
A Proofs of Technical Lemmas

Lemma 3.4. A distribution with CDF F is MHR if and only if hM (x;F ) is a convex function of x.
Similarly, F is regular if and only if hr(x;F ) is a convex function of x. Moreover, for two MHR (resp.
regular) distributions F1 and F2, such that F1 � F2, then we have that hM (x;F1) 6 hM (x;F2)
(resp. hr(x;F1) 6 hr(x;F2)) for all x.

Proof. We first show that given the CDF of any MHR distribution F (x) : R+ → [0, 1], hM (x)
def
=

− log(1− F (x)) is a convex, non-decreasing function with h(0) = 0. (Without loss of generality,
we consider x ∈ [0,∞], i.e. arg minx h(x) = 0.) We first present the analysis for the case when the
distribution is continuous and smooth, and then generalize the same statement to discrete distributions.

MHR continuous distributions:
Denote the corresponding PDF of F (x) as f(x), and g(x)

def
= f(v)

1−F (v) . By definition, F (0) = 0

implies hM (0) = 0. Then, given that F (x) is MHR, we have that g(x) is monotone non-decreasing.
By construction,

(hM (x))′′ =

(
f(v)

1− F (v)

)′
= g′(x) > 0.

Therefore, hM (x) is convex. Moreover, since F (x) is a CDF thus non-decreasing, hM (x) =
− log(1 − F (x)) is also non-decreasing. We show that given any hM (x) : R+ → R+, such
that hM (x) is convex, non-decreasing, hM (0) = 0, and maxx hM (x) = ∞. Then, F (x)

def
=

1− exp(−hM (x)) is CDF of an MHR distribution.

By construction, hM (0) = 0 implies F (0) = 0, and maxx hM (x) implies maxx F (x) = 1. Also

given that hM (x) is convex, g′(x) =
(

f(v)
1−F (v)

)′
= (hM (x))′′ > 0, which by definition implies

F (x) is MHR.

MHR discrete distributions:
The lemma statement generalizes to the case when the valuation is discrete. We assume that the
valuation can take a discrete set of values {xi}, i = 1, · · · , n. Without loss of generality, we will
restrict these values to the set N0 with probability mass function P (x = i) = pi; i = 0 · · ·n. We
define the discrete hazard rate as:

g(xi) =
P (x = i)

P (x > i)
.

Then, the valuation distribution is MHR iff the discrete hazard rate is non-decreasing:

g(xi+1) > g(xi), (2)

for all i = 0 · · ·n.

In this case, our link function will also be discrete. Further, denote si
def
= P (x > i), then

h(xi) = − log(P (x > xi)) = − log(si).

Then h(x) is convex if and only if for any i > 0,

h(xi+2)− h(xi+1) > h(xi+1 − h(xi). (3)

We show that Eq (2) and Eq (3) are equivalent. Notice that

h(xi+2)− h(xi+1) > h(xi+1 − h(xi)

⇐⇒ si+1

si+1 − pi+1
>

si
si − pi

⇐⇒ pi+1si > pisi+1

⇐⇒ pi+1

si+1
>
pi
si

⇐⇒ g(xi+1) > g(xi),
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which completes the proof.

Regular continuous distributions:
We further prove a similar statement for regular continuous distributions. First, given a CDF of a
regular distribution F (x),(

1

1− F (x)

)′′
=

(1− F (x))f(x)′ + 2f(x)2

(1− F (x))3
.

By definition, the virtual value function is φ(x)
def
= v − 1−F (x)

f(x) , and

φ′(x) =
(1− F (x))f(x)′ + 2f(x)2

f(x)2
.

Therefore,
(

1
1−F (x)

)′′
and φ′(x) share the same sign. Moreover, the distribution with CDF as F (x)

is regular if and only if the virtual value φ(x) is monotonically non-decreasing, which is φ′(x) > 0.
Hence the regularity of F (x) implies that hr(x)

def
= 1

1−F (x) is convex. Since F (x) is a CDF thus
non-decreasing, hr(x) = 1

1−F (x) is also non-decreasing.

Regular discrete distributions:
Similar to the MHR distributions, the lemma statement generalizes to the case when the valuation
is discrete for regular distributions. Assume that the valuation can take a discrete set of values
{xi}, i = 1, · · · , n. Without loss of generality, we will restrict these values to the set N0 with
probability mass function P (x = i) = pi; i = 0 · · ·n. Further, consistent with the proof for MHR
distributions, we denote si

def
= P (x > i).

The discrete virtual value function is defined as:

φ(xi) = xi −
si
pi
,

and the valuation distribution is regular iff φ(x) is non-decreasing:
φ(xi+1) > φ(xi), (4)

for all i = 0 · · ·n.

