
Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? Yes

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? Yes

(c) Did you discuss any potential negative societal impacts of your work? N/A. This work
is a theoretical result on the parallel simulation of random walks. It has no direct
societal impact.

(d) Did you describe the limitations of your work? Yes
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? Yes
(b) Did you include complete proofs of all theoretical results? Yes

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? Yes. Code is
submitted with the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? N/A

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Yes. (See tables.)

(d) Did you include the amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? Yes. (See the second paragraph
of Section 4.)

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
The only existing assets used are the data-sets from the well-known Stanford Network
Analysis Project.
(a) If your work uses existing assets, did you cite the creators? Yes
(b) Did you mention the license of the assets? N/A
(c) Did you include any new assets either in the supplemental material or as a URL? No
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? N/A
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? N/A
5. If you used crowdsourcing or conducted research with human subjects... N/A

14



A Proof of Theorem 2

Theorem 2. There exists a fully scalable MPC algorithm that, given a graph G = (V,E) with n
vertices and m edges and a collection of non-negative integer budgets (bu)u∈V for vertices in G
such that

∑
u∈V bu = B∗, parameters ` and λ, can simulate, for every u ∈ V , bu independent

random walks on G of length ` from u with an arbitrarily low error, in O(log ` logλB
∗) rounds and

Õ(mλ`4 +B∗λ`) total space. The generated walks are independent across starting vertices u ∈ V .

Proof. First we consider the setting where all budgets bu are either the same value b, or 0. We call
vertices u, where bu = b roots, and the set of roots R. We can now run Algorithm 2, with two simple
modification: In Line 7 we set W to be all rooted walks, that is W ← ∪r∈RW1(R). Correspondingly,
in Line 11, we set the budget to B(v, k) = (B0(v) + R · λi · κ

|W | ) · τ
3k−3, since there are now R

times as many rooted walks.

From here, the proof of correctness proceeds nearly identically. In the case of a single vertex, we
defined P k(v) as the probability that a walk from r reaches v as its kth step. Here we must define
such a quantity for each r ∈ R: P kr (v). The analogous claim to the central Claim 1 is that for all
v ∈ V and k ∈ [`]:

B(v, k) ∈

[(
B0(v) + λi ·

∑
r∈R

P kr (v)

)
· τ3k−4,

(
B0(v) + λi ·

∑
r∈R

P kr (v)

)
· τ3k−2

]
.

In order to generalize to an arbitrary vector of budgets (bu)u∈V , we simply write b as the summation
of vectors b(1), . . . , b(logB∗), where each vector bi has all of it’s non-zero entries within a factor 2
of each other. We then simply augment the coordinates of each bi where necessary, to get vectors
b̃(i) which have all non-zero entries equal to each other. At this point we have reverted to the simpler
case: we can run our algorithm in parallel for all logB∗ budget vector, which incurs the insignificant
extra factor of logB∗ in memory.

B Preliminaries of Section 3

For an undirected graph G = (V,E), for each vertex v ∈ V , we denote its degree by d(v) and for
any set S ⊂ V , we define Vol(S) :=

∑
v∈S d(v) and Vol(G) = 2|E|. We define the stationary

distribution over the graph as

∀v ∈ V : ψ(v) :=
d(v)

Vol(G)

For any vector p over the vertices and any S ⊆ V we define

p(S) :=
∑
v∈S

p(v).

Moreover for any vector p over the vertices, we define p+ as follows:

∀v ∈ V : p+(v) = max(p(v), 0).

The edge boundary of a set S ⊆ V is defined as

∂(S) = {{u, v} ∈ E such that u ∈ S, v /∈ S}.

