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Abstract

Conditional gradient, aka Frank Wolfe (FW) algorithms, have well-documented
merits in machine learning and signal processing applications. Unlike projection-
based methods, momentum cannot improve the convergence rate of FW, in general.
This limitation motivates the present work, which deals with heavy ball momentum,
and its impact to FW. Specifically, it is established that heavy ball offers a unifying
perspective on the primal-dual (PD) convergence, and enjoys a tighter per iteration
PD error rate, for multiple choices of step sizes, where PD error can serve as
the stopping criterion in practice. In addition, it is asserted that restart, a scheme
typically employed jointly with Nesterov’s momentum, can further tighten this PD
error bound. Numerical results demonstrate the usefulness of heavy ball momentum
in FW iterations.

1 Introduction

This work studies momentum in Frank Wolfe (FW) methods [9, 10, 16, 20] for solving

min
x∈X

f(x). (1)

Here, f is a convex function with Lipschitz continuous gradients, and the constraint set X ⊂ Rd is
assumed convex and compact, where d is the dimension of variable x. Throughout, we let x∗ ∈ X
denote a minimizer of (1). FW and its variants are prevalent in various machine learning and signal
processing applications, such as traffic assignment [12], non-negative matrix factorization [30], video
colocation [17], image reconstruction [15], particle filtering [19], electronic vehicle charging [36],
recommender systems [11], optimal transport [26], and neural network pruning [34]. The popularity
of FW is partially due to the elimination of projection compared with projected gradient descent
(GD) [29], leading to computational efficiency especially when d is large. In particular, FW solves
a subproblem with a linear loss, i.e., vk+1 ∈ arg minv∈X 〈∇f(xk),v〉 at kth iteration, and then
updates xk+1 as a convex combination of xk and vk+1. When dealing with a structured X , a
closed-form or efficient solution for vk+1 is available [13, 16], which is preferable over projection.

Unlike projection based algorithms [14, 32] though, momentum does not perform well with FW.
Indeed, the lower bound in [16,20] demonstrates that at leastO( 1

ε ) linear subproblems are required to
ensure f(xk)− f(x∗) ≤ ε, which does not guarantee that momentum is beneficial for FW, because
even vanilla FW achieves this lower bound. In this work, we contend that momentum is evidently
useful for FW. Specifically, we prove that the heavy ball momentum leads to tightened and efficiently
computed primal-dual error bound, as well as numerical improvement. To this end, we outline first
the primal convergence.

Primal convergence. The primal error refers to f(xk) − f(x∗). It is guaranteed for FW that
f(xk)− f(x∗) = O

(
1/k
)
,∀k ≥ 1 [16,22]. This rate is tight in general since it matches to the lower

bound [16, 20]. Other FW variants also ensure the same order of primal error; see e.g., [20, 21].
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Table 1: A comparison of HFW with relevant works. The “computation” in the third column is short
for “the number of required FW subproblems to calculate the PD error per iteration.”

reference computation PD conv. type PD conv. rate
[16] 1 subproblem Type I 27LD2

4(K+1)

[18] 2 subproblems Type II 2LD2
√
k+1

,∀k
[28] 2 subproblems Type II 4LD2

k+1 ,∀k
This work (Alg. 2) 1 subproblem Type II 2LD2

k+1 ,∀k
This work (Alg. 3) 2 subproblems Type II 2LD2

k+1+c ,∀k with c ≥ 0

Primal-dual convergence. The primal-dual (PD) error quantifies the difference between both
the primal and the ‘dual’ functions from the optimal objective, hence it is an upper bound on the
primal error. When the PD error is shown to converge, it can be safely used as the stopping criterion:
whenever the PD error is less than some prescribed ε > 0, f(xk)−f(x∗) ≤ ε is ensured automatically.
The PD error of FW is convenient to compute, hence FW is suitable for the requirement of “solving
problems to some desirable accuracy;” see e.g., [33]. For pruning (two-layer) neural networks [34],
the extra training loss incurred by removing neurons can be estimated via the PD error. However,
due to technical difficulties, existing analyses on PD error are not satisfactory enough and lack of
unification. It is established in [6, 10, 16] that the minimum PD error is sufficiently small, namely
mink∈{1,...,K} PDErrork = O

