
Checklist

i) For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] See Section 2 for theoretical and Section 4 for
experimental results.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss

broader impact in Section 5. We did not find any direct negative impact of our method.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
ii) If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.
(b) Did you include complete proofs of all theoretical results? [Yes] For example, Theo-

rem 1 is proved in Appendix.
iii) If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In the main text, and the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See, e.g., Tables 1 and 2, and Appendix C.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.

iv) If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4 and

supplementary material.
(b) Did you mention the license of the assets? [Yes] All datasets and codes we used are

publicly available. We include the download links in the supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our code in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] MIMIC-III [35] and MIMIC-IV [36] are health records
de-identified in accordance to HIPAA standards. Johnson et al. [35] state that the
individual patient consent was waived.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Data we used does not contain personally
identifiable information, partly because it was de-identified (e.g., MIMIC), or because
it never contained it (e.g., earthquake data). No datasets contain offensive content.

v) If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Theoretical background

A.1 GRU-ODE definition

De Brouwer et al. [16] define the continuous time GRU-ODE model as an ODE that is solved for
hidden state h(t):

dh(t)

dt
= (1− z(t))� (c(t)− h(t)). (11)

With new observation x, the hidden state is updated with discrete GRU (Equation 3), and between
two observations we solve the ODE given by Equation 11.

The interesting properties of this model are:

i) Boundedness: hidden state h(t) stays within range (−1, 1),
ii) Continuity: GRU-ODE is Lipschitz continuous with Lipschitz constant 2.

In Appendix A.3 we show how our GRU flow model has the same properties without the need to use
numerical solvers.

A.2 Training loss for GRU-ODE-Bayes

De Brouwer et al. [16] define an objective that mimics the Bayesian filtering. It consists of two parts:

L = Lpre + λLpost, (12)

where Lpre is masked negative log-likelihood and Lpost is the Bayesian part of the loss. The model
outputs the normal distribution for the observations, conditional on hidden state h(t). Since only
some features are observed at a time, we mask out the missing values when calculating Lpre. We
denote our predicted distribution with ppre, and predicted distribution after updating the state with
ppost. Now, the Bayesian update can be written as pBayes ∝ ppre · pobs, with pobs being the noise of the
observations. Lpost is defined as a KL-divergence between pBayes and ppost. This can be calculated in
closed-form for normal distribution.

A.3 Proof of Theorem 1

Preliminaries. Function f has the Lipschitz constant L if |f(x)− f(y)| ≤ L|x− y|, ∀x, y. We first
derive a few useful inequalities.

For the sum of two Lipschitz functions f + g, the following holds:

|f(x) + g(x)− f(y)− g(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ Lip(f)|x− y|+ Lip(g)|x− y|
≤ (Lip(f) + Lip(g))|x− y|,

(13)

by the triangle inequality and the definition of the Lipschitz function. Similarly, for the product of
two Lipschitz functions f · g, the following holds:

|f(x)g(x)− f(y)g(y)| = |f(x)g(x) + f(x)g(y)− f(x)g(y)− f(y)g(y)|
= |f(x)(g(x)− g(y)) + g(y)(f(x)− f(y))|
≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|
≤ |f(x)| · Lip(g) · |x− y|+ |g(y)| · Lip(f) · |x− y|.
= (|f(x)| · Lip(g) + |g(y)| · Lip(f))|x− y|.

(14)

If f and g are bounded, we can bound the above term too.

Let f be contractive function, Lip(f) < 1. Then, for the composition of functions σ ◦ f , where
σ(x) = (1 + exp(−x))−1 is the sigmoid activation, the following holds:

|σ(f(x))− σ(f(y))| ≤ Lip(σ)|f(x)− f(y)| = 1

4
|f(x)− f(y)| ≤ 1

4
|x− y|,

where we used Lip(σ) = max(σ′) = 1
4 , by the mean value theorem. Similarly, Lip(tanh) = 1.

15

Proof. (Theorem 1)

Equation 3 defines GRU as: zt �ht−1 + (1− zt)� ct. Since zt is defined as σ(fc(·)), and acts as a
gate, we can equivalently define GRU with: (1− zt)� ht−1 + zt � ct. This will slightly simplify
further calculations. Then, the GRU flow is defined as:

F (t,h) = h+ ϕ(t)� z(t,h)� (c(t,h)− h). (5)

F is invertible when the second summand on the right hand side is a contractive map, i.e., has a
Lipschitz constant smaller than one. Since ϕ(t) is bounded to [0, 1] and does not depend on h, we
only need to show that z(t,h)� (c(t,h)− h) is contractive. From here, we denote with x and y the
input to our functions.