In this case, our link function will again be discrete:

h(xi) =
1

P (x > xi)
=

1

si
.

and h(x) is convex if and only if for any i > 0,
h(xi+2)− h(xi+1) > h(xi+1)− h(xi). (5)

We show that Eq (4) and Eq (5) are equivalent.
h(xi+2)− h(xi+1) > h(xi+1)− h(xi)

⇐⇒ 1

si+2
+

1

si
>

2

si+1

⇐⇒ 1

si+1 − pi+1
+

1

si
>

2

si+1

⇐⇒ s2
i+1 + pipi+1 > sisi+1 − sipi+1.

⇐⇒ pipi+1 + pi+1si + si+1(si+1 − si) > 0

⇐⇒ pipi+1 + pi+1si − si+1pi > 0

(6)

Moreover, from the regularity condition Eq (4), we have
φ(xi+1) > φ(xi)

⇐⇒ i+ 1− si+1

pi+1
> i− si

pi

⇐⇒ 1− si+1

pi+1
+
si
pi
> 0

⇐⇒ pipi+1 + pi+1si − si+1pi > 0.

(7)
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Combining (6) and (7) together completes the proof.

Stochastic dominance:
Lastly, we show that for two MHR (resp. regular) distributions F1 and F2, such that F1 � F2,
then we have that hM (x;F1) 6 hM (x;F2) (resp. hr(x;F1) 6 hr(x;F2)) for all x. This follows
directly from the monotonicity of the link functions and the definition of stochastic dominance (see
Definition 3.2).

Recall that the link function hM (x;F ) for MHR distributions is defined as hM (x;F ) = − ln(1−
F (x)), and the link function hr(x;F ) for regular distributions is defined as hr(x;F ) = 1/(1 −
F (x)). Therefore, for two MHR (resp. regular) distributions F1 and F2, F1(x) < F2(x) implies
hM (x, F1) < hM (x, F2) (resp. hr(x, F1) < hr(x, F2)), which completes the proof.

�

Lemma 4.2. Let f be a non-decreasing piecewise constant function with k pieces, then Conv(f)
can be computed in time poly(k) and is a piecewise linear function with O(k) pieces.

Proof. Given that f(x) is a non-decreasing piecewise constant function with k pieces, we show
that the following iterative procedure outputs its lower convex envelope Conv(f) , which can be
computed in time poly(k) and is a piecewise linear function with O(k) pieces. Figure 3 provides an
illustration of the construction according to this procedure.

Procedure 1 Computing lower convex envelope for non-decreasing piecewise constant functions

1: Input: a piecewise constant function f(x) : R → R with k pieces. Denote the left starting
point of each piece and the end point as x0, . . . , xk.

2: Initialize: i← 0, i′ ← 0.
3: while i 6 k − 1 do
4: x̄i′ ← xi, g(x̄i′)← f(xi).
5: i′ ← i′ + 1.
6: Compute i← arg mini<j6k

f(xj)−f(xi)
xj−xi .

7: end while
8: x̄i′ ← xi, g(x̄i′)← f(xi); k′ ← i′.
9: Return: a piecewise linear function g(x) : R → R with k′ < k pieces. The left starting

points of each piece and the end points are x̄0, . . . , x̄i′ , with the corresponding function values
as specified in the procedure.

x0 x1 x2

…

xk… x

f(x)

Conv( f )

(x̄0) (x̄1) (x̄2) (x̄k′ 
)

Figure 3: Lower convex envelope of a non-decreasing piecewise constant function f(x) .

First, the above procedure requires at most k2 rounds. We show that its output, g(x), is the lower
convex envelope for f(x). It is clear from construction that g(x) is piecewise linear, with vertices at
x̄0, . . . , x̄k′ . Moreover, g(x) 6 f(x) for all x by construction.
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Next we show that g(x) is convex. Consider at a round t with i = it, 1 < 1 < k. Then, step (6)
computes it+1 = arg minit<j6k

f(xj)−f(xit )

xj−xit
. Further denote minit<j6k

f(xj)−f(xit )

xj−xit
as s(it). We

show that s(it+1) > sit .

Suppose that s(it+1) < sit . Then there exists j∗ > it+1 > it, such that

f(xj∗)− f(xit+1
)

xj∗ − xit+1

<
f(xit+1

)− f(xit)

xit+1
− xit

,

which further implies that

f(xj∗)− f(xit)

xj∗ − xit
<
f(xit+1)− f(xit)

xit+1 − xit
.

Since j∗ > it+1 > it, this contradicts the fact that it+1 = arg minit<j6k
f(xj)−f(xit )

xj−xit
. Therefore

s(it+1) > sit , which means that the slope of each piece for g(x) is non-decreasing. Thus g(x) is
convex. Lastly, since g(x) has all vertices with the same function values as f(x), i.e. g(x) = f(x) at
all its vertices, and given that g(x) 6 f(x) for all x, the values at these vertices are maximized and
cannot be further improved. This completes the proof. �

We further provide two lemmas which present useful properties of the link functions in connection to
the revenue.