(
1
K

)
, where K is the total number of iterations. We term such a

bound for the minimum PD error as Type I guarantee. Another stronger guarantee, which directly
implies Type I bound, emphasizes the per iteration convergence, e.g., PDErrork ≤ O( 1

k ),∀k. We
term such guarantees as Type II bound. A Type II bound is reported in [18, Theorem 2], but with an
unsatisfactory k dependence. This is improved by [7,28] with the price of extra computational burden
since it involves solving two FW subproblems per iteration for computing this PD error. Several
related works such as [10] provide a weaker PD error compared with [28]; see a summary in Table 1.

In this work, we show that a computationally affordable Type II bound can be obtained by simply
relying on heavy ball momentum. Interestingly, FW based on heavy ball momentum (HFW) also
maintains FW’s neat geometric interpretation. Through unified analysis, the resultant type II PD
error improves over existing bounds; see Table 1. This PD error of HFW is further tightened using
restart. Although restart is more popular in projection based methods together with Nesterov’s
momentum [31], we show that restart for FW is natural to adopt jointly with heavy ball. In succinct
form, our contributions can be summarized as follows.

• We show through unified analysis that HFW enables a tighter type II guarantee for PD error for
multiple choices of the step size. When used as stopping criterion, no extra subproblem is needed.
• The Type II bound can be further tightened by restart triggered through a comparison between two
PD-error-related quantities.
• Numerical tests on benchmark datasets support the effectiveness of heavy ball momentum. As a
byproduct, a simple yet efficient means of computing local Lipschitz constants becomes available to
improve the numerical efficiency of smooth step sizes [13, 22].

Notation. Bold lowercase (capital) letters denote column vectors (matrices); ‖x‖ stands for a norm
of a vector x, whose dual norm is denoted by ‖x‖∗; and 〈x,y〉 is the inner product of x and y.

2 Preliminaries

This section outlines FW, starting with standard assumptions that will be taken to hold true throughout.
Assumption 1. (Lipschitz continuous gradient.) The objective function f : X → R has L-Lipchitz
continuous gradients; i.e., ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,∀x,y ∈ X .
Assumption 2. (Convexity.) The objective function f : X → R is convex; that is, f(y)− f(x) ≥
〈∇f(x),y − x〉,∀x,y ∈ X .
Assumption 3. (Convex and compact constraint set.) The constraint set X ⊂ Rd is convex and
compact with diameter D, that is, ‖x− y‖ ≤ D,∀x,y ∈ X .
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Algorithm 1 FW [9]
1: Initialize: x0 ∈ X
2: for k = 0, 1, . . . ,K − 1 do
3: vk+1 = arg minv∈X 〈∇f(xk),v〉
4: xk+1 = (1− ηk)xk + ηkvk+1

5: end for
6: Return: xK

FW for solving (1) under Assumptions 1 – 3
is listed in Alg. 1. The subproblem in Line 3
can be visualized geometrically as minimizing
a supporting hyperplane of f(x) at xk, i.e.,

vk+1 ∈ arg min
v∈X

f(xk) + 〈∇f(xk),v − xk〉.

(2)

For many constraint sets, efficient implementa-
tion or a closed-form solution is available for vk+1; see e.g., [16] for a comprehensive summary.
Upon minimizing the supporting hyperplane in (2), xk+1 is updated as a convex combination of vk+1

and xk in Line 4 so that no projection is required. The choices on the step size ηk ∈ [0, 1] will be
discussed shortly.

The PD error of Alg. 1 is captured by the so-termed FW gap, formally defined as

Ḡk := 〈∇f(xk),xk − vk+1〉 = f(xk)−f(x∗)︸ ︷︷ ︸
primal error

+ f(x∗)−min
v∈X

[
f(xk) + 〈∇f(xk),v−xk〉

]
︸ ︷︷ ︸

dual error

(3)

where the second equation is because of (2). It can be verified that both primal and dual errors marked
in (3) are no less than 0 by appealing to the convexity of f . If Ḡk converges, one can deduce that the
primal error converges. For this reason, Ḡk is typically used as a stopping criterion for Alg. 1. Next,
we focus on the step sizes that ensure convergence.