The conductance of any set S ⊆ V is defined as

Φ(S) =
|∂(S)|

min{Vol(S), 2m−Vol(S)}

15



PageRank In the literature, PageRank was introduced for the first time in [BP98, PBMW99] for
search ranking with starting vector of s = ~1/n (the uniform vector). Later, personalized PageRank
introduced where the starting vector is not the uniform vector, in order to address personalized search
ranking problem and context sensitive-search [Ber07, FR04, Hav03, JW03]. In the rest of this paper
we mostly work with personalized PageRanks, where the starting vector is an indicator vector for a
vertex in the graph, and we use the general term of PageRank (as opposed to personalized PageRank)
to avoid repetition.
Definition 1 (PageRank). The PageRank vector prα(s) is defined as the unique solution of the linear
system prα(s) = αs + (1− α)prα(s)W, where α ∈ (0, 1] and called the teleport probability, s is
the starting vector, and W is the lazy random walk transition matrix W := 1

2 (I +D−1A).

Below, we mention a few facts about PageRank vectors.
Fact 1. For any starting vector s, and any constant α ∈ (0, 1], there is a unique vector prα(s)
satisfying prα(s) = αs+ (1− α)prα(s)W .
Fact 2. A PageRank vector is a weighted average of lazy random walk vectors. More specifically,
prα(s) = αs+ α

∑∞
t=1(1− α)t(sW t).

Now, we define a notion of approximation that will be used throughout the paper.
Definition 2. (η-additive approximations) We call a vector q, an η-additive approximate PageRank
vector for p := prα(s), if for all v ∈ V , we have q(v) ∈ [p(v)− η, p(v) + η].

Sweeps Suppose that we are given a vector p that imposes an ordering over the vertices of graph
G = (V,E), as v1, v2, . . . , vn, where the ordering is such that

p(v1)

d(v1)
≥ . . . ≥ p(vn)

d(vn)
.

For any j ∈ [n] define, Sj := {v1, . . . , vj}. We define

Φ(p) := min
i∈[n]

Φ(Si).

Empirical vectors Suppose that a distribution over vertices of the graph is given by a vector q.
Now, imagine that at each step, one samples a vertex according to q, independently, and repeats
this procedure for M rounds. Let vector N be such that for any vertex v ∈ V , N(v) is equal to the
number of times vertex v is sampled. We call vector q̃ a (M, q)-empirical vector, where

∀v ∈ V : q̃(v) :=
N(v)

M

Claim 2 (Additive guarantees for empirical vectors). Let q be a distribution vector over vertices of
graph, where for each coordinate. Then, let vector q̃ be a ( 100

β2 log n, q)-empirical vector, for some β.
Then ∀v ∈ V : |q(v)− q̃(v)| ≤ β with high probability.

Proof. Using additive Chernoff Bound (Lemma 2 with N = 100 logn
β2 and ∆ = β), for any v ∈ V ,

we have

Pr[|q(v)− q̃(v)| > β] ≤ 2 exp

(
−2

100 log n

β2
β2

)
≤ n−20.

Taking union bound over the vertices of the graph concludes the proof.

C Omitted claims, proofs and figures

Lemma 2 (Additive Chernoff Bound). Let X1, X2, . . . , XN ∈ [0, 1] be N iid random variables, let
X̄ := (

∑N
i=1Xi)/N , and let µ = E[X̄]. For any ∆ > 0 we have

Pr[X̄ − µ ≥ ∆] ≤ exp
(
−2N∆2

)
and

Pr[X̄ − µ ≤ −∆] ≤ exp
(
−2N∆2

)
.

16



Proof of Theorem 4: We prove this theorem in a few steps. First, we prove that a proper truncation
of the formula in Fact 2 is a good approximation for PageRank vector:

Claim 3. For T ≥ 10 logn
α , we have that q := αs + α

∑T
i=1(1 − α)i(sW i) is a n−10-additive

approximate PageRank vector for p := prα(s).

Proof. Since s is an indicator vector and W is a lazy random walk matrix, for any integer t > 0,
sW t is a distribution vector, and consequently every coordinate is bounded by 1. So, for any vertex
v ∈ V , we can bound q(v)− p(v) in the following way:

|q(v)− p(v)| ≤ α
∞∑

i=T+1

(1− α)i ≤ (1− α)
10 logn
α ≤

(
e−α

) 10 logn
α = n−10,

since 1− α ≤ e−α and T ≥ 10 logn
α .

From now on, we set T := 10 logn
α . Now, we show that using empirical vectors output by our parallel

algorithm for generating random walks incurs small error.

