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Abstract

Motivated by sequential budgeted allocation problems, we investigate online match-
ing problems where connections between vertices are not i.i.d., but they have fixed
degree distributions – the so-called configuration model. We estimate the compet-
itive ratio of the simplest algorithm, GREEDY, by approximating some relevant
stochastic discrete processes by their continuous counterparts, which are solutions
of an explicit system of partial differential equations. This technique gives precise
bounds on the estimation errors, with arbitrarily high probability as the problem
size increases. In particular, it allows the formal comparison between different
configuration models. We also prove that, quite surprisingly, GREEDYcan have
better performance guarantees than RANKING, another celebrated algorithm for
online matching that usually outperforms the former.

1 Introduction

Finding matchings in bipartite graphs (U∪V, E), where E ⊂ U×V is a set of edges, is a long-standing
problem with different motivations and approaches [Godsil, 1981, Zdeborová and Mézard, 2006,
Lovász and Plummer, 2009, Bordenave et al., 2013]. If U is seen as a set of resources and V as
demands, the objective is to allocate as many resources to demands (an allocation - or a matching -
between u and v is admissible if (u, v) ∈ E) with the constraint that a resource is allocated to only
one demand and vice-versa.

Motivated particularly by practical applications to Internet advertising, the online variant of this
problem is receiving increasing attention (we refer to the excellent survey [Mehta, 2012] for more
applications, specific settings, results and techniques). In this case, the set of vertices U is present at
the beginning and the graph unveils sequentially: vertices v ∈ V are observed sequentially, one after
the other, along with the edges they belong to. An online algorithm must decide, right after observing
vk and its associated set of edges Ek := {(u, vk) ∈ E} to match it to some other vertex u ∈ U , at
the conditions that (u, vk) ∈ Ek and u ∈ U has not been matched yet. The performance of an online
algorithm is evaluated by its competitive ratio, which is the ratio between the size of the matching it
has created and the highest possible matching in hindsight [Feldman et al., 2009].

This theoretical setting is particularly well suited for online advertising: U is the set of campaigns/ads
that an advertiser can run and users v1, v2, . . . , vT arrive sequentially [Mehta, 2012, Manshadi et al.,
2012]. Some of them are eligible for a large subset of campaigns, others are not (usually based
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on their attributes/features, such as the geographic localization, the browsing history, or any other
relevant information). The objective of an advertiser (in this over-simplified model) is to maximize
the number of displayed ads. In practice, campaigns/ads are not displayed only once but have a
maximal budget of impressions (say, a specific ad can be displayed only 10.000 times each day). A
possible trick consists of duplicating the vertices of U as many times as the budget. However, this
results in strong and undesirable correlations between vertices. It is, therefore, more appropriate to
consider a bipartite graph with capacities and admissible matchings as subsets of edges such that
each vertex belongs to several different edges, but not more than their associated capacities ω ∈ N (a
vertex v ∈ V is matched once while u ∈ U can be matched ωu times).

This online matching problem with capacities has been quite extensively studied. It is known that
GREEDY, which matches all incoming vertices to any available neighbor has a competitive ratio of
1/2 in the worst case, albeit it achieves 1− 1/e as soon as the incoming vertices arrive in Random
Order [Goel and Mehta, 2008b]. The worst-case optimal algorithm is the celebrated RANKING, which
achieves 1− 1/e on any instance [Karp et al., 1990, Devanur et al., 2013, Birnbaum and Mathieu,
2008], and also has better guarantees in the Random Order setting [Mahdian and Yan, 2011].

Beyond the adversarial setting, the following stochastic setting has been considered: there exist
a finite set of L “base” vertices v(1), . . . , v(L) associated to base edge-sets E(1), . . . , E(L). When
a vertex vk arrives, its type θk ∈ {1, . . . , L} is drawn iid from some distribution (either known
beforehand or not) and then its edge set is set as Ek = E(θk). In the context where the distribution is
known, algorithms with much better competitive ratios than GREEDY or RANKING were designed
[Manshadi et al., 2012, Jaillet and Lu, 2014, Brubach et al., 2019], specifically with a competitive
ratio of 1− 2/e2 when the expected number of arrival of each type are integral and 0.706 without
this assumption. Notably, those competitive ratios still hold with Poisson arrival rates rather than a
fixed number of arrivals.

On a side note, a vast line of work considers online matching in weighted graphs [Devanur et al.,
2012, Goel and Mehta, 2008a, Mehta, 2012], which is outside the scope of this paper. However, it is
still worth noting that the unweighted graph is a weighted graph with all weights equal.

This model of the stochastic setting is quite interesting but rather strong: it lacks flexibility and cannot
be used to represent some challenging instances ( for example when the degrees of each vertex U
increase linearly with the number of vertices in V , or when the set U of campaigns must be fixed so
that the model is well specified, etc...). Another tentative is to consider Erdős-Rényi graphs assuming
that each possible edge is present in U ×V with some fixed probability and independently of the other
edges (see [Mastin and Jaillet, 2013]). The most interesting and challenging setting corresponds to
the so-called sparse regime where each vertex of U has an expected degree independent of the size n
of V , which amounts to take a probability of connection equal to c/n. Interestingly enough, even the
analysis of the simplest GREEDY algorithm is quite challenging and already insightful in those models
[Borodin et al., 2018, Arnosti, 2019, Dyer et al., 1993, Mastin and Jaillet, 2013]. Unfortunately,
although this Erdős-Rényi model is compatible with growing sets U and V , it also turns out to be
quite restrictive. The main reason is that the approximate Poisson degree distribution of the vertices
has light-tail and does not allow for the appearance of the so-called scale-free property satisfied by
many real-world networks [Barabási et al., 2000, Van Der Hofstad, 2016].

We, therefore, consider a more appropriate random graphs generation process called configuration
model, introduced by [Bender and Canfield, 1978] and [Bollobás, 1980]. The optimal matching of
this model has been computed in [Bordenave et al., 2013]. The configuration model is particularly
well suited to handle different situations such as the following one. Assume that campaigns can either
be “intensive” (with many eligible users) or “selective/light” (few eligible users), with an empirical
proportion of, say, 20%/80%. Then whether an advertiser handles 100 campaigns at the same time
or 10.000, it will always have roughly this proportion of intensive vs. light campaigns. Similarly,
some users are more valuable than others, and are thus eligible for more campaigns than the others;
the proportion of each type being independent of the total population size. The configuration model
accommodates these observations by basically drawing iid degrees for vertices U and V (accordingly
to some different unknown distributions for U and V) and then by finding a graph such that those
degrees distribution are satisfied (up to negligible errors); as a consequence, the graphs generated are
sparse, in the sense that the number of edges grows linearly with the number of vertices.

Additionally, the configuration model is a well-suited random graph model which mimics a number of
properties of real-world complex networks, while being analytically tractable. For instance, choosing
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power-law distributions for the degrees allows to obtain the so-called scale-free property (often
observed in practice, as highlighted for the web by Faloutsos et al. [1999]). The configuration
model also displays the so called “small-world phenomenon” (observed for instance in the graph of
Facebook by Backstrom et al. [2012]) as its diameter is of logarithmic order.

Main contribution

We investigate the performances (in terms of expected competitive ratio) of the GREEDY matching
algorithm in configuration models and we provide explicit quantitative results using stochastic
approximation techniques [Wormald, 1995]; we prove that the increasing size of the random matching
created is arbitrarily close to the solution of some explicit ODE. Solving the latter then gives in turn
the solution to the original problem.

The remaining of the paper is organized as follows. Section 2 describes precisely the problem and
Theorem 1 is our first main result: it describes the performances of GREEDY in the capacity-less
problem. The proof of Theorem 1 is delayed to Appendix D, but the main ideas and intuitions are
provided in Section 3. The online matching with capacities problem is treated in Appendix A.

2 Online Matching Problems; Models and main result

Consider a bipartite graph with capacities G = (U ,V, E , ω) where U = {1, . . . , N} and V =
{1, . . . , T} are two finite set of vertices, E ⊂

{
(u, v), u ∈ U , v ∈ V

}
is the set of edges and

ω : U → N∗ is a capacity function. A matching M on G is a subset of edges e ∈ E such that any
vertex v ∈ V is the endpoint of at most one edge e ∈ M and any vertex u ∈ U is the endpoint of
at most ωu edges in M . We will denote byM the set of matchings on G; the optimal matching
M∗ ∈M is the one (or any one) with the highest cardinality, denoted by |M∗|.
The batched matching problem consists in finding any optimal matching M∗ given a graph with
capacities G; the online variant might be a bit more challenging, as the matching is constructed
sequentially. Formally, the set of vertices U and their capacities ω are known from the start, and
vertices v ∈ V arrive sequentially (with the edges they belong to) and M0 = ∅. At stage t ∈ N –
assuming a matching Mt−1 has been constructed –, a decision maker observes a new vertex1 vt and
its associated set of edges {(u, vt);u ∈ E}. If possible, one of these edges (ut, vt) is added to Mt−1,
with the constraint that Mt = Mt−1 ∪ {(ut, vt)} is still a matching. The objective is to maximize the
size of the constructed matching MT . The classical way to evaluate the performances of an algorithm
is the competitive ratio, defined as |MT |/|M∗| ∈ [0, 1] (the higher the better).

2.1 Structured online matching via Configuration Model

As mentioned before, the online matching problem can be quite difficult without additional structure.
We will therefore assume that the vertex degrees in U and V have (at least asymptotically in N
and T ) some given subGaussian2 distributions πU and πV , of respective expectation µU and µV
and respective proxy-variance σ2

U and σ2
V . Those numbers are related in the sense that we assume3

that T = µU
µV
N ∈ N. Given those degree distributions, the graphs we consider are random draws

from a bipartite configuration model described below; for the sake of clarity, we first consider the
capacity-less case (when ωu = 1 for all u ∈ U).