Parameter-free step size. This type of step sizes does not rely on any problem dependent parameters
such as L and D, and hence it is extremely simple to implement. The most commonly adopted step
size is ηk = 2

k+2 , which ensures a converging primal error f(xk) − f(x∗) ≤ 2LD2

k+1 ,∀k ≥ 1, and

a weaker claim on the PD error, mink∈{1,...,K} Ḡk = 27LD2

4K [16]. A variant of PD convergence
has been established recently based on a modified FW gap [28]. Although Type II convergence
is observed, the modified FW gap therein is inefficient to serve as stopping criterion because an
additional FW subproblem has to be solved per iteration to compute its value.

Smooth step size. When the (estimate of) Lipschitz constant L is available, one can adopt the
following step sizes in Alg. 1 [22]

ηk = min

{
〈∇f(xk),xk − vk+1〉
L‖vk+1 − xk‖2

, 1

}
. (4)

Despite the estimated L is typically too pessimistic to capture the local Lipschitz continuity, such a
step size ensures f(xk+1) ≤ f(xk); see derivations in Appendix A.1. The PD convergence is studied
in [11], where the result is slightly weaker than that of [28].

3 FW with heavy ball momentum

After a brief recap of vanilla FW, we focus on the benefits of heavy ball momentum for FW under
multiple step size choices, with special emphasis on PD errors.

3.1 Prelude

HFW is summarized in Alg. 2. Similar to GD with heavy ball momentum [14, 32], Alg. 2 updates
decision variables using a weighted average of gradients gk+1. In addition, the update direction of
Alg. 2 is no longer guaranteed to be a descent one. This is because in HFW, 〈∇f(xk),xk − vk+1〉
can be negative. Although a stochastic version of heavy ball momentum was adopted in [27] and its
variants, e.g., [37], to reduce the mean square error of the gradient estimate, heavy ball is introduced
here for a totally different purpose, that is, to improve the PD error. The most significant difference
comes at technical perspectives, which is discussed in Sec. 3.4. Next, we gain some intuition on why
heavy ball can be beneficial.

Consider X as an `2-norm ball, that is, X = {x|‖x‖2 ≤ R}. In this case, we have vk+1 =
− R
‖gk+1‖2 gk+1 in Alg. 2. The momentum gk+1 can smooth out the changes of {∇f(xk)}, resulting
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Algorithm 2 FW with heavy ball momentum
1: Initialize: x0 ∈ X ,g0 = ∇f(x0)
2: for k = 0, 1, . . . ,K − 1 do
3: gk+1 = (1− δk)gk + δk∇f(xk)
4: vk+1 = arg minv∈X 〈gk+1,v〉
5: xk+1 = (1− ηk)xk + ηkvk+1

6: end for
7: Return: xK

in a more concentrated sequence {vk+1}. Re-
call that the PD error is closely related to vk+1

[cf. equation (3)]. We hope the “concentration”
of {vk+1} to be helpful in reducing the changes
of PD error among consecutive iterations so that
a Type II PD error bound is attainable.

A few concepts are necessary to obtain a tight-
ened PD error of HFW. First, we introduce the
generalized FW gap associated with Alg. 2
that captures the PD error. Write gk+1 explicitly as gk+1 =

∑k
τ=0 w

τ
k∇f(xτ ), where wτk =

δτ
∏k
j=τ+1(1− δj) > 0, ∀τ ≥ 1, and w0

k =
∏k
j=1(1− δj) > 0. Then, define a sequence of linear

functions {Φk(x)} as

Φk+1(x) :=

k∑
τ=0

wτk
[
f(xτ ) + 〈∇f(xτ ),x− xτ 〉

]
, ∀k ≥ 0. (5)

It is clear that Φk+1(x) is a weighted average of the supporting hyperplanes of f(x) at {xτ}kτ=0.
The properties of Φk+1(x), and how they relate to Alg. 2 are summarized in the next lemma.
Lemma 1. For the linear function Φk+1(x) in (5), it holds that: i) vk+1 minimizes Φk+1(x) over X ;
and, ii) f(x) ≥ Φk+1(x),∀k ≥ 0,∀x ∈ X .