Claim 4. For any i ∈ [T ], let qi be the distribution vector for the end point of lazy random walks of
length i, output by the main algorithm with TVD error of n−10 (see Theorem 1). Additionally, let
vector q̃i be a ( 106 log3 n

η2α2 , qi)-empirical vector. Now define

q̃ := αs+ α

T∑
i=1

(1− α)i · q̃i

for a constant α ∈ (0, 1) and T = 10 logn
α . Then, q̃ is an η-additive approximation to p := prα(s).

Proof. For the upper bound, for any v ∈ V we have

q̃(v) = αs+ α

T∑
i=1

(1− α)i · q̃i(v)

≤ αs+ α

T∑
i=1

(1− α)i ·
(
qi(v) +

ηα

100 log n

)
By Claim 2 with β =

ηα

100 log n

≤ αs+ α

T∑
i=1

(1− α)i · qi(v) +
η

10
Since T =

10 log n

α

≤ αs+ α

T∑
i=1

(1− α)i(sW i) + n−10 +
η

10
Using the main algorithm with TVD error n−10

≤ p(v) + 2n−10 +
η

10
By Claim 3

≤ p(v) + η.

17



And similarly for the lower bound, for any v ∈ V we have

q̃(v) = αs+ α

T∑
i=1

(1− α)i · q̃i(v)

≥ αs+ α

T∑
i=1

(1− α)i ·
(
qi(v)− ηα

100 log n

)
By Claim 2 with β =

ηα

100 log n

≥ αs+ α

T∑
i=1

(1− α)i · qi(v)− η

10
Since T =

10 log n

α

≥ αs+ α

T∑
i=1

(1− α)i(sW i)− n−10 +
η

10
Using the main algorithm with TVD error n−10

≥ p(v)− 2n−10 − η

10
By Claim 3

≥ p(v)− η.

This means that we need to generate B∗ := 106 log3 n
η2α2 random walks of length ` := 10 logn

α . Now,
using Lemma 1

1. in O(log ` · logλB
∗) rounds of MPC communication,

2. and with the total amount of memory of O(mλ`4 log n+B∗λ`)

we can generate the required random walks.
Theorem 5. Let q be an η-additive approximate PageRank vector for p := prα(s), where ||s+||1 ≤ 1.
If there exists a subset of vertices S and a constant δ satisfying

q(S)− ψ(S) > δ

and η is such that

η ≤ δ

8
⌈

8
φ2 log(4

√
Vol(S)/δ)

⌉
min(Vol(S), 2m−Vol(S))

,

then

Φ(q) <

√
18α log(4

√
Vol(S)/δ)

δ
.

Proof of Theorem 5: Let φ := Φ(q). By Lemma 3, for any subset of vertices S and any integer t,
we have

q(S)− ψ(S) ≤ αt+
√
X

(
1− φ2

8

)t
+ 2t ·Xη

where X := min(Vol(S), 2m−Vol(S)). If we set

t =

⌈
8

φ2
log(4

√
Vol(S)/δ)

⌉
≤ 9

φ2
log(4

√
Vol(S)/δ),

then we get√
min(Vol(S), 2m−Vol(S))

(
1− φ2

8

)t
≤ δ

4
.

This results in

q(S)− ψ(S) ≤ α 9

φ2
log(4

√
Vol(S)/δ) +

δ

4
+ 2tXη

18



Now, as we did set η such that

η ≤ δ

8tX

then since we assumed that q(S)− ψ(S) ≥ δ then

δ

2
< α

9

φ2
log(4

√
Vol(S)/δ),

which is equivalent to

φ <

√
18α log(4

√
Vol(S)/δ)

δ
.

Lemma 3. Let q be an η-additive approximate PageRank vector for p := prα(s), where ||s+||1 ≤ 1.
Let φ and γ be any constants in [0, 1]. Either the following bound holds for any set of vertices S and
any integer t:

q(S)− ψ(S) ≤ γ + αt+
√
X

(
1− φ2

8

)t
+ 2t ·Xη

where X := min (Vol(S), 2m−Vol(S)), or else there exists a sweep cut Sqj , for some j ∈
[1, |Supp(q)|], with the following properties:

1. Φ(Sqj ) < φ,

2. For some integer t,

q(Sqj )− ψ(Sqj ) > γ + αt+
√
X ′
(

1− φ2

8

)t
+ 2t ·X ′η,

where X ′ := min(Vol(Sqj ), 2m−Vol(Sqj )).

