∈ [K]} ∩ {ω : x
(k)
ik
≤ zs for all k ∈ [K]}c

)
.

(38)

The equation (38) is equivalent to

1(Θ(i1, . . . , iK) < π) =
∑
s∈I

(∏
k

1(x
(k)
ik

< zs+1)−
∏
k

1(x
(k)
ik
≤ zs)

)
, (39)

for all (i1, . . . , iK) ∈ [d1] × · · · × [dK ], where 1(·) ∈ {0, 1} denotes the indicator function. The
equation (39) implies the low-rank representation of sgn(Θ− π),

sgn(Θ− π) = 1− 2
∑
s∈I

(
a

(1)
s+1 ⊗ · · · ⊗ a

(K)
s+1 − ā(1)

s ⊗ · · · ⊗ ā(K)
s

)
, (40)
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where a
(k)
s+1,a

(k)
s are binary vectors defined by

a
(k)
s+1 = ( 1, . . . , 1,︸ ︷︷ ︸

positions for which x
(k)
ik

< zs+1

0, . . . , 0)T , and ā(k)
s = ( 1, . . . , 1,︸ ︷︷ ︸

positions for which x
(k)
ik
≤ zs

0, . . . , 0)T .

Therefore, by (40) and the assumption |I| ≤ r − 1, we conclude that

srank(Θ− π) ≤ 1 + 2(r − 1) = 2r − 1.

Combining two cases yields that srank(Θ− π) ≤ 2r for any r ≥ 1.

We next provide several additional examples such that rank(Θ) ≥ d whereas srank(Θ) ≤ c for
a constant c independent of d. We state the examples in the matrix case, i.e, K = 2. Similar
conclusion extends to K ≥ 3, by the following proposition.

Proposition B.2 (Rank relationship between matrices and tensors). Let M ∈ Rd1×d2 be a matrix.
For any given K ≥ 3, define an order-K tensor Θ ∈ Rd1×···×dK by

Θ = M ⊗ 1d3 ⊗ · · · ⊗ 1dK ,

where 1dk ∈ Rdk denotes an all-one vector, for 3 ≤ k ≤ K. Then we have

rank(Θ) = rank(M), and srank(Θ− π) = srank(M − π) for all π ∈ R.

Proof of Proposition B.2. The conclusion directly follows from the definition of tensor rank.

Example B.2 (Stacked banded matrices). Let a = (1, 2, . . . , d)T be a d-dimensional vector, and
define a d-by-d banded matrix M = |a⊗ 1− 1⊗ a|. Then

rank(M) = d, and srank(M − π) ≤ 3, for all π ∈ R.

Proof of Example B.2. Note that M is a banded matrix with entries

M(i, j) = |i− j|, for all (i, j) ∈ [d]2.

Elementary row operation shows that M is full rank as follows,
(M1 + Md)/(d− 1)

M1 −M2

M2 −M3
...

Md−1 −Md

 =


1 1 1 · · · 1 1
−1 1 1 · · · 1 1
−1 −1 1 · · · 1 1
...

...
...

...
...

...
−1 −1 −1 · · · −1 1

 .

We now show srank(M − π) ≤ 3 by construction. Define two vectors b = (2−1, 2−2, . . . , 2−d)T ∈
Rd and rev(b) = (2−d, . . . , 2−1)T ∈ Rd. We construct the following matrix

A = b⊗ rev(b) + rev(b)⊗ b. (41)

The matrix A ∈ Rd×d is banded with entries

A(i, j) = A(j, i) = A(d− i, d− j) = A(d− j, d− i) = 2−d−1
(
2j−i + 2i−j

)
, for all (i, j) ∈ [d]2.
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Furthermore, the entry value A(i, j) decreases with respect to |i− j|; i.e.,

A(i, j) ≥ A(i′, j′), for all |i− j| ≥ |i′ − j′|. (42)

Notice that for a given π ∈ R, there exists π′ ∈ R such that sgn(A − π′) = sgn(M − π). This is
because both A and M are banded matrices satisfying monotonicity (42). By definition (41), A is
a rank-2 matrix. Henceforce, srank(M − π) = srank(A− π′) ≤ 3.

Remark B.2. The tensor analogy of banded matrices Θ = |a ⊗ 1 ⊗ 1 − 1 ⊗ a ⊗ 1| is used as
simulation model 3 in the main paper.

Example B.3 (Stacked identity matrices). Let I be a d-by-d identity matrix. Then

rank(I) = d, and srank(I − π) ≤ 3 for all π ∈ R.

Proof of Proposition B.3. Depending on the value of π, the sign matrix sgn(I − π) falls into one of
the two cases:

(a) sgn(I − π) is a matrix of all 1, or of all −1;

(b) sgn(I − π) = 2I − 1d ⊗ 1d.

The first cases are trivial, so it suffices to show srank(I − π) ≤ 3 in the third case.
Based on Example B.2, the rank-2 matrix A in (41) satisfies

A(i, j)

{
= 2−d, i = j,

≥ 2−d + 2−d−2, i 6= j.