Following Definition 1, let r(x) = β · σ(fr(x)), with Lip(fr) < 1. Then we can write:

|r(x)− r(y)| = |β · σ(fr(x))− β · σ(fr(y))|
≤ β|σ(fr(x))− σ(fr(y))|

≤ 1

4
β|fr(x)− fr(y)|

<
1

4
β|x− y|.

(15)

Similarly, for z(x), where z(x) = α · σ(fz(x)), and Lip(fz) < 1:

|z(x)− z(y)| ≤ |α · σ(fz(x))− α · σ(fz(y))| < 1

4
α|x− y|. (16)

Then for c(x) = tanh(fc(r(x) · x)), with Lip(fc) < 1, we can write:

|c(x)− c(y)| = | tanh(fc(r(x) · x))− tanh(fc(r(y) · y))|
≤ |fc(r(x) · x)− fc(r(y) · y)|
< |r(x) · x− r(y) · y|
< (|r(x)|︸ ︷︷ ︸

<β

·Lip(Id)︸ ︷︷ ︸
=1

+ |x|︸︷︷︸
<1

·Lip(r)︸ ︷︷ ︸
< 1

4β

)|x− y|,
(17)

where we used Equation 14 in the last line. Then Lip(c) < 5
4β. Now, for c(x) − x, and using

Equation 13, we write:
|c(x)− x− c(y) + y| ≤ (Lip(c) + 1)|x− y|, (18)

meaning the whole term has Lipschitz constant 5
4β + 1. Finally, for the term on the right hand side of

Equation 5, the following holds:

|z(x)(c(x)− x)− z(y)(c(y)− y)|
< (|z(x)|︸ ︷︷ ︸

<α

·Lip(c(x)− x)︸ ︷︷ ︸
< 5

4β+1

+ |c(x)− x|︸ ︷︷ ︸
<2

·Lip(z(x))︸ ︷︷ ︸
< 1

4α

|x− y|.

If we set α = 2
5 , β = 4

5 , then the Lipschitz constant is smaller than 1, as required.

A.3.1 Properties of GRU flow

Our GRU flow has the same desired properties as GRU-ODE:

i) Boundedness: hidden state h stays within range (−1, 1),
ii) Continuity: the whole transformation h+ g(h) has Lipschitz constant 1 + Lip(g) ≤ 2.

The gating mechanism in discrete GRU helps with gradient propagation to enable learning long-term
dependencies. We emphasize that both GRU flow and GRU-ODE update the hidden state in two
distinct ways: 1) with discrete GRU when the new observation arrives, and 2) with continuous
GRU between observations. Thus, the gates z and r do not have the same interpretation in discrete
GRUCell and in continuous GRU flow or GRU-ODE.

The same way, scalars α and β should not be interpreted as bounds to how much information can
pass, but as a way to ensure invertibility. GRU flow has the ability to keep the old state h, and does
so at the initial condition t = 0, but can also overwrite it completely.

16

A.4 ODE reparameterization

The ODESolve operation is usually implemented such that it takes scalar start and end times, t0
and t1. However, we are often interested in processing the data in batches, to get speed-up from
parallelism on modern hardware. When the previous works [11, 69, 16] received the vectors of start
and end times, e.g., t0 = [0, 0, 0] and t1 = [5, 1, 4], they would concatenate all the values into a
single vector and sort them to get a sequence of strictly ascending times, e.g., [0, 1, 4, 5]. The solver
would then first solve 0→ 1, then 1→ 4, and finally 4→ 5. Note that for the element in the batch
with the largest end time, this requires calling ODESolve multiple times (number of unique time
values), instead of only once. Without this procedure, the adaptive solver could take larger steps then
the ones imposed by the current batch, meaning we would get better performance.

Chen et al. [9] propose a reparameterization, such that, instead of solving the ODE on the interval
t ∈ [0, tmax], they solve it on s ∈ [0, 1], with s = t/tmax. For the batch of size n, the joint system is:

d

ds


x1

x2

...
xn

 =


t1f(st1,x1)
t2f(st2,x2)

...
tnf(stn,xn)

 .
This allows solving the system in parallel, in contrast to previous works. We used this reparameteriza-
tion in all of our experiments.