Proof of Lemma 3: For simplicity of notation let ft(x) := γ+αt+
√

min (x, 2m− x)
(

1− φ2

8

)t
.

We are going to prove by induction that if there does not exist a sweep cut with both of the properties
then equation

q[x]− x

2m
≤ ft(x) + 2t ·min(x, 2m− x)η (1)

holds for all t ≥ 0.

Base of induction (t = 0): We need to prove that for any x ∈ [0, 2m], q[x] − x
2m ≤ γ +√

min(x, 2m− x). The claim is true for x ∈ [1, 2m− 1] since q[x] ≤ 1 for any x, so, we only need
to prove the claim for x ∈ [0, 1] ∪ [2m− 1, 2m].

Case I, x ∈ [0, 1]: For x ∈ [0, 1], q[0] = 0 and q[1] ≤ 1 and q[x] is a linear function for x ∈ [0, 1].
Also

√
min(x, 2m− x) =

√
x. Since

√
x is a concave function then the claim holds for x ∈ [0, 1].

Case II, x ∈ [2m− 1, 2m]: In this case
√

min(2m− x, x) + x
2m =

√
2m− x+ x

2m , which is a
concave function. So we only need to check the end points of this interval. For x = 2m, the claim
holds since q[2m] = 1. Similarly, for x = 2m− 1, q[x] ≤ 1 ≤

√
1 + 2m−1

2m .

So the base of induction holds.

Inductive step: Now assume that Equation (1) holds for some integer t. We prove that it holds for
t+ 1. We only need to prove that it holds for xj = Vol(Sqj ) for each j ∈ [1,Supp(q)]. Consider any
j ∈ [1, |Supp(q)], and let S := Sqj . If property 2 does not hold, then the claim holds. If property 1
does not hold, then we have Φ(S) ≥ φ. Assume that xj ≤ m (the other case is similar)

19



q[Vol(S)]− xj
2m

= q(S)− xj
2m

Since S is a sweep cut of q

≤ p(S) + |S| · η − xj
2m

By Definition 2

Let F := in(S) ∩ out(S) and F ′ := in(S) ∪ out(S). By Lemma 4,

p(S) = αs(S) + (1− α)

(
1

2
p(F ) +

1

2
p(F ′)

)
. (2)

Consequently, we have

q[xj ] ≤ p(S) + |S| · η

≤ αs(S) + (1− α)

(
1

2
p(F ) +

1

2
p(F ′)

)
+ |S| · η By Equation (2)

≤ α+

(
1

2
p(F ) +

1

2
p(F ′)

)
+ |S| · η By ||s+||1 ≤ 1 and α ∈ [0, 1]

≤ α+

(
1

2
q(F ) +

1

2
q(F ′) + xjη

)
+ |S| · η By Claim 5

≤ α+

(
1

2
q[xj − |∂(S)|] +

1

2
q[xj + |∂(S)|] + xjη

)
+ |S| · η By definition of q[·]

= α+

(
1

2
q[xj − Φ(S)xj ] +

1

2
q[xj + Φ(S)xj ] + xjη

)
+ |S| · η By definition of Φ(S)

≤ α+
1

2
q[xj − φxj ] +

1

2
q[xj + φxj ] + 2xjη By concavity of q

≤ α+
1

2
ft[xj − φxj ] +

1

2
ft[xj + φxj ] + 2txjη +

xj
2m

+ 2xjη By induction assumption

Therefore

q[xj ]−
xj
2m

≤ α+
1

2
ft[xj − φxj ] +

1

2
ft[xj + φxj ] + 2(t+ 1)xjη

= γ + α+ αt+
1

2

(√
xj − αxj +

√
xj + αxj

)(
1− φ2

8

)t
+ 2(t+ 1)xjη

≤ γ + α(t+ 1) +
√
xj

(
1− φ2

8

)t+1

+ 2(t+ 1)xjη

Definition 3. For any vertex u ∈ V and any v in neighborhood of u, we define

p(u, v) =
p(u)

d(u)
.