Given πU and πV and N,T ≥ 1, let dU1 , . . . , d
U
N ∈ N

i.i.d.∼ πU and dV1 , . . . , d
V
T ∈ N

i.i.d.∼ πV be
independent random variables; intuitively, those numbers are respectively the number of half-edges
attached to vertex in U and V . Consider also two extra random variables

dVT+1 = max
{ N∑
i=1

dUi −
T∑
j=1

dVj , 0
}

and dUN+1 = max
{ T∑
j=1

dVj −
N∑
i=1

dUi , 0
}

1Although the order of arrival is irrelevant to the models we studied, it could have an impact on other models.
2X is subGaussian with proxy-variance σ2 if for any s ∈ R,E[exp(sX)] ≤ exp

(
σ2s2

2

)
. Actually, we only

need that πU and πV have some finite moment of order γ > 2.
3In the general case, consider T = bNµU/µVc. The proof is identical, up to a negligible 1/N error term
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so that equality between total degrees holds, i.e.,
∑N+1
i=1 dUi =

∑T+1
j=1 d

V
j . Finally, a random (capacity-

less) bipartite graph denoted by CM(dU ,dV ) is constructed with a uniform pairing of half-edges
of U ∪ {N + 1} with half-edges of V ∪ {T + 1} and removing vertices T + 1 and N + 1 and their
associated edges. These two artificially added vertices are just here to define a pairing between
half-edges. Notice that, by the law of large numbers and since T = (µU/µV)N , dVT+1 = o(N) and
dUN+1 = o(N) almost surely4.

The bipartite configuration model CM(dU ,dV) is then the random graph obtained by a uniform
matching between the half-edges of U and the half-edges of V , where the random sequences dU =
(dUi )i and dV = (dVj )j are defined as above.

2.2 Competitive ratio of GREEDY algorithm. Main result

The first question to investigate in this structured setting is the computation of the (expected)
competitive ratio of the simple algorithm GREEDY. It constructs a matching by sequentially adding
any admissible edge uniformly at random. Describing it and stating our results require the following
additional notations: for any e = (u, v) ∈ E, u(e) = u (resp. v(e) = v) is the extremity of e in U
(resp. V); the generating series of πU and πV are denoted by φU and φV and are defined as

φU (s) :=
∑
k≥0

πU (k)sk and φV(s) :=
∑
k≥0

πV(k)sk.

Our first main theorem, stated below, identifies the asymptotic size of the matching generated by
GREEDY on the bipartite configuration model we have just defined. As the batched problem (i.e.,
computing the size of the optimal matching M∗) is well understood [Bordenave et al., 2013], this
quantity is sufficient to derive competitive ratios. Again, for the sake of presentation, we first assume
that all capacities are fixed, equal to one; the general case is presented in Appendix A.
Theorem 1. (Performances of GREEDY in the capacity-less case)

Given N ≥ 1 and T = µU
µV
N , let MT be the matching built by GREEDY on CM(dU ,dV ) then the

following convergence in probability holds:
|MT |
N

P−→
N→+∞

1− φU (1−G(1)).

where G is the unique solution of the following ordinary differential equation:

G′(s) =
1− φV

(
1− 1

µU
φ′U (1−G(s))

)
µV
µU
φ′U (1−G(s))

; G(0) = 0. (1)

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by GREEDY after seeing a proportion
s of vertices of V , then

|MT (s)|
N

P−→
N→+∞

1− φU (1−G(s)). (2)

Convergence rates are explicit; with probability exponentially large, at least 1− ζN exp(−ξN c/2),

sup
s∈[0,1]

∣∣∣ |MT (s)|
N

−
(
1− φU (1−G(s))

)∣∣∣ ≤ κN−c,
where ζ, ξ, κ depend only on the (first two) moments of both πV and πU , and c is some universal
constant (set arbitrarily as 1/20 in the proof).

Theorem 1 generalizes to the case with capacities, see Sections A.1 and A.2. The details of the proof
of Theorem 1 are postponed to Appendix D, but the main ideas are given in Section 3.

2.3 Examples, Instantiations and Corollaries

We provide in this section some interesting examples and corollaries that illustrate the powerfulness
of Theorem 1, and how it can be used to compare different situations.

4And even O(
√
N) with probability exponentially large in N as both distributions are sub-Gaussian. So the

effects of those additional vertices can be neglected.
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2.3.1 d-regular graphs

The first typical example of random graphs are “ d-regular ”, for some d ∈ N, i.e., graphs such that
each vertex has an exact degree of d (to avoid trivial examples, we obviously assume d ≥ 2).

It is non-trivial to sample a d-regular graph at random, yet it is easy to generate random graphs
GN with the configuration model described above, with the specific choices of πU = πV = δd, the
Dirac mass at d. The downside is that GN is not exactly a d-regular bipartite random graph (as
some vertices might be connected more than once, i.e., there might exist parallel edges). However,
conditioned to be simple, i.e, without multiple edges and loops, it has the law of a uniform d-regular
bipartite random graph. Moreover, the probability of being simple is bounded away from 0 [Van
Der Hofstad, 2016]; as a consequence, any property holding with probability tending to 1 for GN ,
holds with probability tending to 1 for uniform d-regular bipartite random graphs. Finally, we also
mention that Hall’s Theorem [Frieze and Karoński, 2016] implies that GN admits a perfect matching,
so that |M∗| = N .

Instantiating Equation (1) to d-regular graphs yields that the competitive ratio of GREEDY converges,
with probability 1, to 1− (1−G(1))d where G is the solution of the following ODE

(1−G(s))d−1

1− (1− (1−G(s))d−1)
d
G′(s) =

1

d
. (3)

As expected, had we taken d = 1, then G(s) = s hence the competitive ratio of GREEDY is
1 (but again, d = 1-regular graphs are trivial). More interestingly, if d = 2, the ODE has a
closed form solution: G(s) = exp( s2 ) − 1, so that the competitive ratio of GREEDY converges to
4
√
e− (e+ 3) ' 0.877� 1− 1

e ' 0.632, where the latter is a standard bound of the competitive
ratio of GREEDY (for general, non-regular graphs) [Mehta, 2012].

Solving Equation (3) In the general case d ≥ 3, even if Equation (3) does not have a closed
form solution, it is still possible to provide some insights. Notice first that the polynomial P (X) =
1− (1− (1−X)d−1)d admits n := d(d− 1) roots, among which there is 1 with multiplicity d− 1.
If X is another root, then(

1− (1−X)d−1
)d

= 1 ⇔ 1− (1−X)d−1 = e
ikπ
d , k = 1, . . . , d− 1.

Therefore,
(1−X)d−1 = 1− e ikπd ,

which admits d− 1 distinct solutions for each k = 1, . . . , d− 1. The resulting n := (d− 1)2 distinct
complex, denoted x1, . . . , xn, are the roots of P (X)/(1−X)d−1, so the ODE reduces to:

y′(t)∏
1≤i≤n y(t)− xi

=
1

d
. (4)

Since the following trivially holds:
1∏

1≤i≤n(X − xi)
=
∑

1≤i≤n

1∏
j 6=i(xi − xj)

1

X − xi
=:

∑
1≤i≤n

ai
X − xi

.

it is possible to integrate Equation (4) in
∑

1≤i≤n ai log(y(t)− xi) = s
d + c to finally get∏

1≤i≤n

(y(t)− xi)ai = C exp(
s

d
),

and since y(0) = 0, it must hold that C =
∏

1≤i≤n(−xi)ai . As a consequence, y(1) solves:∏
1≤i≤n

(y(1)− xi)ai = e1/d
∏

1≤i≤n

(−xi)ai .

Unfortunately, even for d = 3, the solution somehow simplifies but has no closed form; on the
other hand, numerical computations indicate that the competitive ratio of GREEDY converges to 0.89
when d = 3 and N tends to infinity. We provide in Figure 3 the numerical solutions of the ODE
for d-regular graphs (actually, we draw the functions 1− φU (1−G(s)) that are more relevant) for
various values of d; the end-point obtained at s = 1 indicates the relative performance of GREEDY.
As expected, those functions are point-wise increasing with d (as the problem becomes simpler and
simpler for GREEDY when d ≥ 2).
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Figure 1: Numerical computations (on Scilab, results are almost instantaneous) of GREEDY perfor-
mances for d = 2 (blue), d = 3 (red), d = 4 (green), d = 6 (black) and d = 10 (magenta). On the
left, global solution, on the right, zoom-in on the end points with final values.

2.3.2 The Erdős-Rényi case.

In a Erdős-Rényi graph, there is an edge between two vertices u ∈ U and v ∈ V with some probability
p = c

N , independently from each others. As N goes to infinity, the number of edges to a vertex
follows (approximately) a Poisson law of parameter c > 1.

As a consequence, we consider the configuration model where πU and πV are Poisson laws of
parameter c, which yields µ = c, φU (s) = ec(s−1). In this case, Equation (1) becomes:

cG′(s) e−cG(s)

1− e−c e−cG(s)
= 1.

The solutions are given by:

G(s) =
1

c
log

(
c

log(ek−cs +1)

)
,

yielding

φX(1−G(s)) =
1

c
log
(
ek−cs +1

)
.

The initial condition φU (1−G(0)) = φU (1) = 1 gives ek = ec − 1, from which we deduce that the
number of matches of GREEDY is asymptotically proportional to

1− φU (1−G(1)) = 1− log (2− e−c)

c
,

which recovers, as a sanity check, some existing results [Mastin and Jaillet, 2013].

2.3.3 The comparison of different configuration models

Using Gronwall’s Lemma, it is possible to show Theorem 1 can be used to compare different
configuration models, as in the following Corollary.

