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A Conditional Score Derivation Proofs

We would like to derive a term for ∇x̃T log p (x̃T |yT ) depending on known ingredients such as x̃T ,
yT , σ0, σi and the SVD components of H, as well as the blurred prior score function∇x̃T log p (x̃T ),
which can be estimated using a neural network. To that end, in accordance with the definitions of v0,
v< and v>, for a matrix M we define M0,M<,M> as leading minors of M with subsets of rows
and columns extracted accordingly from the above-defined partition. Recalling Equation 5 from the
main paper, we have

yT −Σx̃T = UT z−ΣVTn. (1)
Observe that the entries of the right-hand-side vector are statistically independent, and their distribu-
tion for sj < σ0/σi is given by(

UT z−ΣVTn
)
<
∼ N

(
0, σ2

0I− σ2
iΣ<ΣT

<

)
. (2)

This is a direct result of Equation 6 in the main paper, obtained by simply aggregating the different
entries j into a vector. Similarly,(

VTn−Σ†UT z
)
>
∼ N

(
0, σ2

i I− σ2
0Σ
−1
> Σ−1

T

>

)
, (3)

obtained from aggregating the entries from Equation 6 in the main paper into a vector, and multiplying
it by Σ−1> . Notice that Σ> is a diagonal square matrix, and thus invertible. The above two formulae
will be used in the following analysis.

Theorem 1. Given y = Hx + z, z ∼ N
(
0, σ2

0I
)
, H = UΣVT is the SVD decomposition of

H, yT = UTy, n = ni as constructed in subsection 3.1 in the main paper, x̃ = x̃i = x + n,
x̃T = VT x̃, xT = VTx, the conditional score is approximately given by:

∇x̃T
log p (x̃T |yT ) = ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣† (yT −Σx̃T ) +

(
VT∇x̃ log p (x̃)

)∣∣
6>

Proof. We split our derivation into three cases: x̃T,0, x̃T,>, and x̃T,<, and then concatenate the
results.

For the case of x̃T,0, we calculate using the Bayes rule:

∇x̃T,0
log p (x̃T |yT ) = ∇x̃T,0

log p (yT |x̃T ) +∇x̃T,0
log p (x̃T ) .

Deriving by x̃T,0 is the same as deriving by x̃T and then taking the part referring to zero singular
values of H. Thus, the second term becomes (∇x̃T

log p (x̃T ))0. As for the first term, we can subtract
the vector Σx̃T without changing the statistics because it is a known quantity in this setting, resulting
in

∇x̃T,0
log p (x̃T |yT ) = ∇x̃T,0

log p (yT −Σx̃T |x̃T ) + (∇x̃T
log p (x̃T ))0

= ∇x̃T,0
log p

(
UT z−ΣVTn|x̃T

)
+ (∇x̃T

log p (x̃T ))0 .
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The last equality holds due to Equation 1. Referring to the first term, because the entries of the vector
are independent, we can split the probability density function into a product of two such functions for
two parts of the vector, as follows:

∇x̃T,0

[
log p

((
UT z−ΣVTn

)
0
|x̃T
)
+ log p

((
UT z−ΣVTn

)
60
|x̃T
)]

.

The entries of
(
UT z−ΣVTn

)
60

were defined element-wise as gradual noise additions, statistically

independent of the entries of x̃T,0. Therefore, the conditioning on x̃T is equivalent to conditioning on

x̃T, 60. Deriving this log-probability by x̃T,0 results in zero. As for the first term,
(
ΣVTn

)
0

is zero

due to the definition of Σ, and
(
UT z

)
0

is a Gaussian vector that is independent of x̃T,0, resulting in

∇x̃T,0
log p (x̃T |yT ) = ∇x̃T,0

log p
((

UT z−ΣVTn
)
0
|x̃T
)
+ (∇x̃T

log p (x̃T ))0

= ∇x̃T,0
log p

((
UT z

)
0
|x̃T
)
+ (∇x̃T

log p (x̃T ))0

= (∇x̃T
log p (x̃T ))0

= (∇x̃T
log p (x̃))0

=
(
VT∇x̃ log p (x̃)

)
0
.

