
A Other practical challenges

Parameterizing covariances It is common to to re-parameterize covariance matrices to a vector
of unconstrained parameters. As above, the typical way to do this is via a function tril that maps
unconstrained vectors to Cholesky factors, i.e. lower-triangular matrices with positive diagonals.
This can be done by simple re-arranging the components of the vector into a lower-triangular matrix,
followed by applying a function to map the entries on the diagonal components to the positive
numbers. In our preliminary experiments, the choice of the mapping was quite significant in terms of
how difficult optimization was. Common choices like the exp(x) and log(exp(x) + 1) functions did
not perform well when the outputs were close to zero. Instead, we propose to use the transformation
x 7→ 1

2 (x+
√

x2 + 4γ), where γ is a hyperparameter (we use γ = 1). This is based on the proximal
operator for the multivariate Gaussian entropy [9, section 5]. Intuitively, when x is a large positive
number, this mapping returns approximately x, while if x is a large negative number, the mapping
returns approximately −1/x. This decays to zero more slowly than common mappings, which
appears to improve numerical stability and the conditioning of the optimization.

Feature network architecture. In this paper, we propose the use of a separate feat_net to deal
with variable-length input and order invariance. In our preliminary experiments, we found that the
performance improves when we concatenate the embedding ej in the fig. 4 with it’s dimension-
wise square before sending it to the pooling function pool. We hypothesis that this is because the
embeddings act as learnable statistics, and using the elementwise square directly provides useful
information to param_net.

Batch size selection For the small scale problems (both synthetic and MovieLens), we do not sub-
sample data; this is to maintain a fair comparison to joint approaches that do not support subsampling.
For moderate and large scales, we select the batch size for the branch methods based on the following
rule of thumb: we increase the batch size such that |B|

T1.18 is roughly maximized. This rule-of-thumb
captures the following intuition. Suppose batch size |B| takes time T per iteration. If the time taken
per iteration for batchsize |2B| is less than 1.8T , then we should use 2B. Of course, we roughly
maximize |B|

T1.18 for computational ease. We use the same batch size as the branch methods for the
amortized methods as we found that amortized methods were much more robust to the choice of
batchsize. We use |B| = 200 for moderate scale and |B| = 400 for large scale.

Initialization We initialize the neural network parameters using a truncated normal distribution
with zero mean and standard deviation equal to

√
1/fan_in, where fan_in is the number of inputs to

the layer [25]. We initialize the final output layer of the param-net with a zero mean Gaussian with
a standard deviation of 0.001 [1]. This ensures an almost standard normal initialization for the local
conditional qnetu(xi,yi)(zi|θ).

Gradient Calculation In our preliminary experiments, we found sticking the landing gradient [32,
STL] to be less stable. STL requires a re-evaluation of the density which in turn requires a matrix
inversion (for the Cholesky factor); this matrix inversion was sometimes prone to numerical precision
errors. Instead, we found the regular gradient, also called the total gradient in [32], to be numerically
robust as it can be evaluated without a matrix inversion. This is done by simultaneously sampling
and evaluating the density in much the same as done in normlaizing flows [31, 27]. We use the total
gradient for all our experiments.

B General trade-offs

Table 4: Summary of method applicability.

Models qBranch
v,w qAmort

v,u qAmort
v,u w/ feat_netu

(definition 1) (definition 4) (netu as in fig. 4)

HBD (eq. (1)) ✓ × ×
Symmetric HBD (eq. (2)) ✓ ✓ ✓

Locally i.i.d.
Symmetric HBD (eq. (3)) ✓ × ✓

The amortized approach proposed in section 5
is only applicable for symmetric models. In ta-
ble 4, we summarize the applicability of all the
methods we discuss in this paper. In our pre-
liminary experiments, for amortized approaches,
the performance improved when we increased
the number of layers in the neural networks or
increased the length of the embeddings in netu.
However, we make no serious efforts to find the optimal architecture. In fact, we use the same

13

architecture for all our experiments, across the scales. We believe the performance on a particular
task can be further improved by carefully curating the neural architecture. Note that there are no
architecture choices in joint or branched approaches. We also did not optimize our choice of number
of samples to drawn from q to estimate ELBO. This forms the second source of stochasticity and
using more samples can help reduce the variance [36]. We use 10 copies for all our experiments.