From the last lemma, one can see that vk is obtained by minimizing Φk(x), which is an affine lower
bound on f(x). Hence, HFW admits a geometric interpretation similar to that of FW. In addition,
based on Φk(x) we can define the generalized FW gap.
Definition 1. (Generalized FW gap.) The generalized FW gap w.r.t. Φk(x) is

Gk := f(xk)−min
x∈X

Φk(x) = f(xk)− Φk(vk). (6)

In words, the generalized FW gap is defined as the difference between f(xk) and the minimal value
of Φk(x) over X . The newly defined Gk also illustrates the PD error

Gk = f(xk)− Φk(vk) = f(xk)− f(x∗)︸ ︷︷ ︸
primal error

+ f(x∗)− Φk(vk)︸ ︷︷ ︸
dual error

. (7)

For the dual error, we have f(x∗) − Φk(vk) ≥ Φk(x∗) − Φk(vk) ≥ 0, where both inequalities
follow from Lemma 1. Hence, Gk ≥ 0 automatically serves as an overestimate of both primal and
dual errors. When establishing the convergence of Gk, it can be adopted as the stopping criterion
for Alg. 2. Related claims have been made for the generalized FW gap [20, 23, 28]. Lack of heavy
ball momentum leads to inefficiency, because an additional FW subproblem is needed to compute
this gap [28]. Works [20, 23] focus on Nesterov’s momentum for FW, that incurs additional memory
relative to HFW; see also Sec. 3.4 for additional elaboration. Having defined the generalized FW gap,
we next pursue parameter choices that establish Type II convergence guarantees.

3.2 Parameter-free step size

We first consider a parameter-free choice for HFW to demonstrate the usefulness of heavy ball

δk = ηk =
2

k + 2
, ∀k ≥ 0. (8)

Such a choice on δk puts more weight on recent gradients when calculating gk+1, since wτk = O( τk2 ).
The following theorem specifies the convergence of Gk.
Theorem 1. If Assumptions 1-3 hold, then choosing δk and ηk as in (8), Alg. 2 guarantees that

Gk = f(xk)− Φk(vk) ≤ 2LD2

k + 1
, ∀k ≥ 1.

Theorem 1 provides a much stronger PD guarantee for all k than vanilla FW [16, Theorem 2]. In
addition to a readily computable generalized FW gap, our rate is tighter than [28], where the provided
bound is 4LD2

k+1 . In fact, the constants in our PD bound even match to the best known primal error of
vanilla FW. A direct consequence of Theorem 1 is the convergence of both primal and dual errors.
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Corollary 1. Choosing the parameters as in Theorem 1, then ∀k ≥ 1, Alg.2 guarantees that

primal conv.: f(xk)− f(x∗) ≤ 2LD2

k + 1
; dual conv.: f(x∗)− Φk(vk) ≤ 2LD2

k + 1
.

Proof. Combine Theorem 1 with f(xk)− f(x∗) ≤ Gk and f(x∗)− Φk(vk) ≤ Gk [cf. (7)].

3.3 Smooth step size

Next, we focus on HFW with a variant of the smooth step size

δk =
2

k + 2
and ηk = max

{
0,min

{ 〈∇f(xk),xk − vk+1〉
L‖vk+1 − xk‖2

, 1
}}

. (9)

Comparing with the smooth step size for vanilla FW in (4), it can be deduced that the choice
on ηk in (9) has to be trimmed to [0, 1] manually. This is because 〈∇f(xk),xk − vk+1〉 is no
longer guaranteed to be positive. The smooth step size enables an adaptive means of adjusting
the weight for ∇f(xk). To see this, note that when ηk = 0, we have xk+1 = xk. As a result,
gk+2 = (1− δk+1)gk+1 + δk+1∇f(xk+1) = (1− δk+1)gk+1 + δk+1∇f(xk), that is, the weight
on ∇f(xk) is adaptively increased to δk(1 − δk+1) + δk+1 if one further unpacks gk+1. Another
analytical benefit of the step size in (9) is that it guarantees a non-increasing objective value; see
Appendix A.2 for derivations. Convergence of the generalized FW gap is established next.
Theorem 2. If Assumptions 1-3 hold, while ηk and δk are chosen as in (9), Alg. 2 guarantees that

Gk = f(xk)− Φk(vk) ≤ 2LD2

k + 1
, ∀k ≥ 1.