Lemma A.1. Given an MHR distribution with the CDF as F (x) : R+ → [0, 1]. Define h(x)
def
=

− log(1− F (x)). Then, at any reserve price x, the expected revenue R(x) = exp(−h(x) + log(x)).
Moreover, the optimal reserve price P ∗F is the minimizer of (h(x)− log(x)).

Proof. First by construction, h(x)− log(x) = − log(R(x)). By definition, the optimal reserve price
maximizes the revenue R(x) = x(1− F (x)), thus

max x(1− F (x))

⇐⇒ min − log(x(1− F (x)))

⇐⇒ min − log(x)− log(1− F (x))

⇐⇒ min h(x)− log(x),

which completes the proof. �

Lemma A.2. Consider a valuation distribution D with CDF as F (x). Denote the optimal reserve
price as P ∗F and the optimal expected revenue at P ∗F as OPTF . Then P ∗F should be P ∗F 6 e,
assuming that OPTF 6 1 and F (x) is MHR.

Proof. By Lemma A.1, OPTF 6 1 implies that,

h(P ∗F ) = log(P ∗F ) + b,

for some b > 0. Also by Lemma 3.4, h is convex. Combined with the fact that OPTF is the optimal
reserve price and the concavity of log(x), OPTF is the only point where h(P ∗F ) = log(P ∗F ) + b
holds.

Now consider a linear function y = ax, a > 0, which is a tangent line of the function log(x) + b.
Denote the tangent point as x∗. Solving the equation that a = (log(x))′ = 1

x , and ax = log(x) + b
give that:

x∗ = e1−b 6 e.

Suppose that P ∗F > x∗. Consider the linear function g(x) =
h(P∗F )
P∗F

x. Since x∗ is the tangent point,
there exists a point x̄ < P ∗F , such that g(x̄) = log(x̄) + b. Further, since h is convex, for any point
0 < x < P ∗F , we have h(x) < g(x). By the continuity of log(x) and h(x), there exists x̄′ < P ∗F ,
such that h(x̄′) = log(x̄) + b. This implies that x̄′ achieves a larger revenue than P ∗F , and contradicts
the fact that P ∗F is the optimal reserve price. Hence, P ∗F < x∗ 6 e, which completes the proof. �
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B Proof of Upper Bounds for the Population Model

We first prove the following technical lemma that connects the coordinate Kolmogorov distance with
the difference in expectation of increasing functions.
Definition B.1 (Increasing Functions and Sets). Let u : Rn → R, we say that u is increasing if for
every v = (v1, . . . , vn), v′ = (v′1, . . . , v

′
n) such that v′i > vi, it holds that u(v′) > u(v). We say

that the subset A ⊆ Rn is increasing if and only if its characteristic function 1A(x) is an increasing
function of x.
Lemma B.2. Let D = D1× · · · ×Dn, D′ = D′1× · · · ×D′n be product n-dimensional distributions
with dk(Di,D′i) 6 αi. Then for every increasing function u : Rn → [0, ū] it holds that∣∣∣ E

v∼D
[u(v)]− E

v′∼D′
[u(v′)]

∣∣∣ 6 ū ·( n∑
i=1

αi

)
.

Proof. Our first step is to prove that the lemma holds for any function u that is a characteristic
function of an increasing set A and then we extend to all increasing functions.

Let u = 1A we have that Ev∼D[u(v)] = Prv∼D(v ∈ A). We define the sequence of distributions
Dj = D′1× · · ·×D′j ×Dj+1× · · ·×Dn for j = 0, . . . , n, where obviously D0 = D and Dn = D′.
Now via triangle inequality we have that∣∣∣ Pr

v∼D
(v ∈ A)− Pr

v∼D′
(v ∈ A)

∣∣∣ 6 n∑
j=1

∣∣∣∣ Pr
v∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)

∣∣∣∣ . (8)

Let bj(v−j) be the threshold of the step function 1A(vj ,v−j) when we fix v−j and we view it as a
function of vj . Now we have that

Pr
v∼Dj

(v ∈ A) =

∫
Rn

1A(xj ,x−j) dD′1(x1) · · · dD′j(xj) · dDj+1(xj+1) · · · dDn(xn)

=

∫
Rn−1

(1−D′j(bj(x−j))) dD′1(x1) · · · dD′j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn)

similarly we have

Pr
v∼Dj−1

(v ∈ A) =

∫
Rn−1

(1−Dj(bj(x−j))) dD′1(x1) · · · dD′j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn).