Corollary 1. Consider two configuration models CM1(dU1 ,d
V
1 ) and CM2(dU2 ,d

V
2 ), s.t. dU1 and

dU1 are both drawn i.i.d. from πU , dV1 is drawn i.i.d. from π1
V and dV2 is drawn i.i.d. from

π2
V , with

∑
x xπ

1
V (x) =

∑
x xπ

2
V (x). If φ1V (s) ≥ φ2V (s) for any s ∈ (0, 1), then by denoting

respectively γ1 and γ2 the asymptotic proportion of vertices matched by GREEDY in CM1(dU1 ,d
V
1 )

and CM2(dU2 ,d
V
2 ), it holds that necessarily γ2 ≥ γ1.

For instance, let us assume that the degree distribution on the offline side is fixed. Then the matching
size obtained by GREEDY is asymptotically larger if vertices on the online side all have exactly the
same degree d rather than if those degrees are drawn from a Poisson distribution with expectation d.

A similar result (with a different criterion) holds with fixed degree distribution on the online side and
differing one on the offline side.
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2.4 GREEDY can outperform RANKING !

We recall that the RANKING algorithm, which is the worse case optimal, chooses at random a ranking
over U and uses it to break ties (i.e., if two vertices u and u′ can be matched to vk, then it is the
one with the smallest rank that is matched by RANKING). Quite surprisingly, we get that in the
configuration model RANKING can have a worse competitive ratio than GREEDY, which advocates
again for its thorough study.
Proposition 1. Let γR and γG be the assymptotic performances of RANKING and GREEDY on the
2-regular graph. The following holds:

γG > γR.

In other words, GREEDY outperforms RANKING in the 2-regular graph.

We conjecture that the above result actually holds for any d ≥ 2, and more generally for a wide
class of distributions πU and πV (finding a general criterion would be very interesting). The proof
of Proposition 1 is provided in Appendix G. The main idea is that in the 2-regular graph, RANKING
is biased towards selecting as matches vertices with two remaining half-edges rather than just one.
Indeed, vertices with only one remaining half-edge were not selected previously and thus have a
higher rank. The vertices with only one remaining half-edge will not get matched in the subsequent
iterations, so not picking them as matches is suboptimal. On the other hand, GREEDY picks any
match uniformly at random and does not exhibit such bias.

Figure 2: Experimental performances of GREEDY vs. RANKING on d-regular graphs

3 Ideas of proof of Theorem 1

The main idea behind the proof of Theorem 1 (postponed to Section D) is to show that the random
deterministic evolution of the matching size generated by GREEDY is closely related to the solution
of some ODE (this is sometimes called “the differential equation method” [Wormald, 1995] or
“stochastic approximations” [Robbins and Monro, 1951]). Computing the solution of the ODE is
easier - if not explicitly, at least numerically in intricate cases - than estimating the performances of
GREEDY by Monte-Carlo simulations and it provides qualitative, as well as quantitative, properties.

Tracking the matching size is non-trivial because the vertices (in U and V) have different degrees,
hence some of them are more likely to be matched than others. However, in the configuration model,
each vertex has the same distribution of degrees before the sequences dU and dV are fixed. As a
consequence, the proof relies on the three following techniques

1. The graph is built sequentially, along with the matching and not beforehand (fixing the
”randomness” at the beginning would be very difficult to handle in the analysis). Thankfully,
this does not change the law of the graph generated (this is obviously crucial).

2. We are not only going to track the size of the matching built as we need to handle different
probabilities of matching (and pairing the graph) for each vertex. As a consequence, we
are going to track the numbers of non-matched vertices which have still i half-edges to be
paired and the number of already matched vertices that have j half-edges remaining. This
will give one different ODE per value of i of j.
Since πU and πV are sub-Gaussian, we will prove that with arbitrarily high probability -
exponential in N -, there are only a polynomial number of such equations
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3. All those differential equations are then “aggregated” to build the final ODE satisfied by the
matching size. Interestingly, this aggregated ODE has a simple form, while the full system
is on the other hand quite intricate.

In the following sub-sections, we separate the proofs in the different building blocks to provide
intuitions; the proof of technical lemmas are deferred to the appendix.

3.1 Building the graph together with the matching

The first step in the analysis is to notice that the bipartite configuration model can be constructed
by sequentially pairing the half-edges coming from V . The matching generated by GREEDY is
then constructed simultaneously with the graph. More precisely, given two sequences5 of non-
negative integers dU = (dU1 , . . . , d

U
N ) and dV ∪ {dVT+1} = (dV1 , . . . , d

V
T , d

V
T+1), we introduce in the

following a generating algorithm that simultaneously build the associated bipartite configuration
model CM(dU ,dV) together with GREEDY. Recall that the bipartite configuration model is obtained
through a uniform matching between the half-edges of U and the half-edges of V . To avoid confusion,
we will call a marked matching a pairing of two half-edges that corresponds to an edge that will
belong to the constructed matching M. This construction pseudo-code is detailed in Algorithm 1.

Algorithm 1: GREEDY MATCHING CONFIGURATION MODEL WITHOUT CAPACITIES

Input: dU = (dU1 , . . . , d
U
N ) and dV = (dV1 , . . . , d

V
T )

Initialization. M0 ← ∅, E0 ← ∅ and HU0 ← { half-edges of U}
for t = 1, . . . , T do

Order uniformly at random the edges emanating from vt: et1, . . . , e
t
kt

for i = 1, . . . , kt do
Choose uniformly an half-edge eUi in HU

E ← E ∪ {u(eUi ), vt} // Create an edge between eti and eUi
HU ← HU \ {eUi } // Remove the half-edge

if vt and u(eUi ) unmatched then
Mt ← Mt−1 ∪ {u(eUi ), vt} // vt is matched

end
end

end
CM(dU ,dV)← (U ,V, E).
Output: Bipartite configuration model CM(dU ,dV) and matching MT on it.

Since each pairing of each half-edge is done uniformly at random, the graph obtained at the end of
the algorithm has indeed the law of a bipartite configuration model. Moreover, it is easy to see that M
corresponds to the matching constructed by GREEDY MATCHING on CM(dU ,dV).

3.2 Differential Equation Method - Stochastic Approximation

As mentioned above, several quantities are going to be tracked through time: for all k ∈ {0, . . . , T}
and all i ≥ 0, we define:

• Fi(k) as the number of vertices u ∈ U that are not yet matched at the end of step k and
whose remaining degree is i, meaning that du− i of their initial half-edges have been paired.
We will refer them to as free vertices.

• Mi(k) as the number of vertices u ∈ U already matched at the end of step k and whose
remaining degree is i. We will refer them to as marked vertices.

Notice that for all 0 ≤ k ≤ T , the sum Fi(k) +Mi(k) corresponds to the total number of vertices of
U with remaining degree i at the end of step k. We also define

• F̂ (k) :=
∑
i≥0 iFi(k) is the number of available half-edges attached to free vertices at the

end of step k,
5Without loss of generality, we assume that the additional extra vertex is always on the V side.
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• M̂(k) :=
∑
i≥0 iMi(k) is the number of available half-edges attached to marked vertices at

the end of step k.

We are going to study the evolution of these quantities along with the one of GREEDY. A major
ingredient of the proof is to show that Fi(k) and Mi(k) closely follow the solutions of some ODE.
This is the so-called differential equation method [Wormald, 1995], stated in Appendix C. For
instance, it can easily be seen that F̂ (k) + M̂(k) closely follows the function t 7→ µU − tµV on
(0, µU/µV) in the following sense.
Lemma 1. For every ε > 0, and for all 0 ≤ k ≤ T ,∣∣∣∣ F̂ (k) + M̂(k)

N
−
(
µU −

k

N
µV
))∣∣∣∣ ≤ ε.

with probability at least 1− exp
(
− Nε2

2σ2
U

)
+ exp

(
− Tε2

2σ2
V

)
.

We now turn to each individual quantity Fi (resp. Mi). We can prove a similar result, yet the limit
function is not explicit (unlike for the matching size as in Theorem 1 statement). The following
Lemma 2 states that the discrete sequences of (free and marked) half-edges are closely related to the
solutions of some system of differential equations.

Before stating it, we first introduce, for any sequence of non-negative numbers (x`)`≥0 and (y`)`≥0
such that 0 <

∑
` `(x` + y`) <∞, every i ≥ 0, the following mappings

Φi(x0, x1, . . . , y0, y1, . . .) :=
−iµVxi + (i+ 1)µVxi+1 − h

( ∑
`≥0 `y`∑

`≥0 `(x`+y`)

)
(i+ 1)xi+1∑

`≥0 `(x` + y`)
(5)

and

Ψi(x0, x1, . . . , y0, y1, . . .) :=
−iµVyi + (i+ 1)µVyi+1 + h

( ∑
`≥0 `y`∑

`≥0 `(x`+y`)

)
(i+ 1)xi+1∑

`≥0 `(x` + y`)
,

where h is the following function, well-defined on [0, 1],

h(s) =
1− φV(s)

1− s
.

Lemma 2. With probability 1− ζN exp(−ξN c/2), there are at most N c quantities Fi and Mi, and
for all 0 ≤ k ≤ T and all i ≥ 0∣∣∣∣Fi(k)

N
− fi

(
k

N

) ∣∣∣∣ ≤ κN−2c and
∣∣∣∣Mi(k)

N
−mi

(
k

N

) ∣∣∣∣ ≤ κN−2c,
where ζ, κ depend only on the (first two) moments of πV and πU and c = 1/20.

The continuous mappings fi andmi are solutions of the system of differential equations on [0, µU/µV)

dfi
dt = Φi(f0, f1, . . . ,m0,m1, . . .),

dmi
dt = Ψi(f0, f1, . . . ,m0,m1, . . .),

fi(0) = πU (i),
mi(0) = 0.