The second last equality holds because x̃ = Vx̃T , and multiplication by the orthogonal matrix V
does not change the statistics of the variable. The last equality holds due to the multivariate chain
rule: ∇xf (y) = J (y (x))∇yf (y), where J (y (x)) is the Jacobian matrix of y w.r.t. x. Finally,
we obtain

∇x̃T,0
log p (x̃T |yT ) =

(
VT∇x̃ log p (x̃)

)
0
. (4)

For the case of x̃T,>, using the definition of the conditional distribution we get:

∇x̃T,>
log p (x̃T |yT ) = ∇x̃T,>

log p (x̃T,0, x̃T, 60|yT )
= ∇x̃T,>

log p (x̃T,0|x̃T, 60,yT ) +∇x̃T,>
log p (x̃T, 60|yT ) .

(5)

Focusing on the second term, we calculate, with a similar reasoning as above and get:

∇x̃T,>
log p (x̃T, 60|yT ) = ∇x̃T,>

log p
((

x̃T −Σ†yT
)
60 |yT

)
.

Substituting x̃T = VTx + VTn, yT = UTHx + UT z, H = UΣVT leads to

∇x̃T,>
log p (x̃T, 60|yT ) = ∇x̃T,>

log p
((

VTx + VTn−Σ†
(
UTHx + UT z

))
60 |yT

)
= ∇x̃T,>

log p

((
VTx + VTn−Σ†UTUΣVTx−Σ†UT z

)
60
|yT
)

= ∇x̃T,>
log p

((
VTn−Σ†UT z +

(
I−Σ†Σ

)
xT
)
60 |yT

)
.

The last equality holds because UTU = I. Observe that
(
I−Σ†Σ

)
xT is zero everywhere except

in the 0 part of the vector, which we discard because of the 6 0 notation. We can split this term into
two parts, as before,

∇x̃T,>

[
log p

((
VTn−Σ†UT z

)
>
|yT
)
+ log p

((
VTn−Σ†UT z

)
<
|yT
)]
.

The derivative of the second term (the < part) is zero, because this vector was built element-wise as
gradual noise additions, independent of x̃T,>. This results in

∇x̃T,>
log p (x̃T, 60|yT ) = ∇x̃T,>

log p
((

VTn−Σ†UT z
)
>
|yT
)

= ∇x̃T,>
log p

((
x̃T −Σ†yT

)
>
|yT
)

This is the gradient-log of a Gaussian density function of the vector
(
x̃T −Σ†yT

)
>

, known to have

a zero mean and a covariance matrix σ2
i I− σ2

0Σ
−1
> Σ−1

T

> , according to Equation 3. Thus, we use the
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known Gaussian gradient-log and conclude:

∇x̃T,>
log p (x̃T, 60|yT ) =

(
σ2
i I− σ2

0Σ
−1
> Σ−1

T

>

)−1 (
Σ†yT − x̃T

)
>

=
(
Σ−1>

(
Σ>σ

2
i IΣ

T
> − σ2

0I
)
Σ−1

T

>

)−1 (
Σ†yT − x̃T

)
>

= ΣT
>

(
σ2
iΣ>ΣT

> − σ2
0I
)−1

Σ>

(
Σ†yT − x̃T

)
>
.

Multiplying a certain part of a diagonal matrix (in this case, the > part) by the corresponding part of
a vector is the same as multiplying the original matrix and vector, and then taking the relevant part.
This results in

∇x̃T,>
log p (x̃T, 60|yT ) = ΣT

>

(
σ2
iΣ>ΣT

> − σ2
0I
)−1 (

ΣΣ†yT −Σx̃T
)
>

= ΣT
>

(
σ2
iΣ>ΣT

> − σ2
0I
)−1

(yT −Σx̃T )>

=

(
ΣT

(
σ2
iΣΣT − σ2

0I
)−1

(yT −Σx̃T )

)
>

.