Combining these we get that∣∣∣∣ Pr
v∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)

∣∣∣∣ 6
6
∫
Rn−1

∣∣D′j(bj(x−j))−Dj(bj(x−j))∣∣ dD′1(x1) · · · dD′j−1(xj−1) · dDj+1(xj+1) · · · dDn(xn).

from the latter we can use the fact that dk(Dj ,D′j) 6 αj and we get that∣∣∣∣ Pr
v∼Dj

(v ∈ A)− Pr
v∼Dj−1

(v ∈ A)

∣∣∣∣ 6 αj .
Applying the above to (8) we get that∣∣∣ Pr

v∼D
(v ∈ A)− Pr

v∼D′
(v ∈ A)

∣∣∣ 6 n∑
j=1

αj . (9)

The last steps is to extend the above to arbitrary increasing functions. We are going to approximate
the increasing function u via a sequence of functions uk which uniformly converges to u. Then we
will show the statement of the lemma for every function uk which by uniform convergence implies
the lemma for u as well. We set Ai,k , {x ∈ Rn | u(x) > i

k ū} and we define

uk(x) =
ū

k

k∑
i=1

1Ai,k(x).
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Observe from the above definition that uk → u uniformly and since u is increasing we also have that
all the sets Ai are increasing. Also observe that

E
v∼D

[uk(v)] =
ū

k

k∑
i=1

Pr
v∼D

(v ∈ Ai,k)

therefore we get that∣∣∣ E
v∼D

[uk(v)]− E
v∼D′

[uk(v)]
∣∣∣ 6 ū

k

k∑
i=1

∣∣∣ Pr
v∼D

(v ∈ Ai,k)− Pr
v∼D′

(v ∈ Ai,k)
∣∣∣ .

Now we can apply (9) and we get

∣∣∣ E
v∼D

[uk(v)]− E
v∼D′

[uk(v)]
∣∣∣ 6 ū ·

 n∑
j=1

αj

 .

Finally, since this is true for every uk and u converges uniformly to u the above should be true for u
as well and hence the lemma follows. �

We are going to use Lemma B.2 both for the regular distributions case and for the MHR distributions
case.

B.1 Monotone Hazard Rate Distributions—Proof of Theorem 3.6

In this section we show the part of the Theorem 3.6 related to n > 1. For the stronger result for the
case n = 1 we refer to Section B.3.

Let D̃ be the corrupted product distribution that we observe, D̂ be the output distribution of Algo-
rithm 1, D∗ be the original distribution that we are interested in. We know from the description of
Algorithm 1 for D̂ = D̂1 × · · · × D̂n that D̂i is MHR, that dk(D̂i,D∗i ) 6 αi and that D̂i � D∗i .
We also know that D∗i is MHR. Finally, we know that the output M of Algorithm 1 is the Myerson
optimal mechanism for the distribution D̂ and hence Rev(M, D̂) = OPT(D̂). So applying the
strong revenue monotonicity lemma 3.3 we have that

OPT(D̂) = Rev(M, D̂) 6 Rev(M,D∗). (10)

Therefore to show Theorem 3.6, it suffices to show that

OPT(D̂) >

(
1− Õ

(
n∑
i=1

αi

))
·OPT(D∗). (11)

We are going to use the following result from Cai and Daskalakis [2011] but with the formulation
obtained in Lemma 17 of Guo et al. [2019], combined with the weak revenue monotonicity (Lemma
3 of Guo et al. [2019]).

Theorem B.3 (Cai and Daskalakis [2011]). For any product MHR distribution D, and any 1
4 > ε > 0

and u > c · log
(

1
ε

)
OPT(D). Let tu(D1), . . . , tu(Dn) be the distributions obtained by truncating

D1, . . . ,Dn at the value ū and let tu(D) be their product distribution, where c is an absolute constant.
Then, we have that

OPT(D) > OPT(tu(D)) > (1− ε) ·OPT(D).

Now let ū = c · log
(

1
ε

)
OPT(D∗), then we also have that ū > c · log

(
1
ε

)
OPT(D̂) due to weak

revenue monotonicity (Lemma 3 of Guo et al. [2019]). Hence, applying Theorem B.3 we have that

OPT(D̂) > OPT(tū(D̂)) and OPT(tū(D∗)) > (1− ε) ·OPT(D∗). (12)

Since we know that dk(D̂i,D∗i ) 6 αi we also have that dk(tū(D̂i), tū(D∗i )) 6 αi. Let now M∗ū be
the optimal mechanism for the distribution tū(D∗). It is easy to see that the ex-post revenue obtained
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from the mechanism M∗ū is an increasing function of the observed bids. Hence, we can apply Lemma
B.2 to the [0, ū] bounded distributions tū(D̂) and tū(D∗) and we get that

OPT(tū(D̂)) > Rev(M∗ū , tū(D̂)) > Rev(M∗ū , tū(D∗))− ū ·

(
n∑
i=1

αi

)

= OPT(tū(D∗))− ū ·

(
n∑
i=1

αi

)
. (13)

If we combine (12) and (13) then we have that

OPT(D̂) > (1− ε) ·OPT(D∗)− ū ·

(
n∑
i=1

αi

)
. (14)

Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) >

(
1− c · log

(
1

ε

)
·

(
n∑
i=1

αi

)
− ε

)
·OPT(D).