(6)

This system is well defined as stated by the following Lemma 3.
Lemma 3. The system (6) has a unique solution which is well-defined on [0, µU/µV). More precisely,
denoting by f and m the generating series of the sequences (fi)i≥0 and (mi)i≥0,

f(t, s) =
∑
i≥0

fi(t)s
i and m(t, s) =

∑
i≥0

mi(t)s
i,

it holds that:

f

(
µU
µV

(
1− e−µV t

)
, s

)
= φU

(
(s− 1)e−µV t + 1− F (t)

)
, (7)

9



and

m

(
µU
µV

(
1− e−µV t

)
, s

)
=

ˆ t

0

F ′(u)φ′U
(
(s− 1)e−µVu + 1− F (u)

)
du.

where F is a solution of the following ODE
1
µU
φ′U (1− F (t))

1− φV
(

1− 1
µU
φ′U (1− F (t))

)F ′(t) = e−µV t .

3.3 Aggregating solutions to compute GREEDY performances

To get Theorem 1, notice that the number of vertices matched by GREEDY is N minus the number of
free vertices remaining at the end, which is approximately equal to Nf(µUµV , 1) by definition of f and
because of Lemma 2. This corresponds to t = +∞ in Equation (7), thus the performance of GREEDY
is, with arbitrarily high probability, arbitrarily close to

N(1− φU (1− F (+∞)))

The statement of Theorem 1 just follows from a simple final change of variable.

Conclusion

We studied theoretical performances of GREEDY algorithm on matching problems with different
underlying structures. Those precise results are quite interesting and raise many questions, especially
since GREEDY actually outperforms RANKING in many different situations (in theory for 2-regular
graphs, but empirical evidence indicates that this happens more generically).

Our approach has also successfully been used to unveil some questions on the comparison between
different possible models. But more general questions are still open; for instance, assuming that the
expected degree is fixed, which situation is the more favorable to GREEDY and online algorithm:
small or high variance, or more generally this distribution πU or an alternative one π′U ? The obvious
technique would be to compare the solution of the different associated ODE’s. Similarly, the questions
of stability/robustness of the solution to variation in the distribution πU and πV are quite challenging
and left for future work.

We believe online matching will become an important problem for the machine learning community
in the future. Each year, the complexity of the underlying graphs increases and we are considering
adding features to the model in future work (such as random variables on the edges, modeling the
interest for a consumer for a given product), or connection modeled via some Kernel between vertices
features (say, if users and products/campaigns are embedded in the same space). In this context,
machine learning tools will certainly be needed to tackle the problem.
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Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press,
2016.

Christopher David Godsil. Matchings and walks in graphs. Journal of Graph Theory, 5(3):285–297,
1981.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications
to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’08, page 982–991, USA, 2008a. Society for Industrial and Applied Mathematics.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications
to adwords. pages 982–991, 01 2008b. doi: 10.1145/1347082.1347189.

Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds. Mathe-
matics of Operations Research, 39(3):624–646, 2014.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite match-
ing. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing,
STOC ’90, page 352–358, New York, NY, USA, 1990. Association for Computing Machinery.
ISBN 0897913612. doi: 10.1145/100216.100262. URL https://doi.org/10.1145/100216.
100262.

11

https://doi.org/10.1145/1360443.1360462
https://doi.org/10.1145/1360443.1360462
https://doi.org/10.1145/2229012.2229043
https://doi.org/10.1145/2229012.2229043
https://doi.org/10.1145/316188.316229
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/100216.100262
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A General version of the result

A.1 The fixed capacity matching problem

We now investigate the case where vertices u ∈ U have capacities, which means that they can be
matched to several vertices v ∈ V . Precisely, if the capacity of u is denoted by ωu, then this vertex
can be matched to at most ωu vertices in V (but as before, half-edges of u are going to be paired
with du half-edges originating from V). The graph is still constructed using the configuration model
introduced in Section 2.1, i.e., the law of du is πU (and similarly, degrees of v ∈ V are i.i.d., with law
πV ).

For the moment, to simplify the analysis and the results statements, we are going to assume that all
vertices u ∈ U have the same initial capacity C ∈ N. We denote the random graph with capacities
generated this way by CM(dU ,dV , C)

Theorem 2. (Performances of GREEDY with fixed capacities)

Given N ≥ 1 and T = µU
µV
N , let MT be the matching built by GREEDY on CM(dU ,dV , C) then

the following convergence in probability holds:

|MT |
CN

P−→
N→+∞

1−
C−1∑
k=0

1− k/C
k!

G(1)kφ
(k)
U (1−G(1)) .

where G is the unique solution of the following ordinary differential equation

G′(s) =
1− φV

(
1− 1

µU
ΓU (G(s))

)
µV
µU

ΓU (G(s))
.

where

ΓU (g) = φ′U (1− g) +

C−1∑
k=1

gk

k!
φ
(k+1)
U (1− g)

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by GREEDY after seeing a proportion
s of vertices of V , then

|MT (s)|
CN

P−→
N→+∞

1−
C−1∑
k=0

1− k/C
k!

G(s)kφ
(k)
U (1−G(s)) .

The proof of Theorem 2, in Appendix E, has three major differences with the one of Theorem 1:

1. The first one is that more quantities must be tracked, not just the number of vertices with
remaining free half-edges, but the number of such vertices for each possible value of
remaining capacity; the total number of equations is roughly speaking multiplied by a factor
(C+1)/2 (since only Fi(k) are affected by the capacities and notMi(k)). We will therefore
denote in the remaining by F (c)

i (k) the number of vertices with i remaining half-edges to be
paired and with current capacity equal to c (those vertices can still be matched to c different
vertices v ∈ V).

2. The second major difference lies in the resolution of the system of differential equations.
The solution was rather direct without capacities (i.e., c = 1). Unfortunately, the evolution
of F (c)

i strongly depends on F (c+1)
i . As a consequence, the trick is to solve this system

by induction, starting from c = C (this solution is almost identical to that of the case
with no capacities) and then to inject this solution in the PDEs defining F (C−1)

i so on so
forth. Indeed, the fluid limits of

∑
i Fi(c) and

∑
iMi, that we denote respectively be f (c)

and m satisfy the following coupled equations (up to some time change θ(t) and where
H(t) = h(q(t)) for some function q(·) introduced in the proof):

∂tf
(c)(θ(t), s) = [−µVs+ µV −H(t)] ∂sf

(c)(θ(t), s) +H(t)∂sf
(c+1)(θ(t), s),

and
∂tm(θ(t), s) = [−µVs+ µV ] ∂sm(θ(t), s) +H(t)∂sf

(1)(θ(t), s).
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3. Finally, the third main difference is how the performances of GREEDY are defined. The upper
bound is obviously to create the minimum between CN and T matches (where T is the
number of vertices in V). Anyway, those two numbers are within a constant multiplicative
factor (recall that T = µU

µV
N for a valid configuration model), hence we arbitrarily chose to

normalize GREEDY performances byCN . As a consequence, the (normalized) performances
of GREEDY now rewrite as∑

i≥0

(
Mi(T ) +

∑C
c=1(1− c

C )F
(c)
i (T )

)
N

,

where Mi(k) still denotes the number of marked vertices, i.e., those whose capacities have
been depleted before step k with i remaining half-edges to be paired.

A.2 General case, online matching with capacities

In the general case, we no longer assume that all vertices u ∈ U have the same initial capacities, but
ωu can be equal to any value inN (yet this capacity is independent of the degree). Notice however
that the capacities ωu of vertices could be capped at their degrees du (since they would never be
depleted otherwise). As a consequence, capacities can be assumed to be bounded by C < Nβ for
some β < 1 since the maximal degree is also smaller than Nβ with arbitrarily high probability.

We therefore denote by pc ∈ [0, 1] the fraction of vertices of U whose initial capacity is exactly
c ∈ [1, C]. Notice, we do not need to assume that capacities are drawn i.i.d. accordingly to some
distribution, our results hold for any values (pc)c. We denote by CM(dU ,dV ,p) the random graph
with capacities generated.

Quite interestingly, the techniques are exactly the same as in the previous case: we consider the exact
same system of differential equations; the only differences are the initial conditions. Similarly, the
maximal matching size is no longer NC but NEp[c] := N

∑
c cpc. We also denote the cdf of the

empirical distribution pc by Pc :=
∑
k≤c pc

Theorem 3. (Performances of GREEDY with different capacities)

Given N ≥ 1 and T = µU
µV
N , let MT be the matching built by GREEDY on CM(dU ,dV ,p) then the

following convergence holds in probability:

|MT |
NEp[c]

P−→
N→+∞

1−
C−1∑
k=0

∑C
c=1 cpc+k
Ep[c]

1

k!
G(1)kφ(k) (1−G(1)) .

where G is the unique solution of the following ordinary differential equation

G′(s) =
1− φV

(
1− 1

µU
Γp
U (G(s))

)
µV
µU

Γp
U (G(s))

.

with

Γp
U (g)) = φ′U (1− g) +

C−1∑
k=1

(
(1− Pk)gk

k!
φ
(k+1)
U (1− g)

)
.

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by GREEDY after seeing a proportion
s of vertices of V , then

|MT (s)|
NEp[c]

P−→
N→+∞

1−
C−1∑
k=0

∑C
c=1 cpc+k
Ep[c]

1

k!
G(s)kφ(k) (1−G(s)) .