A particularly interesting case arises when the number of local latent variables (N) is very large.
In such scenarios, the true posterior p(θ|x, y) can be too concentrated. As the randomness in θ is
very low, we might not gain any significant benefits from conditioning on θ—as θ reduces to a fixed
quantity, Dense Gaussian will work just well as the Block Gaussian (see tables 2, 7 and 8). In practice,
it is hard to know this apriori; in fact, our scalable approaches allow for such analysis on large scale
model.

C Warm up to Proof for Theorem

Proposition 6. We know that KL (q∥p) is jointly convex in the pair (q, p) [7, Theorem 2.7.2].
Suppose qη and pη are valid probability distributions for each value of random variable η. Then,

E
η
KL (qη∥pη) ≥ KL

(
E
η
[qη]

∥∥∥∥Eη [pη]
)
. (18)

Let us offer some explanation for why the above proposition holds. Jensen’s inqeuality states that if y
is a vector-valued random variable and f(y) is convex then,

E
y
f(y) ≥ f(E

y
[y]). (19)

One can extend the Jensen’s inequality when y(η) is a vector-valued function of random variable η
and f(y) is convex. Then,

E
η
f(y(η)) = E

y
f(y) ≥ f(E

y
[y]) = f(E

η
[y(η)]). (20)

To see why proposition 6 follows from eq. (20), we need to extend it to two variables; consider the
case when y(η) and x(η) are vector-valued functions, and f(y, x) is jointly convex in the pair (y, x).
Then,

E
η
f(y(η), x(η)) ≥ f(E

η
[(y(η), x(η))]). (21)

The proposition simply substitutes f with KL, y with q, and x with p in eq. (21).

D Proof for Theorem

Theorem (Repeated). Let p be a HBD, and qJoint
ϕ (θ, z) be a joint approximation family parameterized

by ϕ. Choose a corresponding branch variational family qBranch
v,w (θ, z) as in definition 1. Then,

min
v,w

KL (qBranch
v,w ∥p) ≤ min

ϕ
KL (qJoint

ϕ ∥p) .

Proof. Construct a new distribution q′ϕ such that

q′ϕ(θ, z) = qJoint
ϕ (θ)

∏
i

qJoint
ϕ (zi|θ). (22)

Then, note that zi are conditionally independent in q′ϕ, such that,

q′ϕ(zi|θ, z<i) = q′ϕ(zi|θ). (23)
From chain rule of KL-divergence, we have

KL (qJoint
ϕ (θ, z)∥p(θ, z|x, y)) = KL (qJoint

ϕ (θ)∥p(θ|x, y))

+
∑
i

KL (qJoint
ϕ (zi|z<i, θ)∥p(zi|z<i, θ, x, y)) , and

KL
(
q′ϕ(θ, z)

∥∥p(θ, z|x, y)) = KL (qJoint
ϕ (θ)∥p(θ|x, y))

+
∑
i

KL
(
q′ϕ(zi|z<i, θ)

∥∥p(zi|z<i, θ, x, y)
)
.

14

Consider any arbitrary summand term. We have that

KL (qJoint
ϕ (zi|z<i, θ)∥p(zi|z<i, θ, x, y))

(a)
= KL (qJoint

ϕ (zi|z<i, θ)∥p(zi|θ, xi, yi))

(b)
= E

θ∼qJointϕ (θ)
E

z<i∼qJointϕ (z<i|θ)
[KL (qJoint

ϕ (zi|z<i, θ)∥p(zi|θ, xi, yi))]

(c)
≥ E

θ∼qJointϕ (θ)

[
KL

(
E

z<i∼qJointϕ (z<i|θ)
[qJoint

ϕ (zi|z<i, θ)]

∥∥∥∥ E
z<i∼qJointϕ (z<i|θ)

[p(zi|θ, xi, yi)]

)]
(d)
= E

θ∼qJointϕ (θ)
[KL (qJoint

ϕ (zi|θ)∥p(zi|θ, xi, yi))]

= KL (qJoint
ϕ (zi|θ)∥p(zi|θ, xi, yi))

= KL
(
q′ϕ(zi|θ)

∥∥p(zi|θ, xi, yi)
)

(e)
= KL

(
q′ϕ(zi|θ, z<i)