(6)

As for the first term in Equation 5, which is ∇x̃T,>
log p (x̃T,0|x̃T, 60,yT ), we can rewrite it as

∇x̃T,>
log p

(
x̃T,0|x̃T, 60,Σ−160 yT

)
because Σ−160 is an orthogonal matrix that does not add or remove

information. Furthermore, we notice that the difference x̃T, 60 − Σ−160 yT was defined element-
wise as gradual noise additions, independent of x̃T,0. Therefore, the term can be rewritten as
∇x̃T,>

log p (x̃T,0|x̃T, 60). We calculate using the definition of the conditional distribution:

∇x̃T,>
log p (x̃T,0|x̃T, 60) = ∇x̃T,>

log
p (x̃T,0, x̃T, 60)

p (x̃T, 60)

= ∇x̃T,>
log p (x̃T,0, x̃T, 60)−∇x̃T,>

log p (x̃T, 60)

= ∇x̃T,>
log p (x̃T )−∇x̃T,>

log p (x̃T, 60)

= (∇x̃T
log p (x̃T ))> −

(
∇x̃T, 60 log p (x̃T, 60)

)
>

=
(
VT∇x̃ log p (x̃)

)
>
−
(
VT
60∇x̃ 60 log p (x̃ 60)

)
>

= VT
> (∇x̃ log p (x̃))> −VT

>

(
∇x̃ 60 log p (x̃ 60)

)
>
.

The second last equality holds due to the chain rule, and the last one holds because multiplying the >
part of a diagonal matrix by the corresponding part of a vector is the same as multiplying the original
matrix and vector, and then taking the relevant part, as previously mentioned. Recalling Equation 3
in the main paper, we can substitute both terms by their denoiser counterparts, obtaining

∇x̃T,>
log p (x̃T,0|x̃T, 60) = VT

>

(
E [x|x̃]− x̃

σ2
i

)
>

−VT
>

(
E [x 60|x̃ 60]− x̃ 60

σ2
i

)
>

=
1

σ2
i

VT
>

(
(E [x|x̃])> − x̃> − (E [x 60|x̃ 60])> + x̃>

)
=

1

σ2
i

VT
>

(
(E [x|x̃])> − (E [x 60|x̃ 60])>

)
=

1

σ2
i

VT
> (E [x>|x̃]− E [x>|x̃ 60]) .

We obtained a difference betwen two terms, both of which calculate an expectation of x> given
x̃ 60, with the first term including the extra knowledge of x̃0. We introduce an assumption that this
additional information does not significantly change the estimation of x>, especially since a noisy
version of it, x̃>, is given in both estimators. As a result, we obtain the approximation

∇x̃T,>
log p (x̃T,0|x̃T, 60) ≈ 0. (7)

To conclude this part, we combine Equations 5, 6 and 7 and obtain the approximate relation

∇x̃T,>
log p (x̃T |yT ) =

(
ΣT

(
σ2
iΣΣT − σ2

0I
)−1

(yT −Σx̃T )

)
>

. (8)
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For the case of x̃T,<, we calculate using the Bayes rule, with similar reasoning to previous cases:
∇x̃T,<

log p (x̃T |yT ) = ∇x̃T,<
log p (yT |x̃T ) +∇x̃T,<

log p (x̃T )

= ∇x̃T,<
log p (yT −Σx̃T |x̃T ) + (∇x̃T

log p (x̃T ))<

= ∇x̃T,<
log p

(
UT z−ΣVTn|x̃T

)
+ (∇x̃T

log p (x̃T ))< .