As mentioned before, the proof (delayed to Appendix F) is rather similar to the previous one; the
major difference is that the change of initial condition of the system of PDE makes it a bit more
complicated to solve (hence the more intricate formulation of the result).
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B Additional Numerical Experiments

B.1 Further comparisons between the theoretical result and simulations

We provide in Figure 3 a comparison between the score predicted by the numerical solutions of
the ODE (the functions 1− φU (1−G(s))) for 4-regular graphs and the simulated performance of
GREEDY for various values of N . As expected, the deviations of the simulated trajectories remain
within O(

√
N) of the expected theoretical trajectory. Figure 4 illustrates the same comparison on an

Erdős-Rényi graph whose expected degree equals 4.

Figure 3: Difference between the theoretical performances and simulated performances of the GREEDY
algorithm on the d-regular graph (d = 4) on 5 independent runs, with N = 100, 1000, 10000.

Figure 4: Difference between the theoretical value 2 and simulated performances of the GREEDY
algorithm on the Erdős-Rényi graph, c = 4, on 5 independent runs, with N = 100, 1000, 10000.

In Figure 5, we plot the theoretical performance of the GREEDY algorithm along with its experimental
performance on the d-regular graph for various values of d. We also plot the competitive ratio of
GREEDY predicted by the ODE as a function of d. As expected, the score increases with d (as the
problem becomes simpler and simpler for GREEDY when d ≥ 2).

Figure 5: On the left, the expected theoretical performance of the GREEDY algorithm (dashed line)
along with the simulated performance (full line) for various values of d. On the right, the expected
competitive ratio of GREEDY on the d-regular graph as a function of d.

B.2 GREEDY vs RANKING

We further illustrate in this section the quite surprising fact that, in some configuration models,
GREEDY actually outperforms RANKING.
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In the adversarial configuration, it is known that the competitive ratio of RANKING is 1− 1
e which is

bigger than the one of GREEDY, equal to 1/2, see [Mehta, 2012]. In the following figures, we also plot
the performances of two other “algorithms” SMALLEST and HIGHEST, for the sake of comparison;
indeed, those are not admissible algorithms as they use the (future) knowledge of the number of
half-edges of each vertex u ∈ U .

More precisely, SMALLEST matches a vertex vk ∈ V to the vertex u ∈ U with the smallest number
of remaining half-edges (under the constraints obviously that (u, vk) ∈ E). As a consequence
SMALLEST could be seen as an upper limit for an online algorithm.

HIGHEST does the opposite: it matches vk to the vertex u ∈ U with the highest remaining number of
half-edges. So HIGHEST should serve as a lower bound/sanity check for any online algorithm.

In Figure 6, the performances of those 4 matching “algorithms” (again SMALLEST and HIGHEST are
not admissible as they use extra knowledge) are illustrated on configuration models with d = 2, 4, 10
and 20.

Figure 6: GREEDY outperforms RANKING in d-regular graphs

As mentioned before, GREEDY surprisingly outperforms RANKING in some configuration models,
with a relative performance that decreases with d (which is rather natural on the other hand, since the
relative performance of HIGHEST and SMALLEST also decreases).

Figure 6 also illustrates the different time steps at which algorithms fail to match new vertices vk
(because all the u they are paired with are already matched with another vertex vj for some j < k).
This happens later and later as d increases (as expected), at around half the horizon for d = 2 and
roughly 82% with d = 20.

On the other hand, RANKING and GREEDY have the same performance on Erdos-Renyi graphs, which
is a consequence of the memory-less property of those graphs, i.e. the probability of creating a match
at each iteration depends only on the number of matched vertices, as shown in Figure 7.

In Figure 8, we plot the relative performance of RANKING and GREEDY on bi-degrees graph, where
half the vertices have degree x, the other half 2x. The plots illustrate that the best algorithm is not
always teh best one depending on the value of x.
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Figure 7: Experimental performances of GREEDY vs. RANKING on Erdos-Renyi graphs

Figure 8: Experimental performances of GREEDY vs. RANKING on bi-degrees graphs

B.3 A few vertices with high capacity vs many vertices with low capacity

In this section, we investigate how nodes’ capacities affect GREEDY’s expected performance. The
baseline is its performance on a random graph where all vertices have capacity 1 and the vertices
degrees in U and V follow the distributions πU and πV . The comparison graph with capacity C has
|U|/C ”in-place” vertices, each with a capacity C, and their degrees follows the modified distribution
π̃UC where π̃UC (x = k) = πU (x = k/C). Informally, the graph with capacity C is built from the
baseline graph by merging C vertices of equal degree d into a single vertex of degree dC.

Figure 9: GREEDY performs better in high capacity graphs in d-regular graphs, from left to right
d = [2, 4, 10, 20]

The results of the simulation illustrate that the GREEDY performs better on graphs with vertices of
high capacity.

C Stochastic approximation & Differential equation method

The following theorem is an improved version of Wormald’s Theorem [Enriquez et al., 2019].

Theorem 4. Let a > 0. For all N ≥ 1 and all 1 ≤ k ≤ Na, let Yk(i) = Y
(N)
k (i) be a Markov chain

with respect to a filtration {Fi}i≥1. Suppose that, for all k ≥ 1, there exists a function fk such that:

• Yk(0)/N = zk(0);
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• |Yk(i+ 1)− Yk(i)| ≤ Nβ;

•
∣∣E [Yk(i+ 1)− Yk(i)

∣∣∣Fi]− fk ( i
N ,

(Yk(i))1≤k≤Na

N

) ∣∣ ≤ cN−λ, for some constant c > 0

where 0 < β < 1/2, λ > 0. Suppose that the following infinite system of differential equations with
initial conditions (zk(0))k≥1 has a unique solution (zk)k≥1:

∀k ≥ 1, z′k(t) = fk(t, (zk(t))k≥1).

Then, for all k ≥ 1, Yk(btNc)/N converges in probability towards zk for the topology of uniform
convergence.

More precisely, for every 1 < ε < 1−β
β , for every (1+ε)β

2 < α < εβ and for every 0 ≤ i ≤ N
ω where

ω = N (1+ε)β , it holds that

P
(
|Y (iω)− z( iω

N
)N | ≤ i

(
Nα+β + cN (1+ε)β−λ +N2(1+ε)β−2)) ≤ i exp

(
− N2α−(1+ε)β

2

)
D Proofs of technical steps of Theorem 1

D.1 Proof of Lemma 1

It is an application of (maximal) Hoeffding-Azuma inequality since, for every 0 ≤ k ≤M − 1,

E
[(
F̂ (k + 1) + M̂(k + 1)

)
−
(
F̂ (k) + M̂(k)

) ∣∣Fk] = −E
[
dVk
]

= −µV .

D.2 Proof of Lemma 2

Since πV is σV subGaussian, then for any β > 0,

P
(
∃i ∈ {1, . . . , T}, dVi ≥ µV +Nβ

)
≤ T exp(−N

2β

2σ2
V

).

In particular, for some β < 1/2 to be chosen later on, if µV ≤ Nβ/2, then all degrees are smaller
than Nβ with probability at least 1− T exp

(
− N2β

8σ2
V

)
; from now on, we will place ourselves on that

event.

We also denote by (Fk)0≤k≤M the natural filtration associated to the GREEDY MATCHING algorithm.
In order to apply Theorem 4, it remains to control for every i ≥ 0 and 0 ≤ k ≤M − 1,∣∣∣∣E [Fi(k + 1)− Fi(k)

∣∣Fk]− Φi

(
F0

(
k

N

)
, F1

(
k

N

)
, . . . ,M0

(
k

N

)
,M1

(
k

N

)
, . . .

) ∣∣∣∣
and∣∣∣∣E [Mi(k + 1)−Mi(k)

∣∣Fk]−Ψi

(
F0

(
k

N

)
, F1

(
k

N

)
, . . . ,M0

(
k

N

)
,M1

(
k

N

)
, . . .

) ∣∣∣∣
Let 0 ≤ k ≤ T − 2Nγ

µV
, with γ > 1/2 some parameter to be fixed later, so that, according to Lemma

1, with probability at least 1− exp(−N
2γ−1

2σ2
U

)− exp(−µUN
2γ−1

2µVσ2
V

) it holds that F̂ (k) + M̂(k) ≥ Nγ .

Recall that, in the k-th step of the algorithm, half-edges of the k-th vertex of VN are ordered uniformly
at random: (eki )i for i = 1, . . . , dVk . Then, each of these half-edges is sequentially paired uniformly
at random with half-edges of dV that are not yet paired. Let uki be the vertex to which eki is paired
and let Ik be the first integer i such that uki belongs to the free vertices of U at time k, that is to the
vertices that are not yet matched. If such an integer does not exist, that is when all uki are already
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matched, we set Ik = +∞. As a consequence, we aim at estimating P
(
Ik = i

∣∣Fk) for the different
admissible values, where this probability has the following explicit definition

P
(
Ik = i

∣∣Fk) =
M̂(k)

F̂ (k) + M̂(k)

M̂(k)− 1

F̂ (k) + M̂(k)− 1
· · · M̂(k)− (i− 2)

F̂ (k) + M̂(k)− (i− 2)

F̂ (k)

F̂ (k) + M̂(k)− (i− 1)

=
M̂(k)!

(M̂(k)− (i− 1))!

(F̂ (k) + M̂(k)− i)!
(F̂ (k) + M̂(k))!

F̂ (k)

First, assume that M̂(k) ≥ 2Nθ for some parameter θ > 2β to be chosen later, so that those
probabilities are all strictly positive. Using Stirling approximation formula, we get that, with
p(k) = M̂(k)

F̂ (k)+M̂(k)
and for any i,

0 ≥
P
(
Ik = i

∣∣Fk)− (1− p(k))i−1p(k)

(1− p(k))i−1p(k)
≥ −2

N2β

Nθ
− Nβ

Nγ

Second, assume that M̂(k) < 2Nθ for some θ > β. This immediately implies that, for i,

0 ≥ P
(
Ik = i

∣∣Fk)− (1− p(k))i−1p(k) ≥ −2
Nθ

Nγ

Similar inequalities holds for P(Ik = +∞
∣∣Fk), except that it is approximately equal to

E
[
(1− p(k))d

V
k

]
= φV(1− p(k)).