The proof of Theorem 2 follows from that of Theorem 1 after modifying just one inequality. This
considerably simplifies the analysis on the (modified) FW gap compared to vanilla FW with smooth
step size [11]. The PD convergence clearly implies the convergence of both primal and dual errors. A
similar result to Corollary 1 can be obtained, but we omit it for brevity. We further extend Theorem 2
in Appendix B.4 by showing that if a slightly more difficult subproblem can be solved, it is possible
to ensure per step descent on the PD error; i.e., Gk+1 ≤ Gk.

Line search. When choosing δk = 2
k+2 and ηk via line search, HFW can guarantee a Type II PD

error of 2LD2

k+1 ; please refer to Appendix B.5 due to space limitation. For completeness, an iterative
manner to update Gk for using as stopping criterion is also described in Appendix C.

3.4 Further considerations

There are more choices of δk and ηk leading to (primal) convergence. For example, one can choose
δk ≡ δ ∈ (0, 1) and ηk = O

(
1
k

)
as an extension of [27].1 A proof is provided in Appendix B.7 for

completeness. This analysis framework in [27], however, has two shortcomings: i) the convergence
can be only established using `2-norm (recall that in Assumption 1, we do not pose any requirement
on the norm); and, ii) the final primal error (hence PD error) can only be worse than vanilla FW
because their analysis treats gk+1 as∇f(xk) with errors but not momentum, therefore, it is difficult
to obtain the same tight PD bound as in Theorem 1. Our analytical techniques avoid these limitations.

When choosing δk = ηk = 1
k+1 , we can recover Algorithm 3 in [1]. Notice that such a choice on

δk makes gk+1 a uniform average of all gradients. A slower convergence rate f(xk) − f(x∗) =

O
(
LD2 ln k

k

)
was established in [1] through a sophisticated derivation using no-regret online learning.

Through our simpler analytical framework, we can attain the same rate while providing more options
for the step size.
Theorem 3. Let Assumptions 1-3 hold, and select δk = 1

k+1 with ηk using one of the following
options: i) ηk = 1

k+1 ; ii) as in (9); or iii) line search as in (26b). The generalized FW gap of Alg. 2
then converges with rate

Gk = f(xk)− Φk(vk) ≤ LD2 ln(k + 1)

2k
, ∀k ≥ 1.

1We are unable to derive even a primal error bound using the same analysis framework in [27] for step sizes
listed in Theorem 1.
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The rate in Theorem 3 has worse dependence on k relative to Theorems 1 and 2, partially because too
much weight is put on past gradients in gk+1, suggesting that large momentum may not be helpful.

Heavy ball versus Nesterov’s momentum. A simple rule to compare these two momentums is
whether gradient is calculated at the converging sequence {xk}. Heavy ball momentum follows this
rule, while Nesterov’s momentum computes the gradient at some extrapolation points that are not
used in Alg. 2. It is unclear how the original Nesterov’s momentum benefits the PD error, but the
∞-memory variant of Nesterov’s momentum [20, 23, 24], which can be viewed as a combination of
heavy ball and Nesterov’s momentum, yields a Type II PD error. However, compared with HFW,
additional memory should be allocated. In sum, these observations suggest that heavy ball momentum
is essentially critical to improve the PD performance of FW. Nesterov’s momentum, on the other
hand, does not influence PD error when used alone; however, it gives rise to faster (local) primal rates
under additional assumptions [20, 23].

3.5 A side result: Directional smooth step sizes

Common to both FW and HFW is that the globally estimated L might be too pessimistic for a local
update. In this subsection, a local Lipschitz constant is investigated to further improve the numerical
efficiency of smooth step sizes in (9). This easily computed local Lipschitz constant is another merit
of (H)FW over projection based approaches.

Definition 2. (Directional Lipschitz continuous.) For two points x,y ∈ X , the directional Lipschitz
constant L(x,y) ensures ‖∇f(x̂)−∇f(ŷ)‖∗ ≤ L(x,y)‖x̂− ŷ‖ for any x̂ = (1− α)x + αy, ŷ =
(1− β)x + βy with some α ∈ [0, 1] and β ∈ [0, 1].