∥∥p(zi|θ, z<i, xi, yi)
)
,

where (a)1 follows from HBD structure; (b)1 follows from definition of conditional KL divergence; (c)
follows from convexity of KL divergence and Jensen’s inequality (substitute η −→ z<i in proposition 6
and eq. (18)); (d) follows from marginalization, and (e) follows from the conditional independence of
q′ and p. Summing the above result over i gives that

KL
(
q′ϕ
∥∥p) ≤ KL (qJoint

ϕ ∥p) . (24)

Now, from definition 1, we know that for every ϕ, there exists a corresponding (v, w) such that
qBranch
v,w = q′ϕ. Let ϕ∗ = argminϕ KL (qJoint

ϕ ∥p). Then, there exists some qBranch
v,w = q′ϕ∗ . Then, it

follows that

min
v,w

KL (qBranch
v,w ∥p) ≤ KL

(
q′ϕ∗

∥∥p) ≤ KL
(
qJointϕ∗

∥∥p) = min
ϕ

KL (qJoint
ϕ ∥p) . (25)

E Proof for Claim

Claim (Repeated). Let p be a symmetric HBD and let qJoint
ϕ be some joint approximation. Let qAmort

v,u
be as in definition 1. Suppose that for all v, there exists a u, such that,

netu(xi, yi) = argmax
wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi (zi|θ)

]
. (26)

Then,

min
v,u

KL (qAmort
v,u ∥p) ≤ min

ϕ
KL (qJoint

ϕ ∥p) (27)

Proof. Consider the optimization for qBranch
v,w . We have

max
v,w
L (qBranch

v,w ∥p) = max
v,w

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi
(zi|θ)

]]

= max
v

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

max
wi

E
qv(θ)

E
qwi

(zi|θ)

[
log

p (zi, yi|θ, xi)

qwi
(zi|θ)

]]
(f)
= max

v

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

E
qv(θ)

E
qnetu(xi,yi)

(zi|θ)

[
log

p (zi, yi|θ, xi)

qnetu(xi,yi) (zi|θ)

]]
1Note that KL-divergence on the right hand side of (a) is a conditional KL divergence; however, KL-

divergence on the right hand side of (b) is not a conditional KL, but a regular KL-divergence between two
distributions that are conditioned on some value θ and z<i.

15

≤max
u

max
v

[
E

qv(θ)

[
log

p (θ)

qv (θ)

]
+

N∑
i=1

E
qv(θ)

E
qnetu(xi,yi)

(zi|θ)

[
log

p (zi, yi|θ, xi)

qnetu(xi,yi) (zi|θ)

]]
= max

u
max

v
L (qAmort

v,u ∥p) ,

where (f) follows from the assumption in the claim. Now, from the ELBO decomposition equation,
we have

log p(y|x) = L (q∥p) +KL (q∥p) . (28)
Therefore, we have

min
u

min
v

KL (qAmort
v,u ∥p) ≤ min

v,w
KL (qBranch

v,w ∥p) (29)

From theorem 2, we get the desired result.
min
u

min
v

KL (qAmort
v,u ∥p) ≤ min

v,w
KL (qBranch

v,w ∥p) ≤ min
ϕ

KL (qJoint
ϕ ∥p) (30)

F Derivation for Branch Gaussian

Let qJoint
ϕ (θ, z) = N ((θ, z)|µ,Σ) be the joint Gaussian approximation as in corrolary 3. Further, let

(µ,Σ) be defined as

µ =

µθ

µz1
...

µzN

 and Σ =

Σθ Σθz1 . . . ΣθzN

Σ⊤
θz1

Σz1 . . . Σz1zN
...

...
. . .

...
Σ⊤

θzn
Σ⊤

z1zN . . . ΣzN

 . (31)

Then, from the properties of the multivariate Gaussian [28]
qJoint
ϕ (zi|θ) = N (zi|µzi|θ,Σzi|θ), where (32)

µzi|θ = µzi +Σ⊤
θziΣ

−1
θ (θ − µθ), and (33)

Σzi|θ = Σzizi − Σ⊤
θziΣ

−1
θ Σθzi . (34)

Now, to parameterize a corresponding qBranch
v,w , we use the (µi,Σi, Ai), such that,

qBranch
v,w (zi|θ) = N (zi|µi +Aiθ,Σi). (35)

G Experimental Details

Architectural Details We use the architecture as reported in table 5 for all our amortized approaches.
In addition to using ej as detailed in fig. 4, we concatenate the elementwise square before sending it
to param-net. Thus, the input to param-net is not 128 dimensional but 256 dimensional. Further,
we use mean as the pool function.