Finally, setting ε =
∑n
i=1 αi we get

OPT(D̃) >

(
1− (c+ 1) ·

(
n∑
i=1

αi

)
· log

(
1∑n
i=1 αi

))
·OPT(D).

Hence, (11) follows and as we explained this proves Theorem 3.6.

B.2 Regular Distributions—Proof of Theorem 3.8

Let D̃ be the corrupted product distribution that we observe, D̂ be the output distribution of Algo-
rithm 1, D∗ be the original distribution that we are interested in. We know from the description of
Algorithm 1 for D̂ = D̂1 × · · · × D̂n that D̂i is a regular distribution, that dk(D̂i,D∗i ) 6 αi and that
D̂i � D∗i . We also know that D∗i is regular. Finally, we know that the output M of Algorithm 1 is the
Myerson optimal mechanism for the distribution D̂ and hence Rev(M, D̂) = OPT(D̂). So applying
the strong revenue monotonicity lemma 3.3 we have that

OPT(D̂) = Rev(M, D̂) 6 Rev(M,D∗). (15)

Therefore to show Theorem 3.8, it suffices to show that

OPT(D̂) >

(
1− Õ

(
n∑
i=1

αi

))
·OPT(D∗). (16)

We are going to use the following theorem from Devanur et al. [2016], combined with the weak
revenue monotonicity (Lemma 3 of Guo et al. [2019]).
Theorem B.4 (Lemma 2 of Devanur et al. [2016]). Let D be a product of n regular distributions
and OPT(D) be the optimal revenue of D. Suppose 1

4 > ε > 0 and u > 1
εOPT(D). Let tu(D1),

. . . , tu(Dn) be the distributions obtained by truncating D1, . . . , Dn at the value u and let tu(D) be
their product distribution. Then, we have that

OPT(D) > OPT(tu(D)) > (1− 4ε) ·OPT(D).

Now let ū = 1
εOPT(D∗), then we also have that ū > 1

εOPT(D̂) due to weak revenue monotonicity
(Lemma 3 of Guo et al. [2019]). Hence, applying Theorem B.4 we have that

OPT(D̂) > OPT(tū(D̂)) and OPT(tū(D∗)) > (1− ε) ·OPT(D∗). (17)

Since we know that dk(D̂i,D∗i ) 6 αi we also have that dk(tū(D̂i), tū(D∗i )) 6 αi. Let now M∗ū be
the optimal mechanism for the distribution tū(D∗). It is easy to see that the ex-post revenue obtained
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from the mechanism M∗ū is an increasing function of the observed bids. Hence, we can apply Lemma
B.2 to the [0, ū] bounded distributions tū(D̂) and tū(D∗) and we get that

OPT(tū(D̂)) > Rev(M∗ū , tū(D̂)) > Rev(M∗ū , tū(D∗))− ū ·

(
n∑
i=1

αi

)

= OPT(tū(D∗))− ū ·

(
n∑
i=1

αi

)
. (18)

If we combine (17) and (18) then we have that

OPT(D̂) > (1− ε) ·OPT(D∗)− ū ·

(
n∑
i=1

αi

)
. (19)

Now we can substitute the value of ū to the above inequality and we get that

OPT(D̃) >

(
1− 1

ε
·

(
n∑
i=1

αi

)
− 4ε

)
·OPT(D).

Finally, setting ε =
√∑n

i=1 αi we get

OPT(D̃) >

1− 5 ·

√√√√ n∑
i=1

αi

 ·OPT(D).

Hence, (16) follows and as we explained this proves Theorem 3.8.

B.3 MHR Distributions – Proof of Theorem 3.6, n = 1 Case

In this subsection we show the part of the Theorem 3.6 related to n = 1, for which we obtain a
stronger result compared to the case n > 1. We first show a useful proposition:

Proposition B.5. Consider two MHR distributions D1, D2 with CDFs as F1 and F2, such that
dk(D1,D1) 6 α, and F1(x) > F2(x) for all x ∈ R+. Denote the optimal expected revenue under
D1 and D2 as OPTF1

and OPTF2
, and the corresponding optimal reserve prices as P ∗F1

and P ∗F2
.

Then,

(1 + αe)
−1 6

OPTF1

OPTF2

6 1 + αe.

Proof. Consider two MHR distributionsD1, D2 with CDFs as F1 and F2, such that dk(D1,D1) 6 α,
and F1(x) > F2(x) for all x ∈ R+. Denote the optimal expected revenue under D1 and D2 as
OPTF1

and OPTF2
, and the corresponding optimal reserve prices as P ∗F1

and P ∗F2
. Without loss of

generality, we consider OPTF1 > OPTF2 . Further, since the ratio of the revenues, e.g. OPTF1

OPTF2
is

scale invariant, we assume without loss of generality that OPTF1
= 1.