It remains to control the evolution of the processes Fi(k) and Mi(k). Notice that, by their very
definition, on the event Ik = x for some 1 ≤ x ≤ dVk , the following happens:

1. The first x−1 half-edges e1k, . . . , e
x
k are paired uniformly at random with marked half-edges

of U . If the corresponding vertex has a remaining degree equal to i, then Mi decreases by
one, and Mi−1 increases by one.

2. The x-th half-edge exk is paired uniformly at random with free half-edge of U . If the
corresponding vertex has a remaining degree i, then Fi decreases by one, andMi−1 increases
by one.

3. The dVk − x remaining half-edges ex+1
k , . . . , e

dVk
k are paired uniformly at random with half-

edges of U . If the corresponding vertex is free with remaining degree i, then Fi decreases
by one and Fi−1 increases by one. Otherwise, if the corresponding vertex is marked with
remaining degree i, then Mi decreases by one and Mi−1 increases by one.

Notice that, after the pairing of each half-edges, the quantity F̂ (k) (resp. M̂(k)) may decrease (resp.
increase) by one. Therefore, working on the event where dVk ≤ Nβ , we deduce that F̂ and M̂ are
affected by an additive term of order at most Nβ . The same argument holds on Fi and Mi.

All of these considerations imply that∣∣∣∣E[Fi(k + 1)− Fi(k)
∣∣Fk, It = x]−

(
− iFi(k)

F̂ (k)
+ (µV − x)

(
− iFi(k)

F̂ (k) + M̂(k)
+

(i+ 1)Fi+1(k)

F̂ (k) + M̂(k)

))∣∣∣∣
≤ 2σ2

µV

Nβ

Nγ

and similarly∣∣∣∣∣E[Mi(k + 1)−Mi(k)
∣∣Fk, It = x]−

(
(x− 1)

(
− iMi

M̂
+

(i+ 1)Mi+1

M̂

)
+

(i+ 1)Fi+1

F̂

)

+ (µV − x)

(
− iMi

F̂ + M̂
+

(i+ 1)Mi+1

F̂ + M̂

))∣∣∣∣∣
≤2σ2

µ

Nβ

Nγ
+ 2

x−1∑
j=1

j

M̂(k)− j
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Finally, the case It = +∞ is handled similarly, as by definition

E[Fi(k + 1)− Fi(k) | Fk, It = +∞] = 0.

and the following also holds also holds:

∣∣∣∣E[Mi(k+1)−Mi(k) | Fk, It = +∞]−µV
(
− iMi

M̂
+

(i+ 1)Mi+1

M̂

) ∣∣∣∣ ≤ 2σ2
µ

Nβ

Nγ
+2

dVk−1∑
j=1

j

M̂(k)− j
.

It remains to compute the expected variation in Fi(k) and Mi(k). It is a bit simpler for the former,
but still, to lighten the notations, we write p = pk and q = qk in the following computation.

E
[
Fi(k + 1)− Fi(k)

∣∣Fk]
= EdVk∼πV

 dVk∑
x=1

qx−1
(
− iFi

F̂ + M̂

)
+ p

dVk∑
x=1

qx−1(dVk − x)

(
− iFi

F̂ + M̂
+

(i+ 1)Fi+1

F̂ + M̂

)+ ηN

=
1

F̂ + M̂
EdVk∼πV

−iFi
 dVk∑
i=1

qx−1 + pdVk

dVk∑
x=1

qx−1 − p
dVk∑
x=1

xqx−1


+(i+ 1)Fi+1

pdVk dVk∑
x=1

qx−1 − p
dVk∑
x=1

xqx−1

+ ηN

=
1

F̂ + M̂
EdVk∼πV

[
− iFi

(
1− qdVk
1− q

+ dVk (1− qd
V
k )− dVk q

dVk+1 − (dVk + 1)qd
V
k + 1

1− q

)

+ (i+ 1)Fi+1

(
q(1− qd

V
k )− dqd

V
k+1 − (dVk + 1)qd

V
k + 1

1− q

)]
+ ηN

=
1

F̂ + M̂
EdVk∼πV

[
−iFidVk + (i+ 1)Fi+1

qd
V
k − dVk q + (dVk − 1)

1− q

]
+ ηN

=
1

F̂ + M̂
EdVk∼πV

[
−iFi + (i+ 1)dVkFi+1 + (i+ 1)Fi+1

1− qdVk
1− q

]
+ ηN

=
−iµVFi + (i+ 1)µVFi+1 − (i+ 1)h(q)Fi+1

F̂ + M̂
+ ηN ,

which is exactly (5), up to error term ηN that satisfies, if M̂(k) < 2Nθ,

|ηN | ≤ 2σ2
µV

Nβ

Nγ
+ 2µ2

V
Nθ

Nγ

and, if M̂(k) ≥ 2Nθ,

|ηN | ≤ 3σ2
µV

Nβ

Nγ
+ 2µ2

V
N2β

Nθ
+ µ2

V
Nβ

Nγ
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Computations are quite similar for the difference in Mi(k) and the error term still depends whether
M̂(k) is bigger, or smaller, than 2Nθ:

E
[
Mi(k + 1)−Mi(k)

∣∣Fk]
= EdVk∼πV

dVk (1− p)dVk

M̂
+

dVk∑
x=1

pqx−1
(

(x− 1)

M̂
+
dVk − x
M̂ + F̂

)((i+ 1)Mi+1 − iMi

)
+ EdVk∼πV

 dVk∑
x=1

pqx−1
(i+ 1)Fi+1

F̂

+ εN

=
1

M̂ + F̂
EdVk∼πV

dVk (1− p)d
V
k−1 +

dVk∑
x=1

(
pqx−2(x− 1) + pqx−1(dVk − x)

)((i+ 1)Mi+1 − iMi

)
+

(i+ 1)h(q)Fi+1

M̂ + F̂
+ εN

=
µV((i+ 1)Mi+1 − iMi) + (i+ 1)h(q)Fi+1

F̂ + M̂
+ εN ,

where εN satisfies, if M̂(k) < 2Nθ,

|εn| ≤ 2σ2
V
Nθ

Nγ
+ 2σ2

V
Nβ

Nγ
+ 2µ2

V
Nθ

Nγ
;

and, if M̂(k) ≥ 2Nθ, it satisfies

|εn| ≤ 3σ2
V
Nβ

Nγ
+ 2µ2

V
N2β

Nθ
+ µ2

V
Nβ

Nγ
;

We used in the above computations (at the third equality) the following observation:

kqk−1 +

k∑
x=1

pqx−1
(
x− 1

q
+ k − x

)
= k

Summing error terms over all the 2Nβ equations relating Fi to fi and Mj to mj , the error terms
coming from the differential equation method Theorem 4, and using the fact that m is µU -Lipschitz,
we get that the total error, defined by,

Err := sup
s∈[0,1]

∣∣∣ |MT (s)|
N

−
(
1− φU (1−G(s))

)∣∣∣
satisfies

Err ≤ NβN (1+ε)β(Nα+β + 4(σ2
V + µ2

V)N (1+ε)β−γ/2+β +N2(1+ε)β−2) + µUN
(1+ε)β

as soon as θ = β + γ
2 .

It remains to pick admissible values for the different parameters, such as the following ones (checking
admissibility follows from immediate computations):

β = 1/20, ε = 10, γ = 21/40, θ = 25/80, α.23/80

Those choices ensures that Err = O(N−1/20).

All those arguments hold with probability at least (summing all the bad event probabilities)

1−T exp(−N
2β

2σ2
V

)−exp(−N
2γ−1

2σ2
U

)−exp(−µUN
2γ−1

2µVσ2
V

)−2NβN (1+ε)β) exp(−N2α−(1+ε)β) ≥ 1−O(N exp(−ζN1/40))

where the equality holds because of the choice of parameters.
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D.3 Proof of Lemma 3

Notice that the functions f and m satisfy the following partial differential equations:

∂tf(t, s) =
1

µU − tµV
[−µVs+ µV − h(q(t))] ∂sf(t, s),

and
∂tm(t, s) =

1

µU − tµV
[−µVs+ µV ] ∂sm(t, s) + h(q(t))∂sf(t, s),

where q(t) = ∂sf(t, 1)/(µU − tµV).

To solve these equations, we first perform a time change to get rid of the denominator. Let

θ(t) =
µU
µV

(
1− e−µV t

)
so that θ′(t) = µU − θ(t)µV . In order to simplify notations, we set:

H(t) := h (q(θ(t))) .

Then, the new functions

g(t, s) := f(θ(t), s) and o(t, s) := m(θ(t), s)

satisfy the following PDEs:

∂tg(t, s) = [−µVs+ µV −H(t)] ∂sg(t, s), (8)

and
∂to(t, s) = [−µVs+ µV ] ∂so(t, s) +H(t)∂sg(t, s). (9)

These two equations fall into the classical framework of transport differential equation and can be
explicitly solved. We give the details for the reader’s convenience.

Solution of (8). Let s be a solution of the following ODE:

s′(t) = µVs(t)− µV +H(t). (10)

Then, the function g is constant along the curve (t, s(t)). Indeed:

d

dt
g(t, s(t)) = ∂tg(t, s) + s′(t)∂sg(t, s) = 0.

The differential equation (10) admits the following general solutions:

sc(t) =

[
c+ e−µV t − 1 +

ˆ t

0

e−µVuH(u)du

]
eµV t.