Similar to the first case, we can split the first term in the same fashion and obtain

∇x̃T,<

[
log p

((
UT z−ΣVTn

)
<
|x̃T
)
+ log p

((
UT z−ΣVTn

)
6<
|x̃T
)]

=

= ∇x̃T,<
log p

((
UT z−ΣVTn

)
<
|x̃T
)

= ∇x̃T,<
log p

(
(yT −Σx̃T )< |x̃T

)
.

The vector
(
UT z−ΣVTn

)
6<

was built element-wise as gradual noise additions, independent of

x̃T,<, and thus its derivative is zero. We obtain a gradient-log of a Gaussian density function of the
vector (yT −Σx̃T )<, having a zero mean and a covariance matrix σ2

0I− σ2
iΣ<ΣT

<, according to
Equation 2. Thus, when deriving it by x̃T,<, we obtain the known Gaussian gradient-log, multiplied
from the left by −ΣT

<, which is the inner derivative of the Gaussian parameter, implying

∇x̃T,<
log p (x̃T |yT ) = −ΣT

<

(
σ2
0I− σ2

iΣ<ΣT
<

)−1
(Σx̃T − yT )< + (∇x̃T

log p (x̃T ))<

= ΣT
<

(
σ2
0I− σ2

iΣ<ΣT
<

)−1
(yT −Σx̃T )< + (∇x̃T

log p (x̃T ))<

=

(
ΣT

(
σ2
0I− σ2

iΣΣT
)−1

(yT −Σx̃T )

)
<

+
(
VT∇x̃ log p (x̃)

)
<
.

So, in summary,

∇x̃T,<
log p (x̃T |yT ) =

(
ΣT

(
σ2
0I− σ2

iΣΣT
)−1

(yT −Σx̃T )

)
<

+
(
VT∇x̃ log p (x̃)

)
<
. (9)

Aggregating all these results together, by combining Equations 4, 8 and 9 into one vector, we obtain
the following conditional score function approximation:

∇x̃T
log p (x̃T |yT ) = ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣† (yT −Σx̃T ) +

(
VT∇x̃ log p (x̃)

)∣∣
6> , (10)

where (v)| 6> is the vector v, but with zeros in its entries that correspond to v>. Observe that the
first term in Equation 10 contains zeros in the entries corresponding to x̃T,0, matching the above
calculations.

�

B Step Size Derivation

As explained in [1], the following equality holds:

∇x̃ log p (x̃) =
D (x̃, σ)− x̃

σ2
,

where D (x̃, σ) is the theoretical MSE minimizer, E [x|x̃]. We introduce an assumption that D (x̃, σ)
does not significantly change with small perturbations in x̃, resulting in:

∂

∂x̃
D (x̃, σ) ≈ 0.

This assumption is justified by the fact that with probability 1, the infinitesimal perturbations are
orthogonal to the image manifold around the point x̃, implying that they can be referred to as an
additive white Gaussian noise. Due to the efficiency of the denoiser in wiping such noise, the
sensitivity of its output to this extra noise is negligible.

Our goal in this appendix is to evaluate the Hessian of the log posterior in order to be used for better
conditioning of the iterative Langevin steps. Thus, we need to differentiate the gradient that was
derived above,

∇x̃T
log p (x̃T |yT ) = ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣† (yT −Σx̃T ) +

(
VT∇x̃ log p (x̃)

)∣∣
6> .
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Theorem 2. Given y = Hx + z, z ∼ N
(
0, σ2

0I
)
, H = UΣVT is the SVD decomposition of

H, yT = UTy, n = ni as constructed in subsection 3.1 in the main paper, x̃ = x̃i = x + n,
x̃T = VT x̃, xT = VTx, the Hessian of the log posterior can be approximated by a diagonal matrix
whose entries are:

[
∇2

x̃T
log p (x̃T |yT )

]
j,j

=


−1
σ2
i

sj = 0
−s2j

s2jσ
2
i−σ2

0
σisj > σ0

−s2j
σ2
0−s2jσ2

i
− 1

σ2
i

0 < σisj < σ0.