By Lemma A.2, we have P ∗F1
6 e. By Lemma A.1, OPTF1

= 1 implies that h1(P ∗F1
) = log(P ∗F1

).
Since P ∗F1

6 e, we have

h1(P ∗F1
) 6 1

⇐⇒ − log(1− F1(P ∗F1
)) 6 1

⇐⇒ F1(P ∗F1
) 6 1− 1

e

⇐⇒ 1− F1(P ∗F1
) >

1

e
.
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Therefore, since F1 is non-decreasing, for any x < P ∗F1
, 1− F1(x) > 1

e . So for any x < P ∗F1
, we

have

|h1(x)− h2(x)| =
∣∣∣∣log

(
1− F2(x)

1− F1(x)

)∣∣∣∣
=

∣∣∣∣log

(
1 +

F1(x)− F2(x)

1− F1(x)

)∣∣∣∣
6 log (1 + αe)

= O(α),

where the at the second last step, the inequality follows from the fact that dk(D1,D1) 6 α, and
x < P ∗F1

.

Further, F1(x) > F2(x) for all x ∈ R+ implies that h1(x) > h2(x) for all x ∈ R+. Therefore,
h1(P ∗F1

) = log(P ∗F1
) > h2(P ∗F1

). Therefore, we have P ∗F2
6 P ∗F1

, and

|h1(P ∗F2
)− h2(P ∗F2

)| 6 log (1 + αe) .

Now define functions s1(x) = h1(x)− log(x), and s2(x) = h2(x)− log(x). Then by the definition
of P ∗F1

, P ∗F2
and Lemma A.1,

min
x6P∗F1

s1(x) = s1(P ∗F1
) 6 s1(P ∗F2

)

6 s2(P ∗F2
) + log (1 + αe)

= min
x6P∗F2

s2(x) + log (1 + αe) .

Therefore, by the definitions of s1 and s2,∣∣∣∣∣ min
x6P∗F1

s1(x)− min
x6P∗F2

s2(x)

∣∣∣∣∣ 6 log (1 + αe)

⇐⇒ | log(OPTF2
)− log(OPTF1

)| 6 log (1 + αe)

⇐⇒ − log (1 + αe) 6 log(OPTF2
) 6 log (1 + αe)

⇐⇒ (1 + αe)
−1 6 OPTF2

6 1 + αe.

The above directly implies:

(1 + αe)
−1 6

OPTF1

OPTF2

6 1 + αe.

which completes the proof. �

Now we are ready to prove Theorem 3.6 for the n = 1 case.

Proof. First, by construction, Algorithm 1 runs the Myerson optimal auction on an MHR dis-
tribution F̂ , such that F̂ > F̂ ′(x) for all x ∈ R+, for any MHR distribution F ′(x) such that
dk(F ′(x), F̃ (x)) 6 α. Also by assumption, dk(F ∗(x), F̃ (x)) 6 α. Therefore by triangle inequality,
dk(F ∗(x), F̂ (x)) 6 dk(F ∗(x), F̃ (x)) + dk(F̃ (x), F̂ (x)) 6 2α.

Denote α′ = 2α. By Proposition B.5,

(1 + α′e)
−1
6

OPTF1

OPTF2

6 1 + α′e.

Note that (1 + α′e)
−1

= (1 + 2αe)
−1

= 1−O(α), which completes the proof. �
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C Proof of Optimality for the Upper Bounds

For these lower bounds we follow the idea of the lower bounds from Guo et al. [2019] adapted to the
corrupted case that we consider in this paper. The lower bound constructions of Guo et al. [2019] are
based on a family of distributions

H = {D | D1 = Db,Di = Dh or Di = D` for all 2 6 i 6 n}.

Observe that this family is characterized by the triplet of distributions Db, Dh, and D` for which we
ask for the following conditions.

a) Db is a point mass at v0.

b) The propability of v > v2 is at most 1/n both when v ∼ Dh and when v ∼ D`.
c) The probability of v1 > v > v2 is at least p both when v ∼ Dh and when v ∼ D`.
d) For any value v such that v1 > v > v2, we have φ`(v) + ∆ 6 v0 6 φh(v)−∆, where φ`

is the virtual value function of D` and correspondingly for φh.

e) For any value v such that v < v2, we have that φh(v), φ`(v) 6 v0.

f) For any value v1 > v > v2 we have that the ratio dDh
dD` (v) is upper and lower bounded by a

constant, where dDh
dD` is the Radon–Nikodym derivative between Dh and D`.

g) Dh is regular.

h) The point v1 is either +∞ or is a point mass and an upper bound on the support in both D`
and Dh.

Under these conditions and using the exact same proof as the Lemma 18 from Guo et al. [2019] we
can show the following.