A.5 Attentive normalizing flow

We follow the setup from Section 3.3, denoting times with t = (t1, . . . , tn), and marks with
X = (x1, . . . ,xn), xi ∈ Rd. We define the self-attention layer, following [79], as:

SelfAttention(X) = Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V , (19)

where Q ∈ Rn×dk ,K ∈ Rn×dk ,V ∈ Rn×dv are matrices that we obtain by transforming each
element xi of X by a neural network. Chen et al. [9], in their attentive CNF model, define the
function f from Equation 9 for each xi, as the ith output of Attention function. It is important that
elements xj , j > i, do not influence xi to ensure we have a proper temporal model. This is achieved
by placing −∞ for values above the diagonal of theQKT matrix so that softmax returns zero on
these places.

Discrete normalizing flows cannot define the transformation using attention and have tractable
determinant of the Jacobian at the same time. However, since we actually need an autoregressive
model, i.e., the dependence is strictly on the past values, not future, we can define a model similar to
attentive CNF. We use Equation 19 with diagonal masking to embed the history of all the elements
that preceded xi: hi = SelfAttention(X1:i−1). This is in contrast to [9], who usedX1:i. Then, the
conditioning vector hi is used as an additional input to neural networks u and v from Equation 6,
essentially defining a conditional affine coupling normalizing flow.

A.6 Autonomous ODEs

Autonomous differential equations are defined with a vector field that is fixed in time ẋ = f(x(t)).
Note that function f does not depend on time t like before. Therefore, the conditions i) and ii) from
Section 2 are not enough to define the corresponding flow. To be precise, the flow F defines an
autonomous ODE if it satisfies the additional condition:

iii) F (t1 + t2,x0) = F (t2, F (t1,x0)),

meaning that solving for t1 first, then t2, is the same as solving for t1 + t2, given initial condition x0.

More formally, we defined flow F on set Rd as a group action of the additive group G = (R,+)
(elements being time points). Equivalently, group action of G on Rd is a group homeomorphism
from G to Sym(Rd) (symmetric group, bijective functions and composition (φ, ◦)), i.e., some
function ϕ : G → Sym(Rd) maps time t to parameters of an invertible neural network φ, with

17

x1
x
2

Without regularization

x1

With regularization

Figure 4: Comparison of the phase space for the same model trained with and without the autonomous
regularization (Equation 20). Dots denote initial conditions. Note that the overlapping dynamic does
not mean the solutions are not unique, only that the vector field is dependent on time.

ϕ(t1 + t2) = ϕ(t1) ◦ ϕ(t2). Identity element of G, 0 is mapped to an identity function, inverse −t is
mapped to an inverse function.

It’s clear that our proposed architectures from Section 2 do not satisfy condition iii), unless we
redefine it to allow time-dependence. Therefore, one way to satisfy iii) is to have d

dtF independent
of time. Note, however, that if we define the ResNet flow as xt := F (t,x0) = x0 + t · h(x0), then
even though time disappears from the derivative d

dtF , the derivative is expressed in terms of x0, not
xt. This means time is still implicitly included since starting at different x0 gives different values.

Matrix exponential exp(At)x, as a solution to a linear ODE: ẋ = Ax, is one example of a closed-
form solution to an autonomous ODE. Another potential autonomous flow is of the form x+ ϕ(t),
but not g(x) +ϕ(t), since this does not satisfy initial condition or g must depend on time. To the best
of our knowledge, there is no general neural flow parametrization that can capture all autonomous
ODEs. Therefore, we can try to learn the desired behavior instead of guaranteeing it.

We can add the penalty to our loss that directly corresponds to condition iii). Given the loss function
L and the current batch of n elements X ∈ Rn×d, t ∈ Rn, where we can represent each ti ∈ t as
ti = t

(1)
i + t

(2)
i , with t(1)i , t

(2)
i uniformly sampled on [0, ti], the total loss is:

Ltotal = L+ γ
1

n

∑
i

(F (ti,xi)− F (t
(2)
i , F (t

(1)
i ,xi)))

2, (20)

where γ is some positive value. The second term penalizes flows that do not satisfy iii), meaning
we should get the flow that is closer to the underlying autonomous ODE. This can be calculated in
parallel to other computations.

Figure 4 shows the comparison between learning the data generated from an autonomous ODE (see
next section for data details), using the regularization as defined in Equation 20 and without such
regularization. We can see that the base model already learns good behavior but when we include the
regularization, the trajectories overlap less frequently.