Also, we replace each edge (u, v) ∈ E with two directed edges (u, v) and (v, u). Now, for any subset
of directed edges A, we define

P (A) =
∑

(u,v)∈A

p(u, v).

Definition 4. For any subset of vertices S, we define

in(S) = {(u, v) ∈ E|v ∈ S}
and

out(S) = {(u, v) ∈ E|u ∈ S}

20



Lemma 4. If p = prα(s) is a PageRank vector, then for any subset of vertices S,

p(S) = α(S) + (1− α)

(
1

2
p(in(S) ∩ out(S)) +

1

2
p(in(S) ∪ out(S))

)
.

Claim 5. Suppose that q is an η-additive approximate PageRank vector for p = prα(s) (see
Definition 2). Then, for any subset of vertices S, if we let F := in(S) ∩ out(S) and F ′ :=
in(S) ∪ out(S),

−2Vol(S)η ≤ (q(F ) + q(F ′))− (p(F ) + p(F ′)) ≤ 2Vol(S)η

Proof. By Definition 4, if we define

q(F ) =
∑

(u,v)∈F

q(u)

d(u)
≤

∑
(u,v)∈F

p(u) + η

d(u)
≤

∑
(u,v)∈F

p(u)

d(u)
+ η|F | = p(F ) + η|F |.

Similarly,

p(F )− η|F | ≤ q(F ).

If we repeat the same procedure for F ′ := in(S) ∪ out(S), we get,

p(F ′)− η|F ′| ≤ q(F ′) ≤ p(F ′) + η|F ′|.
In order to conclude the proof, we only need to note that

|F |+ |F ′| = 2Vol(S).

Lemma 5 (Theorem 4 of [ACL06]). For any set C and any constant α ∈ (0, 1], there is a subset
Cα ⊆ C with volume Vol(Cα) ≥ Vol(C)/2 such that for any vertex v ∈ Cα, the PageRank vector
prα(χv) satisfies

[prα(χv)](C) ≥ 1− Φ(C)

α

where [prα(χv)](C) is the amount of probability from PageRank vector over set C.

See [ACL06] for the proof of Lemma 5.
Lemma 6. Let α ∈ (0, 1] be a constant and let C be a set satisfying

1. Φ(C) ≤ α/10,

2. Vol(C) ≤ 2
3Vol(G).

If q is a η-additive approximation to prα(χv) where v ∈ Cα and η ≤ 1/(10Vol(C)), then a sweep
over q produces a cut with conductance Φ(q) = O(

√
α log(Vol(C))).

Proof. Since q is a η-additive approximation to prα(χv), then using Lemma 5 we have

q(C) ≥ 1− Φ(C)

α
− η · |C| ≥ 1− Φ(C)

α
− η ·Vol(C),

since |C| ≤ Vol(C). Combining this with the facts that Φ(C)/α ≤ 1
10 and η ≤ 1/(10Vol(C)), we

have q(C) ≥ 4/5, which implies

q(C)− ψ(C) ≥ 4

5
− 2

3
=

2

15
.

Now, Theorem 5 implies that

Φ(q) ≤
√

135α log(30
√

Vol(C)).

Proof of Theorem 3: The proof is by combining Theorem 4 and Lemma 6.

21



D Additional Experiments

We present the result of experimentation with longer walks (` = 32) in Table 4. Similarly to the other
cases, the algorithm scales extremely well with the size of the graph. Furthermore, we observe that in
the case of the smaller of the graphs (COM-DBLP, COM-YOUTUBE), doubling the walk-length has a
relatively small effect on the run-time. This is to be expected, as the number of Map-Reduce rounds
performed scales logarithmically in ` (see Theorem 1). In the larger graphs, this is less evident, as the
running time depends more and more on the work-load as opposed to the rounds complexity.