Lemma C.1. LetH be a class of distributions that satisfies the conditions a) - h) and additionally
satisfies the following.

i) We have that dk(D`,Dh) 6 α/n.

Then any algorithm that is robust to a total corruption α in Kolmogorov distance across all bidders
achieves revenue of at most

OPT(D)− Ω(n · p ·∆)

for any distribution D ∈ H.

C.1 MHR Distributions – Proof of Theorem 3.7

Let a = ln(n)−ln(1−β), b = ln(n), v0 = a−1, v1 = ln(n)−2·ln(1−β), v2 = a, p = β ·(1−β)/n,
∆ = 1/2. Then we define D` and Dh according to their CDFs F ` and Fh which are the following:

F `(v) =

{
1− exp(−v) v < v1

0 v > v1
,

Fh(v) =


1− exp

(
− b
a · v

)
v < v2

1− exp
(
− v1−b
v1−a · (v − a) + b

)
v2 6 v < v1

0 v > v1

.

Observe also that for this choice of distributions it holds that

φ`(v) =

{
v − 1 v < v1

v1 v > v1
,

φh(v) =


v − a

b v < v2

v − v1−a
v1−b v2 6 v < v1

v1 v > v1

.
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Now the conditions a) - h) are easy to verify. For the condition i) we observe that the maximum
difference between the two CDFs is at v = v2 for which we have that

∣∣F `(v2)− Fh(v2)
∣∣ 6 β/n.

Hence, Lemma C.1 implies that the maximum revenue achievable by any robust mechanism is

OPT(D)− Ω(n · p ·∆) = OPT(D)− Ω(β).

Observe that since the maximum value of any bidder is at most ln(n) we have that the maximum
revenue is (

1− β

ln(n)

)
·OPT(D).

If we write this expression with respect to the amount of corruption per bidder, then we have that the
maximum possible revenue is (

1− n · α
ln(n)

)
·OPT(D).

Finally, we observe that all of Db, D`, and Dh are MHR and hence Theorem 3.7 follows.

C.2 Regular Distributions – Proof of Theorem 3.9

For the case of regular distributions we will use the same distributions used by Guo et al. [2019]
in their proof of their Theorem 2. In particular, let v0 = 3/2, v1 = +∞, v2 = 1 + 1

β , p = β
n , and

∆ = 1/2. We define D` and Dh through their CDFs as follows

F `(v) = 1− 1

n · (v − 1)
,

Fh(v) =


0 v < 1 + 1

n

1− 1
n·(v−1) 1 + 1

n > v < v2

1− 1−β
n·(v−2) v > v2

.

The fact that these distributions satisfy a) - h) can be found in Guo et al. [2019]. We will focus on
proving i). It is not hard to see that the two CDFs appears when v = v̄ = 1 + 1√

1−β . For this value
we have ∣∣F `(v̄)− Fh(v̄)

∣∣ =
1

n

(
2− β − 2

√
1− β

)
6
β2

n
,

where the last inequality can be easily verifies for β 6 1. Now setting α = β2

n , observing that
n · p ·∆ = Ω(β), and observing that OPT(D) 6 O(1) we can apply Lemma C.1 and we get that
the maximum possible revenue is (

1− Ω
(√
n · α

))
·OPT(D).

Finally by observing that all of Db, D`, and Dh are regular Theorem 3.9 follows.

D Proofs of Sample Complexity Bounds

D.1 Proof of Theorem 4.3, n > 1 Case

This follows easily from Theorem 3.8 and the DKW inequality Dvoretzky et al. [1956], Massart
[1990] that states that the empirical CDF with m samples is close to the population CDF with an
error of at most

O

(√
log(1/δ)

m

)
with probability at least 1− δ. �
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D.2 Proof of Theorem 4.3, n = 1 Case

We present in this section a proof of Theorem 4.3 for the case with n = 1 and regular distributions. In
this case, we show that Algorithm 2 achieves the optimal sample complexity, up to a poly-logarithmic
factor.

First, by [Lemma 5, Guo et al. [2019]], we have that with probability at least 1− δ, for any value
v > 0, the quantiles of D̃ and its empirical counterpart E satisfy that:

|qE(v)− qD̃(v)| 6

√
2qD̃(v)(1− qD̃(v)) ln(2mδ−1)

m
+

ln(2mδ−1)

m
. (20)

Further note that by construction, we have

qE − qÊ 6
√

2qE(v) (1− qE(v)) ln(2mδ−1)

m
+

4 ln(2mδ−1)

m
+ α.

Given that Algorithm 2 runs the Myerson optimal auction on Ẽ, which is a minimal regular distribution
that dominates Ẽ. Further, Ê � D∗ by construction, assuming Eq (20) holds. Therefore, we have
D∗ � Ẽ assuming Eq (20) holds. Applying Lemma 3.3 yields:

Rev(MẼ ,D
∗) > Rev(MẼ , Ẽ) = OPT(Ẽ).