A.7 Linear ODE and change of variables

Consider a linear ODE f(t, z(t)) = Az(t), with z(0) = z and z(1) = x. Solving the ODE 0→ 1
is the same as calculating exp(A)z, where exp is the matrix exponential. Suppose that z ∼ q(z),
then the distribution p(x) that we get by transforming x with an ODE is defined as:

log p(x) = log q(z)−
∫ 1

0

tr

(
∂f

∂z(t)

)
dt = log q(z)− tr(A), (21)

or simply: p(x) = q(z) exp(tr(A))−1.

When using the Hutchinson’s trace estimator for the trace approximation we get the same result:
Ep(ε)[

∫ 1

0
εT ∂f

∂z(t)ε dt] = Ep(ε)[εTAε] = tr(A), where E(ε) = 0 and Cov(ε) = I .

Similarly, applying the discrete change of variables, we get the same result for the matrix exponential:

p(x) = q(z)|det JF (z)|−1 = q(z)|det exp(A)|−1 = q(z) exp(tr(A))−1. (22)

18

Ellipse Sawtooth Sink Square Triangle

Figure 5: Sample trajectories for synthetic data.

Sink Square Sawtooth Triangle Ellipse
Data

0.0

0.1

0.2

Te
st

er
ro

r(
M

SE
) Neural ODE

Coupling flow
ResNet flow

0 10 20 30

t

−2

0

2

x0

Neural ODE
True values
Training region

Figure 6: (Left) Test error for synthetic data. (Right) All models fail when extrapolating in time.

A.8 Computation complexity of (continuous) normalizing flows

In general, evaluating the trace of the Jacobian of function f : Rd → Rd requires O(d2) operations.
In CNFs, this operation has to be performed at every solver step. Since the number of steps can be
very large for more complicated distributions [27], this becomes prohibitively expensive. Because of
this, Grathwohl et al. [27] introduce computing the approximation of the trace during training. This
has the benefit of having a lower cost, O(d). The issue with this method is that the training becomes
noisier and after training we have to again rely on exact trace to get the exact density.

On the other hand, computing the determinant of the Jacobian is O(d3) operation in general. Because
of this, regular normalizing flows do not use unconstrained functions f , but rather opt for those that
produce triangular Jacobians, e.g., autoregressive [41] or coupling transformations [17], where the
determinant is just the product of the diagonal elements, i.e., it is of linear cost O(d).

B Synthetic experiments

We first test the capabilities of our models on periodic signals:

• Sine: f(t, x) = cos(t) which corresponds to flow F (t, x) = x+ sin(t), x ∈ R,

• Sawtooth: F (t, x) = x+ t− btc,
• Square: F (t, x) = x+ sign(sin(t)),

• Triangle: F (t, x) =
∫ t
0

sign(sin(u)) du.

We sample initial values x uniformly in (−2, 2) and set the time interval to (0, 10). We additionally
check how well the models extrapolate by extending the initial condition interval to (−4, 4) and time
to 30. We also use two datasets, generated as solutions to known ODEs:

• Sink: f(t,x) =

[
−4 10
−3 2

] [
x1
x2

]
,

• Ellipse: f(t,x) =

[
2
3x1 −

2
3x1x2

x1x2 − x2

]
, which is a particular parametrization of Lotka-Volterra

equations, also known as predator-prey equations,

where we sample initial conditions x1, x2 ∈ [0, 1] uniformly. For extrapolation, we use x1, x2 ∈ [1, 2].
Figure 5 shows the generated trajectories for all synthetic datasets.

19

1185 2241 4417 8577
Number of parameters

0

20

40

60

E
po

ch
du

ra
tio

n
(s

)

Solver
dopri5
rk4

dopri5 rk4
Solver

0.00

0.05

0.10

Te
st

er
ro

r

Figure 7: Fixed solvers are faster to train on synthetic data (Left) but they still have similar accuracy
compared to adaptive solvers (Right).

B.1 Comparing adaptive and fixed-step solvers

We ran an extensive hyperparameter search for Sine dataset. We test models with 2 or 3 hidden
layers, each having dimension of 32 or 64, use tanh or ELU activations between them, and have
tanh or identity as the final activation. For each of the model configurations we apply either no
regularization or weigh the penalty term with 10−3. Finally, we run each trial 5 times with different
seeds and compare between Runge-Kutta fixed-step solver with 20 steps and an adaptive 5th order
Dormand-Prince method [18].