Therefore, sgn
(
2−d + 2−d−3 −A

)
= 2I − 1d ⊗ 1d. We conclude that srank(I − π) ≤ rank(2−d +

2−d−3 −A) = 3.

B.3 Extension of Theorems 2-3 to unbounded observation with sub-Gaussian
noise

Consider the signal plus noise model

Y = Θ + E ,

where E consists of zero-mean, independent noise entries, and Θ ∈Psgn(r) is an α-smooth tensor.
Theoretical results in Section 4 of the main paper are based on bounded observation ‖Y‖∞ ≤ 1. We
extend the results to unbounded observation with the following assumption.

Assumption B.1 (Sub-Gaussian noise).

1. There exists a constant β > 0, independent of tensor dimension, such that ‖Θ‖∞ ≤ β. Without
loss of generality, we set β = 1.

2. The noise entries E(ω) are independent zero-mean sub-Gaussian random variables with variance
proxy σ2 > 0; i.e, P(|E(ω)| ≥ B) ≤ 2e−B

2/2σ2
for all B > 0.

We say that an event A occurs “with high probability” if P(A) tends to 1 as the tensor dimension
dmin = mink dk →∞. The following result show that the sub-Gaussian noise incurs an additional
log |Ω| factor compared to the bounded case.
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Theorem B.1 (Extension to sub-Gaussian noise). Consider the same condition of Theorem 2.
Suppose that Assumption B.1 holds. With high probability over training data YΩ, we have:

(a) (Sign matrix estimation). For all π /∈ N ,

MAE(sgn(Ẑπ), sgn(Θ− π)) . t
α
α+2

d +
td

ρ2(π,N )
, where td :=

rσ2dmax log dmax log |Ω|
|Ω|

.

(b) For all resolution parameter H ∈ N+,

MAE(Θ̂,Θ) . (td logH)α/(α+2) +
1 + |N |
H

+H(td logH). (43)

In particular, setting H�
(

1+|N|
td

)1/2
yields the tightest upper bound in (43).

Proof of Theorem B.1. By setting s = K log(dmax) in Lemma B.1, we have

P(‖E‖∞ ≥
√

4σ2K log dmax) ≤ 2d−Kmax.

We divide the sample space into two exclusive events:

• Event I: ‖E‖∞ ≥
√

4σ2K log dmax;

• Event II: ‖E‖∞ <
√

4σ2K log dmax.

Because the Event I occurs with probability tending to zero, we restrict ourselves to the Event II
only, by following the proof of Theorem 2. We summarize the key difference compared to Section A.
We expand the variance by

Var
[
`ω
(
Z, ȲΩ

)
− `ω

(
Θ̄, ȲΩ

)]
≤ E|`ω(Z(ω), Ȳ(ω))− `ω(Θ̄(ω), Ȳ(ω))|2

= E|Ȳ(ω)− Θ̄(ω) + Θ̄(ω)|2|sgnZ(ω)− sgnΘ̄(ω)|
≤ 2

(
4σ2K log dmax + 2

)
E|sgnZ − sgnΘ̄|

. (σ2K log dmax)MAE(sgnZ, sgnΘ̄), (44)

where the third line uses the facts ‖Θ̄‖∞ ≤ 2 and ‖Ȳ − Θ̄‖2∞ = ‖E‖2∞ < 4σ2K log dmax within
the Event II; the last line comes from the definition of MAE and the asymptotic σ2 log dmax � 1
provided that σ > 0 with dmax sufficiently large.

Based on (44), the α-smoothness of Θ implies that for all measurable functions fZ , we have

Var∆i(fZ , Θ̄) .
(
σ2K log dmax

){[
E∆i(fZ , Θ̄)

] α
1+α +

1

ρ
E∆i(fZ , Θ̄) + ∆s

}
. (45)

Based on the proof of Theorem 2, the empirical process with variance-to-mean relationship (45)
gives that

P
(

Risk(Ẑ)− Risk(Θ̄) ≥ Ln
)
. exp(−ntn), (46)

where the convergence rate Ln is obtained by the same way in the proof of Lemma A.2,

Ln � t(α+1)/(α+2)
n +

1

ρ
tn, with tn =

rσ2dmax log dmax log n

n
, (47)
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where constants (possibly depending on K) have been absorbed into the � relationship. Combining
(46) and (47), we obtain that, with high probability,

Risk(Ẑ)− Risk(Θ̄) .

(
rσ2dmax log dmax log |Ω|

|Ω|

)(α+1)/(α+2)

+
1

ρ(π,N )

(
rσ2dmax log dmax log |Ω|

|Ω|

)
,

(48)

Therefore, combining (48) and (18) completes the proof. The tensor estimation error follows readily
from the proof of Theorem 3 and Theorem B.1.

Lemma B.1 (sub-Gaussian maximum). Let X1, . . . , Xn be independent sub-Gaussian zero-mean
random variables with variance proxy σ2. Then, for any s > 0,

P
{

max
1≤i≤n

|Xi| ≥
√

2σ2(log n+ s)

}
≤ 2e−s.