Table 4: Experiments with ` = 32, C = 3, B0 = 5n/m, λ = 32, τ = 1.3.

GRAPH TIME B0 ROOTED WALKS GENERATED WALK FAILURE RATE

COM-DBLP 25± 2 MINUTES 1.51 79, 103± 2412 19.4± 1.1%
COM-YOUTUBE 45± 1 MINUTES 1.9 44, 839± 179 7.8± 1%
COM-LIVEJOURNAL 115± 3 MINUTES 0.576 152, 126± 3028 7.9± 0.2%
COM-ORKUT 95± 1 MINUTES 0.131 163, 056± 1612 5± 0.1%

In Table 5 we see an experiment similar to that of Table 2, but with the parametersB0 and τ somewhat
lowered. We confirm the results on Section 4.1 on the scaling of running time with the size of the
graph. The lower parameters allow for faster running time. However, this is at the expense of both the
walk failure rate and the number of rooted walks generated. With lower B0 and τ the vertex budgets
(B(v,K) from Section 2) are smaller, and allow for higher relative deviation from the expectation,
leading to more walk failure. The running time decrease is not significant, especially in the case of
our smaller graphs, and we conclude that the setting of parameters in Table 2 are closer to optimal for
most applications.

Table 5: Experiments with ` = 16, C = 3, B0 = 3n/m, λ = 32, τ = 1.2.

GRAPH TIME B0 ROOTED WALKS GENERATED WALK FAILURE RATE

COM-DBLP 17± 1 MINUTES 0.906 23, 837± 2210 38.3± 0.7%
COM-YOUTUBE 23± 2 MINUTES 1.14 15, 977± 2298 28.1± 1.7%
COM-LIVEJOURNAL 35± 0 MINUTES 0.346 57, 460± 2104 26.2± 0.5%
COM-ORKUT 33± 1 MINUTES 0.079 66, 715± 1502 21.5± 0.3%

Finally, in Table 6 we present the results of a comparison experiment, extremely similar to that of
Table 3, but with λ increased to 20. The discrepancy is even more striking. Increasing the target
budget by a factor of 4 produces no measurable difference for Algorithm 2. However, UNIFORM
STITCHING is no longer able to complete on the cluster for inputs EMAIL-ENRON and COM-DBLP,
due to the high memory requirement (denoted as ’—’).

Table 6: Experiments with ` = 16, λ = 20, τ = 1.3. The row labeled ’Algorithm 2’ corresponds to
B0 = 1, C = 3, while the row labeled ’Uniform Stitching’ corresponds to B0 = 400, C = 1.

ALGORITHM CA-GRQC EMAIL-ENRON COM-DBLP

ALGORITHM 2 15± 1 MINUTES 19± 1 MINUTES 17± 1 MINUTES
UNIFORM STITCHING 8± 0 MINUTES — —

Implementation details. In Algorithm 2, B(v, k) – the budget associated with the kth step of the
random walk – is proportional to τ3k (see Line 11 and Line 13) which can lead to a factor τθ(`)
blow-up in space. In theory this is not a significant loss asymptotically, due to the settings of τ and θ.
Nonetheless, in practice, we use a more subtle formula which leads only to a factor τ log2 ` blow-up,
while retaining a similar guarantee on the probability of failure.

Furthermore, in Algorithm 2 (and the intuitive explanation before it) we distinguish between Wk(v)
for different k. That is walk segments have predetermined positions in the walk, and a request to

22



stitch to a walk ending in v with its kth step can only be served by a walk starting in v with its k + 1st

step. This is mostly for ease of understanding and analysis. In the implementation we make no such
distinction. Each node simply stores a set of walks of length 2i in the ith round. The initial budget of
each vertex v (at the beginning of the cycle) is set to

∑
k B(v, k), where B(v, k) is still calculated

according to the formulas in Line 11 and Line 13 of Algorithm 2 (with the exception of the altered
τ -scaling term, as mentioned in the paragraph above).

23


	Proof of thm:general
	Preliminaries of sec:PRclustering
	Omitted claims, proofs and figures
	Additional Experiments