As expected, the vast majority of the trials fit the data very well. However, as Figure 7 shows,
an adaptive solver always requires significantly longer training times, regardless of the size of the
model, choice of the activations or regularization. We used default tolerance settings (rtol = 10−7,
atol = 10−9) which is why we get such long training times. Therefore, in the other experiments,
in the main text, whenever we use dopri5, we use rtol = 10−3 and atol = 10−4 to make training
feasible. This once again shows the trade-off between speed and numerical accuracy.

Euler dopri5

Figure 8: Density learned with Euler and
dopri5 solver. The estimated area under the
curve for Euler method is 1.06, meaning it
does not define a proper density.

From the results, one would expect that we can safely
use fixed-step solvers and achieve similar or better re-
sults with smaller computational demand. However,
as Ott et al. [63] showed, this can lead to overlapping
trajectories which give non-unique solutions. Breaking
the assumptions of our model can lead to misleading re-
sults in some cases. Here, we tackle density estimation
with continuous normalizing flows as an example.

We construct a synthetic 2-dim. dataset as a mixture
of zero-centered normal distribution (σ = 0.05) and
uniform points on the perimeter of a unit circle with
small noise (σ = 0.01). We test adaptive dopri5 solver
and Euler method with 20 steps.

The fixed solver achieves better results but Figure 8 visually demonstrates that it is not really capturing
the true distribution better. It cheats by not defining a proper density function that integrates to 1.
Since it has more mass to distribute, it can achieve better results. This might be hard to detect in higher
dimensions and it can be particularly problematic since most of the literature reports log-likelihood
on test data. Even though we took Euler method as an extreme example, the same can be shown for
other solvers as well.

B.2 Comparing flow configurations

Similar to Appendix B.1, we compare different flow models on synthetic sine data. We try coupling
and ResNet models with linear and tanh for ϕ, as well as an embedding with 8 Fourier features
(bounded to (0, 1) interval in ResNet model), see Section 2.1 for more details. Both models have
either 2 or 4 stacked transformations, each with a two hidden layer neural network with 64 hidden
dimensions. We run each configuration 5 times with and without weight regularization (10−3).

20

MSE (×10−2) Ellipse Sawtooth Sink Square Triangle

Neural ODE 25.59±3.19 8.74±1.10 1.38±0.17 24.34±0.3 2.76±0.09

Coupling flow 14.16±4.80 1.25±0.33 0.50±0.06 3.38±0.4 0.19±0.02

ResNet flow 9.48±2.64 1.38±0.13 0.40±0.04 3.56±0.1 0.0±0.0
Table 5: Test error on synthetic data, lower is better. Best results in bold.

MSE (×10−2) Ellipse Sawtooth Sink Square Triangle

Neural ODE 19.82±1.34 10.64±1.76 18.0±1.18 32.96±3.0 4.22±0.56

Coupling flow 515.8±555.6 1.32±0.36 5.53±2.23 3.93±0.76 0.2±0.04
ResNet flow 100.4±45.4 3.49±1.14 6.65±2.23 9.84±2.94 0.79±0.21

Table 6: Error on trajectories that start at initial conditions out of training distribution. Some trials
returned outliers that skew the results (e.g., coupling flow on ellipse dataset).

Ellipse Sawtooth Sink Square Triangle

Neural ODE 9.3±0.88 8.25±0.33 8.78±0.81 7.81±0.34 7.91±0.35

Coupling flow 0.7±0.11 0.46±0.22 0.6±0.05 0.49±0.14 0.58±0.16
ResNet flow 1.05±0.04 1.01±0.15 1.24±0.13 0.98±0.04 1.01±0.09

Table 7: Wall-clock time (in seconds) to run the last training epoch, using the same batch size.

All the models capture the data perfectly, except for the coupling flow with linear function of time ϕ
which does not converge. This could be due to inability of neural networks to process large input
values. The issue can be fixed with different initialization or normalizing the input time values.

Tables 5, 6 and 7 show that neural flows outperform neural ODEs in forecasting, extrapolation with
different initial values, and are faster during training.

C Additional results

Table 8 compares the training times for smoothing experiment. Neural ODE models use Euler method
with 20 steps (the adaptive method is slower). Table 9 shows the average wall-clock time to run
a single epoch for different TPP models. We include ablations for flow and ODE models that use
different continuous RNN encoders, and a model without an encoder. Table 10 shows full negative
log-likelihood results for the TPP experiment. Table 11 shows the full NLL results for marked TPPs.