In other words, the directional Lipschitz continuity depicts the local property on the segment between
points x and y. It is clear that L(x,y) ≤ L. Using logistic loss for binary classification as an
example, we have L(x,y) ≤ 1

4N

∑N
i=1

〈ai,x−y〉2
‖x−y‖22

, where N is the number of data, and ai is the

feature of the ith datum. As a comparison, the global Lipschitz constant is L ≤ 1
4N

∑N
i=1 ‖ai‖22. We

show in Appendix E that at least for a class of functions, including widely used logistic loss and
quadratic loss, L(x,y) has an analytical form.

Simply replacing L in (9) with L(xk,vk+1), i.e.,

ηk = max

{
0,min

{ 〈∇f(xk),xk − vk+1〉
L(xk,vk+1)‖vk+1 − xk‖2

, 1
}}

(10)

we can obtain what we term directionally smooth step size. Upon exploring the collinearity of xk,
xk+1 and vk+1, a simple modification of Theorem 2 ensures the PD convergence.

Corollary 2. Choosing δk = 2
k+2 , and ηk via (10), Alg. 2 ensures

Gk = f(xk)− Φk(vk) ≤ 2LD2

k + 1
, ∀k ≥ 1.

The directional Lipschitz constant can also replace the global one in other FW variants, such as [13,22],
with theories therein still holding. As we shall see in numerical tests, directional smooth step sizes
outperform the vanilla one by an order of magnitude.

4 Restart further tightens the PD error

Up till now it is established that the heavy ball momentum enables a unified analysis for tighter
Type II PD bounds. In this section, we show that if the computational resources are sufficient for
solving two FW subproblems per iteration, the PD error can be further improved by restart when the
standard FW gap is smaller than generalized FW gap. Restart is typically employed by Nesterov’s
momentum in projection based methods [31] to cope with the robustness to parameter estimates, and
to capture the local geometry of problem (1). However, it is natural to integrate restart with heavy
ball momentum in FW regime. In addition, restart provides an answer to the following question:
which is smaller, the generalized FW gap or the vanilla one? Previous works using the generalized
FW gap have not addressed this question [20, 23, 28].
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Algorithm 3 FW with heavy ball momentum and restart
1: Initialize: x0

0 ∈ X ,g0
0 = ∇f(x0

0), s← 0, C0 = 0, G00 = Ḡ00
2: while [not terminated] do
3: k ← 0, gs0 = ∇f(xs0)
4: while [Gsk ≤ Ḡsk or k = 0] and [not terminated] do . Check whether restart is needed
5: δsk = 2

k+2+Cs

6: gsk+1 = (1− δsk)gsk + δsk∇f(xsk)
7: vsk+1 = arg minx∈X 〈gsk+1,x〉
8: xsk+1 = (1− ηsk)xsk + ηskv

s
k+1

9: v̄sk+1 = arg minx∈X 〈∇f(xsk+1),x〉
10: Gsk+1 = f(xsk+1)− Φsk+1(vsk+1) . Generalized FW gap
11: Ḡsk+1 = 〈∇f(xsk),xsk − v̄sk+1〉 . Vanilla FW gap
12: k ← k + 1
13: end while
14: Ks ← k, xs+1

0 = xsKs
, Cs+1 = 2LD2

Gs
Ks

, s← s+ 1

15: end while

FW with heavy ball momentum and restart is summarized under Alg. 3. For exposition clarity, when
updating the counters such as k and s, we use notation ‘←’. Alg. 3 contains two loops. The inner
loop is the same as Alg. 2 except for computing a standard FW gap (Line 11) in addition to the
generalized one (Line 10). The variable Ks, depicting the iteration number of inner loop s, is of
analysis purpose. Alg. 3 can be terminated immediately whenever min{Gsk, Ḡsk} ≤ ε for a desirable
ε > 0. The restart happens when the standard FW gap is smaller than generalized FW gap. And after
restart, gsk+1 will be reset. For Alg. 3, the linear functions used for generalized FW gap are defined
stage-wisely

Φs0(x) = f(xs0) +
〈
∇f(xs0),x− xs0

〉
(11a)

Φsk+1(x) = (1− δsk)Φsk(x) + δsk
[
f(xsk) +

〈
∇f(xsk),x− xsk

〉]
,∀ k ≥ 0. (11b)

It can be verified that vsk+1 minimizes Φsk+1(x) over X for any k ≥ 0. In addition, we also have
f(xs0)− Φs0(vs0) = Ḡs−1Ks−1

where vs0 = arg minx∈X Φs0(x).