Compute Resources We use JAX [6] to implement our methods. We trained using Nvidia 2080ti-
12GB. All methods finished training within 4 hours. Branch approaches were at an average twice as
fast as amortized variants.

Table 5: Architecture details for
netu. Each fully-connected layer
is followed by leaky-ReLU baring
the last layer.

Network Layer Skeleton

feat-net 64, 64, 64, 128
param-net 256, 256, 256

Step-size drop We use Adam [19] for training with an initial
step-size of 0.001 (and default values for other hyperparame-
ters.) In preliminary experiments, we found that dropping the
step-size improves the performance. Starting from 0.001, we
drop the step to one-tenth of it’s value after a predetermined
number of steps. For small scale experiments, we drop a total of
three times after every 50,000 iterations (we train for 200,000
iterations.) For moderate and large scale models, we drop once
after 100,000 iterations.

G.1 Movielens

16

Table 7: This table has the extended results for the Movielens25M Dataset. All values are in nats.
Higher is better.

Test LL Train LL Train ELBO
≈ # ratings 2.5K 180K 18M 2.5K 180K 18M 2.5K 180K 18M
Methods

Dense qJoint
ϕ -166.37 -1373.97 -1572.31
qBranch
v,w -166.66 -11054.43 -1.3046e+06 -1374.20 -95731.42 -1.0315e+07 -1572.39 -1.0368e+05 -1.1413e+07
qAmort
v,u -166.64 -10976.38 -1.1476e+06 -1374.27 -95980.37 -1.0027e+07 -1572.45 -1.0352e+05 -1.0665e+07

Block qJoint
ϕ -167.36 -1375.56 -1579.04

Diagonal qBranch
v,w -166.97 -10987.17 -1.2538e+06 -1375.71 -95891.42 -1.0399e+07 -1579.05 -1.0350e+05 -1.1078e+07
qAmort
v,u -166.96 -10975.96 -1.1484e+06 -1375.71 -95962.56 -1.0027e+07 -1579.06 -1.0353e+05 -1.0665e+07

Diagonal qJoint
ϕ -167.39 -1377.25 -1592.59
qBranch
v,w -167.31 -10977.95 -1.2713e+06 -1377.19 -96414.40 -1.0709e+07 -1592.64 -1.0428e+05 -1.1325e+07
qAmort
v,u -167.29 -10980.75 -1.1497e+06 -1377.20 -96467.88 -1.0068e+07 -1592.64 -1.0430e+05 -1.0736e+07

Table 8: This table has the extended results for the Movilens25M Dataset. It has the same results as
in table 7; however, the values are divided by the number of ratings.

Test LL Train LL Train ELBO
≈ # ratings 2.5K 180K 18M 2.5K 180K 18M 2.5K 180K 18M

Methods

Dense qJoint
ϕ -0.5717 -0.5108 -0.5845
qBranch
v,w -0.5727 -0.5640 -0.6486 -0.5109 -0.5224 -0.5492 -0.5845 -0.5658 -0.6077
qAmort
v,u -0.5726 -0.5600 -0.5705 -0.5109 -0.5238 -0.5339 -0.5846 -0.5649 -0.5678

Block qJoint
ϕ -0.5751 -0.5114 -0.5870

Diagonal qBranch
v,w -0.5738 -0.5606 -0.6233 -0.5114 -0.5233 -0.5537 -0.5870 -0.5648 -0.5898
qAmort
v,u -0.5738 -0.5600 -0.5709 -0.5114 -0.5237 -0.5339 -0.5870 -0.5650 -0.5678

Diagonal qJoint
ϕ -0.5752 -0.5120 -0.5920
qBranch
v,w -0.5749 -0.5601 -0.6320 -0.5120 -0.5261 -0.5702 -0.5921 -0.5691 -0.6029
qAmort
v,u -0.5749 -0.5602 -0.5716 -0.5120 -0.5264 -0.5360 -0.5921 -0.5691 -0.5716

Table 6: Metrics used for evaluation. We
use K = 10,000 samples from the posterior.
Here, (zk, θk) ∼ q(z, θ|xtrain, ytrain).