Activity MuJoCo Physionet

Neural ODE 200.884±7.239 192.209±2.526 103.198±4.977

Coupling flow 106.298±2.314 46.171±1.742 78.561±1.050
ResNet flow 134.336±3.453 102.745±2.369 101.966±8.285

Table 8: Average time (in seconds) to run a single epoch during training for different models, all
other training parameters being the same.

Poisson Hawkes1 Hawkes2 Renewal MOOC Reddit Wiki

C
on

t. Neural ODE 96.7 129.8 208.6 111.2 844.2 612.8 157.9
Coupling flow 10.8 11.2 10.8 11.1 180.8 113.1 31.7
ResNet flow 7.1 7.1 7.2 7.3 130.0 83.8 19.9

M
ix

tu
re

GRU-ODE 39.7 42.3 55.9 39.3 600.0 419.5 97.9
ODE-LSTM 35.9 39.0 37.8 43.8 569.4 443.6 109.4
Coupling flow 3.4 3.4 3.3 3.3 47.0 37.2 8.5
ResNet flow 5.9 5.9 5.8 5.9 96.5 64.9 16.1
GRU flow 3.6 3.5 3.3 3.7 52.8 36.4 9.7

Table 9: Average time (in seconds) to run a single epoch during training for TPP models.

21

Synthetic data Poisson Hawkes1 Hawkes2 Renewal

Ground truth 0.9996 0.6405 0.1192 0.2667
Without history 1.0046 0.7826 0.2354 0.2837
Discrete GRU 1.0097±0.005 0.6424±0.006 0.1267±0.006 0.2598±0.016

C
on

t. Jump ODE 0.9945±0.016 0.6461±0.009 0.2246±0.042 0.3124±0.022

Coupling flow 1.0099±0.005 0.6441±0.007 0.1376±0.005 0.2720±0.017

ResNet flow 1.0105±0.005 0.6426±0.007 0.1813±0.025 0.2851±0.018

M
ix

. GRU-ODE 1.0100±0.005 0.6419±0.007 0.1239±0.005 0.2601±0.017

ODE-LSTM 1.0108±0.005 0.6448±0.006 0.1253±0.005 0.2605±0.017

Coupling flow 1.0103±0.005 0.6450±0.008 0.1254±0.006 0.2605±0.016

GRU flow 1.0100±0.005 0.6439±0.007 0.1270±0.006 0.2608±0.016

ResNet flow 1.0104±0.005 0.6443±0.006 0.1249±0.005 0.2603±0.017

Real-word data MOOC Reddit Wiki

Without history 2.0623 1.5402 1.5813
Discrete GRU -0.4448±0.294 -0.9299±0.118 -0.5832±0.321

C
on

t. Jump ODE 0.8710±0.157 0.1308±0.018 -0.3115±0.011

Coupling flow 0.7694±0.172 -0.1263±0.273 -0.2807±0.500

ResNet flow -1.2379±0.049 -1.2962±0.126 -1.2907±0.045

M
ix

. GRU-ODE -0.2626±0.183 -1.0907±0.076 -1.3635±0.071

ODE-LSTM -0.2277±0.331 -1.0888±0.029 -1.3727±0.327
Coupling flow -0.4026±0.584 -1.0933±0.161 -1.2702±0.178

GRU flow -0.3509±0.220 -1.0605±0.113 -0.9852±0.105

ResNet flow -0.5664±0.278 -1.0291±0.174 -1.1937±0.048

Table 10: Test negative log-likelihood (mean±standard deviation) for all TPP models.

MOOC Reddit Wiki

Discrete GRU 2.7563±0.141 1.8468±0.016 8.0527±0.170

C
on

t. Jump ODE 4.6118±0.070 3.6654±0.000 10.6040±0.304

Coupling flow 5.5494±0.413 3.6312±0.324 9.7214±0.101

ResNet flow 2.9466±0.000 2.3932±0.131 10.4368±0.034

M
ix

. GRU-ODE 3.5344±0.242 2.3078±0.033 7.5537±0.065
ODE-LSTM 3.0723±0.114 1.9057±0.164 8.3187±0.231

Coupling flow 2.5877±0.176 1.6817±0.095 8.8018±0.057

ResNet flow 3.0005±0.081 1.9491±0.008 8.5489±0.267

Table 11: Test negative log-likelihood (mean±standard deviation) for all marked TPP models.