Proof. Again, we split our calculation into 3 cases:

For the case of x̃T,0, we notice that the first term in the gradient is zero due to the multiplication by
ΣT , and thus we calculate:

∇2
x̃T,0

log p (x̃T |yT ) =
∂

∂x̃T,0

(
VT∇x̃ log p (x̃)

)∣∣
6> .

We use the chain rule and obtain

∇2
x̃T,0

log p (x̃T |yT ) = V0
∂

∂x̃0

(
VT∇x̃ log p (x̃)

)∣∣
6>

= V0V
T
0

∂

∂x̃0
(∇x̃ log p (x̃))|6>

=
∂

∂x̃0
(∇x̃ log p (x̃))|6>

=
∂

∂x̃0

(
D (x̃, σ)− x̃

σ2
i

)∣∣∣∣
6>

=
∂

∂x̃0

(
−x̃

σ2
i

)∣∣∣∣
6>

=
−1
σ2
i

I,

where we have invoked our earlier assumption on the denoiser’s sensitivity to perturbations. This
leads to the conclusion

∇2
x̃T,0

log p (x̃T |yT ) =
−1
σ2
i

I. (11)

For the case of x̃T,>, we calculate:

∇2
x̃T,>

log p (x̃T |yT ) =
∂

∂x̃T,>

[
ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣† (yT −Σx̃T ) +

(
VT∇x̃ log p (x̃)

)∣∣
6>

]
.

The first term’s derivative is simply the matrix that multiplies the vector x̃T,>, while the second term
can be approximated, with the use of the chain rule, as follows:

∂

∂x̃T,>

(
VT∇x̃ log p (x̃)

)∣∣
6> = V>

∂

∂x̃>

(
VT∇x̃ log p (x̃)

)∣∣
6>

= V>VT
>

∂

∂x̃>
(∇x̃ log p (x̃))| 6>

=
∂

∂x̃>
(∇x̃ log p (x̃))|6>

=
∂

∂x̃>

(
D (x̃, σ)− x̃

σ2
i

)∣∣∣∣
6>

=
∂

∂x̃>

(
−x̃

σ2
i

)∣∣∣∣
6>

= 0,
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Blurred Ai αi = c · σ2

i

Figure 1: Comparison of different step sizes, while the rest of the hyperparameters are fixed (uniform
5× 5 blur and an additive noise with σ0 = 0.1). The third column refers to the diagonal step size
matrix Ai, as used in SNIPS. The last two columns refer to a uniform time-dependent step size
αi = c · σ2

i , with c = 1e− 3, 1e− 5, respectively. Different choices of c yielded similar results.

where we have invoked our earlier assumption on the denoiser’s sensitivity to perturbations, resulting
in

∇2
x̃T,>

log p (x̃T |yT ) =
(
−ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣†Σ)

>

. (12)

For the case of x̃T,<, we calculate:

∇2
x̃T,<

log p (x̃T |yT ) =
∂

∂x̃T,<

[
ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣† (yT −Σx̃T ) +

(
VT∇x̃ log p (x̃)

)∣∣
6>

]
.

The first term’s derivative can be calculated similarly to the previous case, and the second term can
be approximately derived as in the first case, resulting in

∇2
x̃T,<

log p (x̃T |yT ) =
(
−ΣT

∣∣∣σ2
0I− σ2

iΣΣT
∣∣∣†Σ)

<

+
−1
σ2
i

I. (13)

Aggregating all these results together, by combining Equations 11, 12 and 13 into one diagonal
matrix, we obtain the following diagonal entries of the Hessian:

[
∇2

x̃T
log p (x̃T |yT )

]
j,j

=


−1
σ2
i

sj = 0
−s2j

s2jσ
2
i−σ2

0
σisj > σ0

−s2j
σ2
0−s2jσ2

i
− 1

σ2
i

0 < σisj < σ0.