Metric Expression

Test likelihood log 1
K

∑
k p(y

test|xtest, zk, θk)

Train likelihood log 1
K

∑
k

p(ytrain,zk,θk|xtrain)
q(zk,θk|xtrain,ytrain)

Train ELBO 1
K

∑
k log

p(ytrain,zk,θk|xtrain)
q(zk,θk|xtrain,ytrain)

Feature Dimensions We reduce the movie feature di-
mensionality to 10 using PCA. This is done with branch
approaches in focus as the number of features for dense
branch Gaussian scale asO(ND3), where D is the dimen-
sionality of the movie features. Note, that the number of
features for amortized approaches is independent of N
allowing for better scalability.

Metrics We use three metrics for performance
evaluation—test likelihood, train likelihood, and train
ELBO. Details of the expressions are presented in table 6. We draw a batch of fresh 10,000
samples from the posterior to estimate each metric. Of course, the evaluated expressions are just
approximation to the true value. In table 7 and table 8 we present the extended results. In table 8 we
present the same values but normalized by the number of ratings in the dataset.

Preprocess Movielens25M originally uses a 5 point ratings system. To get binary ratings, we map
ratings greater than 3 points to 1 and less than and equal to 3 to 0.

G.2 Synthetic problem

Details of the model We use the hierarchical regression model

p(θ, z, y|x) = N (θ|0, I)
N∏
i=1

N (zi|θ, I)
ni∏
j=1

N (yij |x⊤
ijzi, 1)

for synthetic experiments. For simplicity, we use ni = 100 for all i; we vary N to create different
scale variants—we use N = 10 for small scale, N = 1000 for moderate scale, and N = 100000 for
large scale experiments; we set xij ∈ R10 and thus θ ∈ R10 and zi ∈ R10; yij ∈ R.

17

Details of closed-form expressions In the following expressions, θ ∈ RD, zi ∈ RD, xi ∈ Rni×D,
yi ∈ Rni , y ∈ R(

∑N
i=1 ni), and IM is an M ×M identity matrix.

Expression for posterior

p(θ|x, y) = N

([
ID +

N∑
i

x⊤
i (Ini

+ xix
⊤
i)

−1xi

]−1 [N∑
i

x⊤
i (Ini

+ xix
⊤
i)

(−1)yi

]
,

[
ID +

N∑
i

x⊤
i (Ini

+ xix
⊤
i)

−1xi

]−1)
p(zi|θ, xi, yi) = N ([ID + x⊤

i xi]
−1[x⊤

i yi + θ], [ID + x⊤
i xi]

−1)

Expression for marginal likelihood

p(y|x) = N

0,

In1
+ 2x1x

⊤
1 . . . xNx⊤

1
...

. . .
...

xNx⊤
1 . . . InN

+ 2xNx⊤
N

0 100000 200000

1634

1632

1630

1628

EL
BO

 N = 10

0 100000 200000
1.80

1.75

1.70

1.65

1e5 N = 1,000

0 100000 200000
2.2

2.0

1.8

(D
en

se
)

1e7 N = 100,000

Joint (qJoint
φ)

Branch (qBranch
v, w)

Amort (qAmort
v, u)

Marginal (logp(y|x))

0 100000 200000

1634

1632

1630

1628

EL
BO

0 100000 200000
1.80

1.75

1.70

1.65

1e5

0 100000 200000
2.2

2.0

1.8

(B
lo

ck
 D

ia
go

na
l)

1e7

0 100000 200000

1634

1632

1630

1628

EL
BO

0 100000 200000
1.80

1.75

1.70

1.65

1e5

0 100000 200000
2.2

2.0

1.8

(D
ia

go
na

l)
1e7

Figure 7: Training ELBO trace for the synthetic problem. Top to bottom: dense, block diagonal,
and diagonal Gaussian (for each, we have qJoint

ϕ , qBranch
v,w , and qAmort

v,u method.) Left to right: small,
moderate, and large scale of the synthetic problem. For clarity, we plot the exponential moving
average of the training ELBO trace with a smoothing value of 0.001. For the small setting, we also
plot the true log-marginal log p(y|x) for reference (black horizontal line): ELBO for dense approach
is exactly same as the log-marginal, it’s slightly lower for block, and is much less for the diagonal (see
first column.) Note, calculating the log-marginal was computationally prohibitive for the moderate
and large setting.

18