D Data pre-processing

D.1 Encoder-decoder datasets

MuJoCo dataset. Using Deep Mind Control Suite and MuJoCo simulator, Rubanova et al. [69]
generate 10000 sequences by sampling initial body position in R2 uniformly from [0, 0.5], limbs
from [−2, 2], and velocities from [−5, 5] interval. We use this dataset without any changes.

Activity dataset. Following [69], we round up the time measurements to 100ms intervals. This was
done to reduce the size of the union of all the points when batching but is unnecessary when using
our flow models, and also when using the reparameterization for ODEs [9].

Original labels are: walking, falling, lying down, lying, sitting down, sitting, standing up from lying,
on all fours, sitting on the ground, standing up from sitting, standing up from sitting on the ground.
Rubanova et al. [69] combine similar positions into one group resulting in 7 classes: walking, falling,
lying, sitting, standing up, on all fours, sitting on the ground. Data is split in train, validation and test
set (75%–5%–20%).

22

Physionet dataset. We use PhysioNet Challenge 2012 [73], where the goal is to predict the mortality
of patients upon being admitted to ICU. We process the data following [69] to exclude time-invariant
features, and round the time stamps to one minute. Each feature is normalized to [0, 1] interval. Data
is split the same way as for MuJoCo: 60%–20%–20%.

When reporting MSE scores for the reconstruction task we scale the result by 102 for activity dataset
and by 103 for others, for better readability. This is equivalent to scaling the data beforehand.

D.2 MIMIC-III and MIMIC-IV

We follow [16] for processing MIMIC-III dataset. We process MIMIC-IV in a similar vein.

The publicly available MIMIC-IV database provides clinical data of intensive care unit (ICU) patients
at the tertiary academic medical center in Boston [36, 25]. It builds upon the MIMIC-III database
and contains de-identified patient records from 2008 to 2019 [35]. We use version MIMIC-IV 1.0,
which was released March 16th, 2021.

To preprocess the data, we first select the subset of patients who:

• are registered in the admissions table,

• stayed in the ICU for at least 2 days and no more than 30 days,

• are older than 15 years at the time of the admission, and

• have chart-event data available,

which leaves us with 17874 patients.

There are four types of data sources available for ICU patients: chart-events, inputs, outputs and
prescriptions. The chart-events table contains the patient’s routine vital signs as well as any additional
information such as laboratory tests. The input table documents drugs administered to the patient
through, e.g., solutions and the prescription table stores information about medication given in any
other form. Lastly, the outputs table contains any output data from, e.g., a catheter for the patient
during their ICU stay.

Because the medication in the input table is administered over time, the administered units and doses
have to be unified and then split into entries which are spread out over time. We choose 30 minutes as
our sampling window and, for all administered medications with duration longer than an hour, split
them into fixed time injections.

For all other tables, we only keep the most commonly used entries:

• Chart-events: Alanine Aminotransferase, Albumin, Alkaline Phosphatase, Anion Gap,
Asparate Aminotransferase, Base Excess, Basophils, Bicarbonate, Bilirubin, Calcium, Chlo-
ride, Creatinine, Eosinophils, Glucose, Hematocrit, Hemoglobin, Lactate, Lymphocytes,
Magnesium, MCH, MCV, Monocytes, Neutrophils, pCO2, pH, pO2, Phosphate, Platelet
Count, Potassium, PT, PTT, RDW, Red Blood Cells, Sodium, Specific Gravity, Total CO2,
Urea Nitrogen and White Blood Cells.

• Outputs: Chest Tube, Emesis, Fecal Bag, Foley, Jackson Pratt, Nasogastric, OR EBL, OR
Urine, Oral Gastric, Pre-Admission, Stool, Straight Cath, TF Residual, TF Residual Output
and Void.

• Prescriptions: Acetaminophen, Aspirin, Bisacodyl, D5W, Docusate Sodium, Heparin,
Humulin-R Insulin, Insulin, Magnesium Sulfate, Metoprolol Tartrate, Pantoprazole, Potas-
sium Chloride and Sodium Chloride 0.9% Flush.

D.3 TPP datasets

We follow previous works to generate and pre-process temporal point process data [61, 71, 44].

Synthetic data. We use 4 synthetic datasets, for each we generate 1000 sequences, each sequence
containing 100 elements. We generate Poisson dataset with constant intensity λ∗(t) = 1; Renewal
with stationary log-normal density function (µ = 1, σ = 6); and two Hawkes datasets with the

23

conditional intensity λ∗(t) = µ +
∑
ti<t

∑M
j αjβj exp(−βj(t − ti)), with M = 1, µ = 0.02,

α = 0.8 and β = 1 (Hawkes1), or M = 2, µ = 0.2, α = [0.4, 0.4] and β = [1, 20] (Hawkes2).