(14)

�

Finally, since the approximation of the Hessian is a diagonal matrix and its diagonal entries are
non-zeros, we can easily invert it. This results in the following term for each of the diagonal entries
of the negative inverse Hessian, which we denote Ai:

(Ai)j,j =


σ2
i sj = 0

σ2
i −

σ2
0

s2j
σisj > σ0

σ2
i ·
(
1− s2j

σ2
i

σ2
0

)
0 < σisj < σ0.

In order to demonstrate the effectiveness of this position-dependent step size vector, we compare it to
a uniform step size αi ∝ σ2

i for image deblurring. As can be seen in Figure 1, the latter diverges under
the same hyperparameters. It is possible that for a large enough number of iterations, a uniform step
size might converge and produce viable results. However, we find little value in demonstrating this,
as it requires retraining the NCSNv2 model for more noise levels, and it slows down the algorithm.
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Table 1: Hyperparameters for our experiments. σi+1

σi
is the geometric common ratio for {σi}Li=1.

Dataset c τ L σ1 σL
σi+1

σi

CelebA 3.3e− 2 5 500 90 0.01 0.982
LSUN 1.8e− 2 3 1086 190 0.01 0.991

C Alternative Definition of the Noise

In our derivations in subsection 3.1 in the main paper we argued that for the analysis to go through,
we should tie the synthetic annealed Langevin noise to the measurements one. As can be seen
in Appendix A, this choice clearly complicates the derivation of the conditional score, raising the
question whether a simple independence between these two random vectors could have been used
instead. In this appendix we explore this option and expose its limitation.

We start by defining x̃L+1 = x, and for every i = L,L− 1, . . . , 1: x̃i = x̃i+1 + ηi, where
ηi ∼ N

(
0,
(
σ2
i − σ2

i+1

)
I
)

is independent of z. This results in x̃i = x + ni, where
ni =

∑L
k=i ηk ∼ N

(
0, σ2

i I
)
. As before, we aim to derive the conditional score function p (x̃i|y)

and thus we look at the vector

y −Hx̃i = Hx + z−Hx−Hni = z−Hni. (15)

This is a Gaussian vector with zero mean and a covariance matrix σ2
0I + σ2

iHHT , due to the
independence between z and n. In order to make use of Equation 15, we would like to express
p (x̃i|y) as p (Hx̃i − y|y). However, this transition is not possible because the multiplication by H
is not an invertible operation, which means that it changes the statistics of the tested vector. Instead,
p (x̃i|y) may be expressed using the Bayes rule as

p (x̃i|y) =
1

p (y)
p (x̃i) p (y|x̃i) =

1

p (y)
p (x̃i) p (y −Hx̃i|x̃i) .

The first term 1/p (y) becomes zero after differentiating by x̃i, and the second term’s gradient log
can be approximated using a neural network, as done before. The third term describes a Gaussian
vector, and can be written as p (z−Hni|x̃i) due to Equation 15. The Gaussian vector z −Hni
is conditioned on x̃i = xi + ni, which encapsulates information about ni, without a clear way of
knowing ni itself. Thus, without an explicit term for p (ni|x̃i), we are unable to derive an analytical
term for the gradient log of the likelihood.

Therefore, the path we took to define the noise additions aims for the difference y − Hx̃i to be
independent of x̃i. In order to achieve that, we use the SVD decomposition of H and define the noise
addition sequence as in subsection 3.1 in the main paper, both steps seem unavoidable.

D Implementation Details

We run SNIPS with the hyperparameters detailed in Table 1, where {σi}Li=1 is a decreasing geometric
sequence. These hyperparameters conform to those used in NCSNv2 [3], the neural network model
that we used. The parameters H, σ0 and y are defined by the inverse problem at hand. Recall that
this algorithm applies τL overall iterations to complete, in each a denoiser is being activated. The
sampling algorithm was run on a single Nvidia RTX3080 GPU with 10GB memory, and took around
2 minutes for producing 8 samples from the 64 × 64 CelebA dataset, and around 6 minutes for
producing 6 samples from the 128× 128 LSUN dataset. The exact times vary slightly for the various
inverse problems.