Therefore, the remaining task is to ensure that m is sufficiently large such that

OPT(Ẽ) > (1−
√
α)OPT(D∗).

We will use a useful lemma below which connects the ratio of revenues that we are interested in with
the value of link function at an optimal reserve price.
Lemma D.1. Given two regular distributions D, D̄ with CDFs F, F̄ , such that F̄ � F and
dk(D, D̄) 6 β. Denote the optimal reserve price for F̄ as P̄ , and the optimal expected revenue for
F, F̄ as OPTF ,OPTF̄ . Then we have

OPTF
OPTF̄

> 1− βhr(P̄ )

Proof. Recall that hr(x) = 1
1−F (x) , and h̄r(x) = 1

1−F̄ (x)
. Then, F (x) > F̄ (x) implies hr(x) >

h̄r(x).

By definition, dk(D, D̄) 6 β implies that maxx F (x)− F̄ (x) 6 β. So we have:

hr(x)− h̄r(x) =
F (x)− F̄ (x)

(1− F (x))(1− F̄ (x)
= (F (x)− F̄ (x))hr(x)h̄r(x) 6 βh2

r(x),

where the last inequality follows from the fact that maxx F (x) − F̄ (x) 6 β, and hr(x) > h̄r(x).
Thus, for all x,

h̄R(x) > hr(x)− βh2
r(x). (21)

Note that the expected revenue, R(x) = x(1 − F (x)), at any x, equals to x
hr(x) , which is the

reciprocal of the slope for the linear function g(a) = hr(x) · a. Hence, the revenue is maximized
when the slope for the linear function g(a) = hr(x) · a is minimized.

Denote the corresponding optimal reserve prices for F and F̄ as P and P̄ . Then at P̄ ,

h̄r(P̄ ) =
1

1− F̄ (P̄ )
=

1

OPTF̄
· P̄ .

Denote Rev(F, x) as the expected revenue with a reserve price at x for a valuation distribution with
CDF as F . Then,

OPTF
OPTF̄

>
Rev(F, P̄ )

OPTF̄
=
h̄r(P̄ )

h(P̄ )
>
hr(P̄ )− βh2

r(P̄ )

hr(P̄ )
= 1− βhr(P̄ ),

where the first inequality follows directly from the definition of the optimal revenue, and the second
inequality is from Eq (21). �
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Now we will use Lemma D.1 to proceed. Denote the optimal reserve price for D∗ as P ∗. Denote the
link function applied to Ẽ and D∗ as h̃, h∗, respectively. Then, we will discuss two cases for h̃(P ∗).

Case 1: h̃(P ∗) > 1√
α

. For this case, h̃(P ∗) > 1√
α

implies that qẼ(P ∗) <
√
α. Applying [Lemma

5, Guo et al. [2019]] and triangle inequalities, we have

|qẼ − qD
∗
| 6

√√√√2qẼ(v)
(

1− qẼ(v)
)

ln(2mδ−1)

m
+

4 ln(2mδ−1)

m
+ α.

Given that qẼ(P ∗) <
√
α, we have qẼ(1− qẼ) 6 qẼ 6

√
α. Therefore, it suffices to have√√

α

m
6 C1α,

for some universal constant C1 to ensure that |qẼ − qD∗ | = O(α), which implies m > 1/{C2
1α

3/2}
for some universal constant C1.

Case 2: h̃(P ∗) 6 1√
α

. For this case, h̃(P ∗) 6 1√
α

implies that qẼ(P ∗) >
√
α.

By lemma D.1, we have that
OPTẼ
OPTD∗

> 1− βh̃r(P ∗),

therefore it suffice to ensure that 1− βh̃r(P ∗) > 1− C2
√
α for some universal constant C2, which

implies that β 6 qẼ(P ∗) · C2
√
α. Applying [Lemma 5, Guo et al. [2019]], it suffices to have that√

qẼ(P∗)
m 6 β 6 qẼ(P ∗) · C2

√
α, which yields that m > 1

C2
2αq

Ẽ
. Lastly, applying the fact that we

are in the case where qẼ(P ∗) >
√
α we get that is suffices to have m > 1

C2
2α

3/2 for some universal
constant C2. This completes the proof.

�

D.3 Proof of Theorem 4.4

This follows easily from Theorem 3.6 and the DKW inequality Dvoretzky et al. [1956], Massart
[1990] that states that the empirical CDF with m samples is close to the population CDF with an
error of at most

O

(√
log(1/δ)

m

)
with probability at least 1− δ. �

D.4 Proof of Theorem 4.5

We omit the details of this proof since it follows from Theorem 2 and Appendix E of Guo et al. [2019]
applied for the case n = 1. The reason is that if we could get a better bound in our corrupted case
then this algorithm could be used to improve our sample complexity result in the non-corrupted case.
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