Therefore,

(t, s) = (t, sc(t)) ⇐⇒ c = c(t, s) = (s− 1)e−µV t + 1−
ˆ t

0

e−µVuH(u)du,

and we deduce that (the initial condition is g(0, s) = φU (s)):

g(t, s) = g(0, c(t, s)) = φU (c(t, s)) = φU

(
(s− 1)e−µV t + 1−

ˆ t

0

e−µVuH(u)du

)
. (11)

Solution of (9). Let sγ(t) = γeµV t + 1. Then, s′γ(t) = µVs(t) − µV and we deduce that, along
the curves (t, sγ(t)), o(t, s) satisfies the following ODE:

d

dt
o(t, sγ(t)) =

1− q(t)d

1− q(t)
∂sg(t, sγ(t)).

Since
(t, s) = (t, sγ(t)) ⇐⇒ γ = γ(t, s) = (s− 1)e−µV t,
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we deduce that:

o(t, s) =

ˆ t

0

H(u)∂sg(u, (s− 1)e−µV(t−u) + 1)du. (12)

We now define the function F (·) as

F (t) :=

ˆ t

0

e−µVuH(u)du. (13)

Using Equations (11) and (12), one can easily deduce that

∂sg(t, 1) = e−µV t φ′U (1− F (t))

and

∂so(t, 1) =

ˆ t

0

H(u) e−µVu φ′′U (1− F (u))du

= φ′U (1)− φ′U (1− F (t)) = (µU − φ′U (1− F (t))) e−µV t .

In particular,

∂sg(t, 1) + ∂so(t, 1) = ∂sf(θ(t), 1) + ∂sm(θ(t), 1) = µU e−µV t .

Therefore,

H(t) =
1− φV

(
∂so(t,1)

∂sg(t,1)+∂so(t,1)

)
1− ∂so(t,1)

∂sg(t,1)+∂so(t,1)

= µU
1− φV

(
1− 1

µUφ′U (1−F (t))

)
1− φU (1− F (t))

,

which yields the following ordinary differential equation on F :
1
µU
φ′U (1− F (t))

1− φV
(

1− 1
µU
φ′U (1− F (t))

)F ′(t) = e−µV t . (14)

E Proof of Theorem 2

We recall the notations introduced. For all k ∈ {0, . . . , T}, all c ∈ {0, . . . , C} and all i ≥ 0, we
define:

• F (c)
i (k) the number of vertices of U that still have capacity c at the end of step k and whose

remaining degree is i. Those vertices are referred to as free (with remaining degree i and
capacity c at the end of step k).

• Mi(k) the number of vertices of U that have capacity c = 0 at the end of step k and whose
remaining degree is i. Those vertices are referred to as marked (with remaining degree i at
the end of step k).

We also define as before the number of remaining half-edges to respectively free and marked vertices
as

F̂ (k) =

C∑
c=1

∑
i≥0

iF
(c)
i (k), and M̂(k) =

∑
i≥0

iMi(k).

The normalized performance of GREEDY is the ratio between the matched vertices in V and its
maximal number, equal to CN :

A =

∑
i≥0

(
CMi(T ) +

∑C
c=1(C − c)F (c)

i (T )
)

CN

As in the proof of Theorem 1:
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1. we will place ourselves on the event where all vertices have bounded degrees, smaller than
Nβ for some small β > 0

2. we will stop the analysis at Nγ steps of the horizon T so that F̂ (k) + M̂(k) > Nγ with
arbitrarily high probability

3. we will distinguish the cases where M̂(k) > 2Nθ (with θ = β + γ/2)

As a consequence, the errors are going to be of the same order of magnitude with the same order
of probability (up to a multiplicative factor C) (hence those computations are skipped and replace
by O(·) notations). The interesting new component in this proof is the new system of differential
equations and their solutions.

E.1 The Differential equations

Using the same notations than in the proof of Theorem 1, we get that for all 0 ≤ k ≤ T , i ≥ 0 and
c ≤ C,

E
[
F

(c)
i (k + 1)− F (c)

i (k)
∣∣Fk]

= Edk∼πV

[
dk∑
x=1

−qx−1 iF
(c)
i

F̂ + M̂
+ p

dk∑
x=1

qx−1(dk − x)

(
(i+ 1)F

(c)
i+1 − iF

(c)
i

F̂ + M̂

)]

+ Edk∼πV

[
dk∑
x=1

qx−1
(i+ 1)F

(c+1)
i+1

F̂ + M̂

]
+O(Nθ−γ)

=
µV

(
−iF (c)

i + (i+ 1)F
(c)
i+1

)
− (i+ 1)h(q)F

(c)
i+1 + (i+ 1)h(q)F

(c+1)
i+1

F̂ + M̂
+O(Nθ−γ)

where the function h is still defined as h(q) = 1−φV(q)
1−q . Similarly, we can compute the expected

increment in Mi as

E
[
Mi(k + 1)−Mi(k)

∣∣Fk]
= Edk∼πV

[(
dk(1− p)dk

M̂
+

dk∑
x=1

pqx−1
(

(x− 1)

M̂
+
dk − x
M̂ + F̂

))
((i+ 1)Mi+1 − iMi)

]

+ Edk∼πV

[
dk∑
x=1

pqx−1
(i+ 1)F

(1)
i+1

F̂

]
+O(Nθ−γ)

=
µV((i+ 1)Mi+1 − iMi) + (i+ 1)h(q)F

(1)
i+1

F̂ + M̂
+O(Nθ−γ)

From this, we get the following system of differential equations:

∂tf
(c)(t, s) =

1

µU − tµV

[
(−µVs+ µV − h(q(t))) ∂sf

(c)(t, s) +
1

µU − tµV
h(q(t))∂sf

(c+1)(t, s)

]
,

(15)
and

∂tm(t, s) =
1

µU − tµV

[
(−µVs+ µV) ∂sm(t, s) + h(q(t))∂sf

(1)(t, s)
]

(16)

With those notations, the normalized performances of GREEDY rewrite then into:

A = m(
µU
µV

, 1) +

C∑
c=1

(1− c

C
)f (c)(

µU
µV

, 1)

= 1−
C∑
c=1

c

C
f (c)(

µU
µV

, 1)
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E.2 Solving the PDEs

As in the previous section, we start with a time change. Let

θ(t) =
µU
µV

(
1− e−µV t

)
(17)

so that θ′(t) = µU − θ(t)µV . In order to simplify notations, we set:
H(t) := h (q(θ(t))) . (18)

Then, the new functions
g(c)(t, s) := f (c)(θ(t), s) and o(t, s) := m(θ(t), s)

satisfy the following PDEs:

∂tg
(c)(t, s) = [−µVs+ µV −H(t)] ∂sg

(c)(t, s) +H(t)∂sg
(c+1)(t, s),

and
∂to(t, s) = [−µVs+ µV ] ∂so(t, s) +H(t)∂sg

(1)(t, s). (19)

We distinguish:
∂tg

(C)(t, s) = [−µVs+ µV −H(t)] ∂sg
(C)(t, s) (20)

We define:

F (t) =

ˆ t

0

e−µVuH(u)du

Solution of (20). This equation is the same as the one satisfied by g(t, s), with the same initial
conditions. Thus, we can write:

g(C)(t, s) = φU
(
(s− 1)e−µV t + 1− F (t)

)
.

Solution of (20). Lets define the curves:
st,s(u) =

[
(s− 1)e−µV t − F (t) + F (u)

]
eµVu + 1.

Along those curves, we have:
d

dt
g(c)(u, st,s(u)) = H(u)∂sg

(c+1)(u, st,s(u)).

So:

g(c)(t, s) =

ˆ t

0

H(u)∂sg
(c+1)(u, st,s(u))du

Solution for c = C − 1. We have:

g(c−1)(t, s) =

ˆ t

0

H(u)∂sg
(C)(u, st,s(u))du

=

ˆ t

0

F ′(u)φ′U ((s− 1)e−µVu + 1− F (u))du

= F (t)φ′U ((s− 1)e−µV t + 1− F (t))

Solution for c = C − k, general formula. We will prove by induction:

g(C−k)(t, s) =
1

k!
(F (t))kφ(k)((s− 1)e−µV t + 1− F (t))

If it is true for rank k, we have:

∂sg
(C−k)(u, st,s(u)) =

e−µVu

k!
(F (u))kφ(k+1)

(
(s− 1)e−µV t + 1− F (t)

)
Which gives:

g(C−(k+1))(t, s) =
1

k!

(ˆ t

0

F ′(u)(F (u))kdu

)
φ(k+1)

(
(s− 1)e−µV t + 1− F (t)

)
=

1

(k + 1)!
(F (t))k+1φ(k+1)((s− 1)e−µV t + 1− F (t))
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Solution of (19). Let’s define the curves:

γs,t(u) = 1 + (s− 1)e−µV(t−u)

Along those curves:
d

du
o(u, γt,s(u)) = H(u)∂sg

(1)(u, γt,s(u))

So:

o(t, s) =

ˆ t

0

F ′(u)
(F (u))(C−1)

(C − 1)!
φ(C)

(
(s− 1)e−µV t + 1− F (u)

)
du

Formula for GREEDY performances. Recall that the normalized performances of GREEDY are

A = 1−
C∑
c=1

c

C
g(c)(+∞, 1)

= 1−
C−1∑
k=0

1− k
C

k!
(F (+∞))kφ(k) (1− F (+∞))

E.3 ODE for F

We have as before:

F ′(t) = H(t)e−µV t, H(t) =
1− φV(Q(t))

1−Q(t)

And we also have:

Q(t) =
∂so(t, 1)

∂so(t, 1) +
∑C
c=1 ∂sg

(c)(t, 1)

According to the previous section :

∂so(t, 1) =

(ˆ t

0

F ′(u)
(F (u))(C−1)

(C − 1)!
φ
(C+1)
U (1− F (u)) du

)
e−µV t

=

(ˆ F (t)

0

x(C−1)

(C − 1)!
φ
(C+1)
U (1− x) dx

)
e−µV t

=

[
φ′U (1)− φ′U (1− F (t))−

C−1∑
k=1

F (t)K

k!
φ
(k+1)
U (1− F (t))

]
e−µV t

Which gives:

Q(t) = 1− 1

µU

(
φ′U (1− F (t)) +

C−1∑
k=1

F (t)k

k!
φ
(k+1)
U (1− F (t))

)

We define:

ΓU (F (t)) =
1

µU

(
φ′U (1− F (t)) +

C−1∑
k=1

F (t)k

k!
φ
(k+1)
U (1− F (t))

)
This yields the following differential equation for F :

ΓU (F (t))

1− φV (1− ΓU (F (t)))
F ′(t) = e−µV t .