The code used in this paper is available at https://github.com/bahjat-kawar/snips_torch.

E Comparison to RED

RED [2] is a well-known method that leverages a denoiser for the MAP solution of inverse problems,
and as such it is a relevant method to compare with. We compare RED to SNIPS on the image
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Table 2: Comparison between SNIPS and RED on 8 CelebA images. SNIPS Mean is the average of 8
SNIPS outputs per image. The best number in each row is in bold.

Problem Metric SNIPS SNIPS Mean RED

Uniform deblurring with σ0 = 0.006
PSNR ↑ 32.41 35.42 29.03
LPIPS ↓ 0.005 0.005 0.043

Uniform deblurring with σ0 = 0.1
PSNR ↑ 25.03 27.28 20.10
LPIPS ↓ 0.032 0.045 0.077

Original Blurred SNIPS SNIPS Mean RED

Figure 2: Deblurring results on a CelebA image (uniform 5 × 5 blur). Top: additive noise with
σ0 = 0.006, bottom: additive noise with σ0 = 0.1.

deblurring problem (with a uniform 5 × 5 kernel and additive noise with σ0), while using the
same denoiser model (NCSNv2) for both. We run the SD (Steepest Descent) version of RED on
the luminance channel of the image in the YCbCr color space, as in the original paper, with its
hyperparameters chosen for best PSNR performance. Namely, λ = 0.12, N = 100 for σ0 = 0.006,
and λ = 1000, N = 100 for σ0 = 0.1. In addition to PSNR, we also calculate LPIPS [4], a perceptual
quality metric, in order to verify the claim that SNIPS has superior visual quality.

As can be seen in Table 2, both SNIPS and its mean outperform RED in PSNR as well as LPIPS.
When the noise is significant (σ0 = 0.1), it becomes clear that SNIPS has superior visual quality at
the expense of PSNR performance, in comparison to the average of samples. A visual comparison is
shown in Figure 2.

F Additional Results

We provide below more results of SNIPS for image deblurring, super-resolution and compressive
sampling. We recommend to view these figures zoomed-in in order to see the details in the produced
samples (or lack thereof in their average).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Blurred Samples from our algorithm Mean std

Figure 3: Deblurring results on CelebA images (uniform 5 × 5 blur and an additive noise with
σ0 = 0.1).
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Figure 4: Extended uncurated super resolution results on CelebA images (downscaling 2 : 1 by plain
averaging and adding noise with σ0 = 0.1). Every image set contains: original, low-res, SNIPS
restoration, in that order.
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 5: Super resolution results on CelebA images (downscaling 2 : 1 by plain averaging and
adding noise with σ0 = 0.1).

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 6: Super resolution results on CelebA images (downscaling 4 : 1 by plain averaging and
adding noise with σ0 = 0.1).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Degraded Samples from our algorithm Mean std

Figure 7: Compressive sensing results on CelebA images (compression by 25% and adding noise
with σ0 = 0.1).

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 8: Super resolution results on LSUN bedroom images (downscaling 2 : 1 by plain averaging
and adding noise with σ0 = 0.04).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 9: Super resolution results on LSUN bedroom images (downscaling 4 : 1 by plain averaging
and adding noise with σ0 = 0.04).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 10: Compressive sensing results on LSUN bedroom images (compression by 25% and adding
noise with σ0 = 0.04).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 11: Super resolution results on LSUN tower images (downscaling 2 : 1 by plain averaging
and adding noise with σ0 = 0.04).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 12: Super resolution results on LSUN tower images (downscaling 4 : 1 by plain averaging
and adding noise with σ0 = 0.04).
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︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Original Low-res Samples from our algorithm Mean std

Figure 13: Compressive sensing results on LSUN tower images (compression by 25% and adding
noise with σ0 = 0.04).
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