Proof of Lemma B.1. The conclusion follows from

P[ max
1≤i≤n

|Xi| ≥ u] ≤
n∑
i=1

P[Xi ≥ u] ≤ 2ne−
u2

2σ2 = 2e−s,

where we set u =
√

2σ2(log n+ s).

C Additional results on numerical experiments

C.1 Simulations

Section 5 of the main paper has summarized the major findings. Here we provide more detailed
simulation results for models 1-4.

Figure S1 compares the estimation error under full observation for models 1-4. Similar to results
for models 2-3 in the main paper, we find that the MAE decreases with tensor dimension for all
three methods. Our method NonParaT achieves the best performance in all scenarios, whereas
the second best method is CPT for models 1-2, and NonParaM for models 3-4. As explained in
the main paper, models 1-2 have controlled multilinear tensor rank, which makes tensor methods
NonParaT and CPT more accurate than matrix methods. For models 3-4, the rank exceeds the
tensor dimension, and therefore, the two nonparametric methods NonParaT and NonparaM
exhibit the greater advantage for signal recovery.

Supplementary Figure S2: Completion error versus observation fraction. Panels (a)-(d) correspond
to simulation models 1-4 in Table 2.
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Supplementary Figure S1: Estimation error versus tensor dimension. Panels (a)-(d) correspond to
simulation models 1-4 in Table 2.

Figure S2 shows the completion error against observation fraction. We find that NonParaT
achieves the lowest error among all methods. Our simulation covers a reasonable range of complexities;
for example, model 1 has 33 jumps in the CDF of signal Θ, and models 2 and 4 have unbounded
noise. Nevertheless, our method shows good performance in spite of model misspecification. This
robustness is appealing in practice because the structure of underlying signal tensor is often unknown.

C.2 Brain connectivity analysis

Figure S3 shows the MAE based on 5-fold cross-validations with r = 3, 6, . . . , 15 and H = 20. We
find that our method outperforms CPT in all combinations of ranks and missing rates. The achieved
error reduction appears to be more profound as the missing rate increases. This trend highlights
the applicability of our method in tensor completion tasks. In addition, our method exhibits a
smaller standard error in cross-validation experiments as shown in Figure S3 and Table 3 (in the
main paper), demonstrating the stability over CPT. One possible reason is that that our estimate
is guaranteed to be in [0, 1] (for binary tensor problem where Y ∈ {0, 1}d1×···×dK ) whereas CPT
estimation may fall outside the valid range [0, 1].

Supplementary Figure S3: Estimation error versus rank under different missing rate. Panels (a)-(d)
correspond to missing rate 20%, 33%, 50%, and 67%, respectively. Error bar represents the standard
error over 5-fold cross-validations.

We next investigate the pattern in the estimated signal tensor. Figure 4 of the main paper
shows the identified top edges associated with IQ scores. Specifically, we first obtain a denoised
tensor Θ̂ ∈ R68×68×114 using our method with r = 10 and H = 20. Then, we perform a regression
analysis of Θ̂(i, j, : ) ∈ R144 against the normalized IQ score across the 144 individuals. The
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regression model is repeated for each edge (i, j) ∈ [68] × [68]. We find that top edges represent
the interhemispheric connections in the frontal lobes. The result is consistent with the role of
interhemispheric connectivity in human intelligence. The running times for performing one run on
MRN-144 data is 5.1min evaluated on a single processor on an iMac (Mac OS High Sierra 10.13.6)
desktop with Intel Core i5 (64 bit) 3.8 GHz CPU and 8 GB RAM.

C.3 NIPS data analysis

In the main paper we have summarized the MAE in cross-validation experiments for r = 6, 9, 12.
Here we provide additional results for a wider range r = 3, 6, . . . , 15. Table S1 suggests that further
increment of rank appears to have little effect on the performance. In addition, we also perform
naive imputation where the missing values are predicted using the sample average. The two tensor
methods outperform the naive imputation, implying the necessity of incorporating tensor structure
in the analysis. The running times for performing one run on NIPS data is 4.4min evaluated on a
single processor on an iMac (Mac OS High Sierra 10.13.6) desktop with Intel Core i5 (64 bit) 3.8
GHz CPU and 8 GB RAM.

Method r = 3 r = 6 r = 9 r = 12 r = 15

NonparaT (Ours) 0.18(0.002) 0.16(0.002) 0.15(0.001) 0.14(0.001) 0.13(0.001)

Low-rank CPT 0.22(0.004) 0.20(0.007) 0.19(0.007) 0.17(0.007) 0.17(0.007)

Naive imputation 0.32(.001)

Supplementary Table S1: Prediction accuracy measured in MAE in the NIPS data analysis. The
reported MAEs are averaged over five runs of cross-validation, with standard errors in parentheses.
Bold numbers indicate the minimal MAE among three methods. For low-rank CPT, we use R
function rTensor with default hyperparameters, and for our method, we set H = 20.
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