Theorem 2 then follows from the same arguments in the proof of Theorem 1 (except that errors are C
times bigger as there are C more equations to handle).
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F Proof of Theorem 3

As mentioned in the main text, the only difference with Theorem 2 is that C could be of the order of
Nβ (but not bigger on the event where all degrees are smaller than Nβ). As a consequence, one must
take β even smaller than 1/20 to have sublinear errors terms (choosing β = 1/40 is admissible for
instance) with exponentially high probability.

Solution of (20). This equation is the same as the one satisfied by g(t, s), the new initial condition
is g(C)(t, s) = pCφU (s). Thus, we can write:

g(C)(t, s) = pCφU
(
(s− 1)e−µV t + 1− F (t)

)
.

Solution for c = C − 1. We have:

g(c−1)(t, s) =

ˆ t

0

H(u)∂sg
(C)(u, st,s(u))du+ g(c−1)(0, st,s(0))

=

ˆ t

0

F ′(u)φ′U ((s− 1)e−µV t + 1− F (t))du+ p(C−1)φU ((s− 1)e−µV t − F (t) + 1)

= pCF (t)φ′U ((s− 1)e−µV t + 1− F (t)) + p(C−1)φU ((s− 1)e−µV t + 1− F (t))

Solution for c = C − 2.

∂sg
(C−2)(u, st,s(u)) = pCe

−µVuF (u)φ′′U
(
(s− 1)e−µV t + 1− F (t)

)
+ p(C−1)e

−µVuφ′U (st,s(u))

Let’s define:
c(t, s) = (s− 1)e−µV t + 1− F (t)

Which gives:

g(C−2)(t, s) =p(C−1)

(ˆ t

0

F ′(u)F (u)du

)
φ
′′

(c(t, s))

+ p(C−1)

(ˆ t

0

F ′(u)eµVudu

)
φ
′
(c(t, s)) du+ p(C−2)φU (st,s(0))

=
pC
2

(F (t))2φ
′′
((s− 1)e−µV t

+ 1− F (t)) + p(C−1)F (t)φ
′
((s− 1)e−µV t + p(C−2)φU (c(t, s))

Solution for c = C − k, general formula. We will prove by induction:

g(C−k)(t, s) =

k∑
l=0

pC−l
1

(k − l)!
(F (t))k−lφ(k−l)(c(t, s))

If it is true for rank k, we have:

∂sg
(C−k)(u, st,s(u)) =

k∑
l=0

pC−l
1

(k − l)!
(F (t))k−le−µVuφ(k+1−l)(c(t, s))

Which gives:

g(C−(k+1))(t, s) = p(C−(k+1))φU (c(t, s)) +

k∑
l=0

p(C−l)
1

(k − l)!

(ˆ t

0

F ′(u)(F (u))(k−l)du

)
φ(k+1−l) (c(t, s))

=

k+1∑
l=0

p(C−l)
1

(k + 1− l)!
(F (t))k+1−lφ(k+1−l)(c(t, s))
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Solution of (19).

o(t, s) =

C∑
c=1

pc

ˆ t

0

F ′(u)
(F (u))(c−1)

(c− 1)!
φ(c)

(
(s− 1)e−µV t + 1− F (u)

)
du

g(c)(t, s) =

C−c∑
k=0

pc+k
1

k!
(F (t))kφk(c(t, s))

Quantity of interest.

A =
µV
µU

C∑
c=1

c(pc − g(c)(+∞, 1))

=
µV
µU

(
C∑
c=1

cpc −
C−1∑
k=0

(
1

k!
(F (+∞))kφ(k) (1− F (+∞))

C∑
c=1

cpc+k

))

ODE for the function F.

∂so(t, 1) =

(
C∑
c=1

pc

ˆ t

0

F ′(u)
(F (u))(c−1)

(c− 1)!
φ
(c+1)
U (1− F (u)) du

)
e−µV t

=

[
φ′U (1)− φ′U (1− F (t)) +

C−1∑
k=1

(
F (t)k

k!
φ
(k+1)
U (1− F (t))

C∑
c=k+1

pc

)]
e−µV t

Which yields:

Q(t) = 1− 1

µU

(
φ′U (1− F (t)) +

C−1∑
k=1

(
F (t)k

k!
φ
(k+1)
U (1− F (t))

C∑
c=k+1

pc

))

We define:

ΓU (F (t)) =
1

µU

(
φ′U (1− F (t)) +

C−1∑
k=1

(
F (t)k

k!
φ
(k+1)
U (1− F (t))

C∑
c=k+1

pc

))
This yields the following differential equation for F :

ΓU (F (t))

1− φV (1− ΓU (F (t)))
F ′(t) = e−µV t .

G Proof of Proposition 1

Lemma 4. On the 2-regular graph, the law of the matches generated by the algorithm Ranking
equals the law of the matches generated by a biased Greedy algorithm, that chooses a free vertex of
degree 2 over one of degree 1 with probability at least 2/3. This is biased as the classical Greedy
algorithm chooses it with probability 1/2.

Proof : Two vertices of the same degree are interchangeable, they are both equally likely to have
the smallest rank. Thus Ranking and Greedy behave the same on arriving vertices whose potential
neighbors all have the same degree. Let r(v) be the rank of vertex v and deg(v) its residual number
of unpaired half-edges.

Let At(u, 2) be the following event:

• u had one of its half-edges paired to the incoming vertex vt at iteration t,

29



• u was not matched and vt was instead matched to a vertex of residual degree 2.

Let At(u, 1) be the similar event with vt instead matched to a vertex of residual degree 1.

P (r(u) ≥ k|deg(u) = 1 and u free at t) =
∑
t′<t

P (r(u) ≥ k|At′(u, 2))P(At′(u, 2)|deg(u) = 1 and u free at t)

+
∑
t′<t

P (r(u) ≥ k|At′(u, 1))P(At′(u, 1)|deg(u) = 1 and u free at t)

Now, assume

∀t′ < t,∀a ∈ [N ],P(r(a) ≥ k|deg(a) = 1 and a free at t) ≥ P(r(a) ≥ k|deg(a) = 2). (21)

Hypothesis 21 implies:

∀t′ < t,P(r(u) ≥ k|At′(u, 1)) ≥ P(r(u) ≥ k|At′(u, 2)),

thus, the following inequality holds:

P(r(u) ≥ k|deg(u) = 1 and u free at t) ≥P(r(u) ≥ k| ∪t′<t At′(u, 2)).

Let a and b be two different numbers randomly chosen in [n]. Two vertices with two remaining
half-edges were not affected by the run before, and thus could have any rank. It therefore holds:

P (r(u) ≥ k|deg(u) = 1 and u free at t) ≥P (max(a, b) ≥ k)

=1−
(
k−1
2

)(
n
2

)
=1− (k − 1)(k − 2)

n(n− 1)
.

This inequality implies P (r(u) ≥ k|deg(u) = 1 and u free at t) ≥ P (r(u) ≥ k|deg(u) = 2), thus
21 is true by induction.

Therefore, vertices with only one remaining half-edges are likely to have a higher rank than those
with two remaining half-edges:

P(r(b) < r(a)|deg(b) = 2, deg(a) = 1) =

n∑
k=1

P(deg = k − 1, deg(a) ≥ k|deg(b) = 2, deg(a) = 1)

≥ 1−
n∑
k=1

(k − 1)(k − 2)

n2(n− 1)

≥ 2

3
+O

(
1

n

)
.

�

Let MG
1 (t) and MR

1 (t) be the number of marked vertices of degree 1 by GREEDY and RANKING
algorithms respectively. Note that the number of vertices of degree 2 is the same for both algorithms,
FG2 (t) = FR2 (t). Also, the following always holds

FG1 (t) = 2N − 2t− 2FG2 (t)−MG
1 (t).

This shows that in 2-regular graphs, the number of half-edges in each ensemble is a deterministic
quantity of MR

1 (t+ 1) and MG
1 (t+ 1).
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Suppose it holds at time t that MG
1 (t) = MR

1 (t) = M1(t) (event A), then

E[MR
1 (t+ 1)|A]− E[MG

1 (t+ 1)|A] =E[1{RANKING marks a vertex in FR2 (t)}|A]− E[1{GREEDY marks a vertex in FR2 (t)}|A]

=
1

6
· F1(t)F2(t)

2(N − t)
> 0

The first equality holds since the probability of pairing an half-edge in MR
1 (t+ 1) and MG

1 (t+ 1)
only depends on the number of half edges in each ensembles, not on the algorithm.

Therefore, by application of Gronwald’s lemma, RANKING generates strictly more marked vertices
of degree 1. As the probability that an incoming vertice is matched only to non-available vertices
increases with M1, RANKING performs strictly worse than GREEDY on 2-regular graphs.
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