Reddit. We use timestamps of posts from most active users to most active topic boards (subreddits)
[44]. There are 984 unique subreddits that we use as marks. We have 1000 sequences in total, each
sequence is truncated to contain at most 100 points. This is done to make training with ODE-based
models feasible.

MOOC is a dataset containing timestamps of events performed by users in interaction with a learning
platform [44]. There are 7047 sequences, with at most 200 events. We have 97 different mark types
corresponding to different interaction types.

Wiki contains timestamps of edits of most edited pages from most active users [44]. There are 1000
pages (sequences) with at most 250 events, and 984 users that we use as marks.

In our implementation, we use inter-event times τi = ti − ti−1 and for real-world data, we normalize
them by dividing them with the empirical mean τ̄ from the training set τi 7→ τi/τ̄ . This can
still yield quite large values so for better numerical stability during training, we use log-transform
τ 7→ log(τ + 1). We can think of log-transformation as a change of variables and include it in the
negative log-likelihood loss using the probability change of variables formula (see Section 3.3).

D.4 Spatial datasets

For spatial data used in time-dependent density estimation experiment, we used the datasets from
Chen et al. [9] with the same pre-processing pipeline. See [9] for further details.

Earthquakes contains earthquakes gathered between 1990 and 2020 in Japan, with the magnitude of
at least 2.5 [78]. Each sequence has length of 30 days, with the gap of 7 days between sequences.
There are 950 training sequences, and 50 validation and test sequences.

Covid data uses daily cases from March to July 2020 in New Jersey state [77]. The data is gathered
on county level and dequantized. Each sequence covers 7 days. There are 1450 sequences in the
training set, 100 in validation and 100 in test set.

Bikes contains rental events from a bike sharing service in New York using data from April to August
2019. Each sequence corresponds to a single day, starting at 5am. The data is split in training, test
and validation set: 2440, 300, 320 sequences, respectively.

All the spatial values are normalized to zero mean and unit variance. We also normalize the temporal
component to [0, 1] interval.

E Hyperparameters

All experiments: Adam optimizer, with weight decay 1e-4

Smoothing experiments

• Batch size: 100
• Learning rate: 1e-3 with decay 0.5 every 20 epochs
• Hidden layers: 3
• Models

◦ ODE models
- Solver: euler or dopri5

◦ Flow models: ResNet or coupling flow
- Flow layers: 1 or 2
- ϕ(t): tanh for ResNet and linear for coupling (used in all experiments)

• Datasets
◦ MuJoCo

- Encoder-decoder hidden dimension: 100-100
- Latent state dimension: 20

24

- GRU dimension: 50
◦ Activity

- Encoder-decoder hidden dimension: 30-100
- Latent state dimension: 20
- GRU dimension: 100

◦ Physionet
- Encoder-decoder hidden dimension: 40-50
- Latent state dimension: 20
- GRU dimension: 50

Filtering experiment

• Batch size: 100
• Learning rate: 1e-3 with decay 0.33 every 20 epochs
• Hidden dimension: 64
• Datasets: MIMIC-III or MIMIC-IV
• ODE models

◦ Solver: euler or dopri5
◦ Hidden layers: 3

• Flow models: GRU flow or ResNet flow
◦ Flow layers: 1 or 4
◦ Hidden layers: 2

TPP experiment (With or without marks)

• Batch size: 50
• Learning rate: 1e-3
• Hidden dimension: 64
• Data: Reddit or MOOC or Wiki
• ODE models
◦ Models: continuous or mixture

- Mixture models: ODE-LSTM or GRU-ODE
◦ Hidden layers: 3

• Flow models
◦ Models: continuous or mixture

- Continuous models: ResNet or coupling flow
- Mixture models: ResNet or coupling or GRU flow

◦ Flow layers: 1
◦ Hidden layers: 2

• RNN models: GRU

Density estimation experiment

• Batch size: 50
• Learning rate: 1e-3
• Hidden dimension: 64
• Models: time-varying or attentive (for both CNFs and NFs)
• Continuous normalizing flows
◦ Hidden layers: 4

• Coupling normalizing flows
◦ Base density layers: 4 or 8
◦ Time-dependent NF layers: 4 or 8

25