There are two tunable parameters ηsk and δsk. The choice on δsk has been provided directly in Line 5,
where it is adaptively decided using a variable Cs relating to the generalized FW gap. Three choices
are readily available for ηsk: i) ηsk = δsk; ii) smooth step size:

ηsk = max

{
0,min

{ 〈∇f(xsk),xsk − vsk+1〉
L‖vsk+1 − xsk‖2

, 1
}}

; (12)

and, iii) line search

ηsk = arg min
η∈[0,1]

f
(
(1− η)xsk + ηvsk+1

)
. (13)

Note that the directionally smooth step size, i.e., replacing L with L(xsk,v
s
k+1) in (12) is also valid

for convergence. We omit it to reduce repetition. Next we show how restart improves the PD error.
Theorem 4. Choose ηsk via one of the three manners: i) ηsk = δsk; ii) as in (12); or iii) as in (13). If
there is no restart (e.g., s = 0 when terminating), then Alg. 3 guarantees that

G0k = f(x0
k)− Φk(v0

k) ≤ 2LD2

k + 1
,∀k ≥ 1. (14a)

If restart happens, in additional to (14a), we have

Gsk = f(xsk)− Φk(vsk) <
2LD2

k + Cs
,∀k ≥ 1,∀s ≥ 1, with Cs ≥ 1 +

s−1∑
j=0

Kj . (14b)

Besides the convergence of both primal and dual errors of Alg. 3, Theorem 4 implies that when no
restart happens, the generalized FW gap is smaller than the standard one, demonstrating that the
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Figure 1: Performance of FW variants for binary classification with the constraint being an `2-norm
ball (first row), an `1-norm ball (second row), and an n-support norm ball (third row).

former is more suitable for the purpose of “stopping criterion”. When restarted, Theorem 4 provides
a strictly improved bound compared with Theorems 1, 2, and 6, since the denominator of the RHS in
(14b) is no smaller than the total iteration number. An additional comparison with [28], where two
subproblems are also required, once again confirms the power of heavy ball momentum to improve
the constants in the PD error rate, especially with the aid of restart. The restart scheme (with slight
modification) can also be employed in [23, 24, 28] to tighten their PD error.

5 Numerical tests

This section presents numerical tests to showcase the effectiveness of HFW on different machine
learning problems. Since there are two parameters’ choices for HFW in Theorems 1 and 3, we
term them as weighted FW (WFW) and uniform FW (UFW), respectively, depending on the weight
of {∇f(xk)} in gk+1. When using smooth step size, the corresponding algorithms are marked as
WFW-s and UFW-s. For comparison, the benchmark algorithms include: FW with ηk = 2

k+2 (FW);
and, FW with smooth step size (FW-s) in (4).

5.1 Binary classification

We first test the performance of Alg. 2 on binary classification using logistic regression

f(x) =
1

N

N∑
i=1

ln
(
1 + exp(−bi〈ai,x〉)

)
. (15)

Here (ai, bi) is the (feature, label) pair of datum i, and N is the number of data. Datasets from
LIBSVM2 are used in the numerical tests, where details of the datasets are deferred to Appendix F
due to space limitation.

`2-norm ball constraint. We start with X = {x|‖x‖2 ≤ R}. The primal errors are plotted in
the first row of Fig. 1. We use primal error here for a fair comparison. It can be seen that the
parameter-free step sizes achieve better performance compared with the smooth step sizes mainly
because the quality of L estimate. Such a problem can be relived through directional smooth step
sizes as we shall shortly. Among parameter-free step sizes, it can be seen that WFW consistently

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Figure 2: Performance of directionally smooth step sizes. (a) and (c) are tested on mushroom; and (b)
and (d) use ijcnn1.

outperforms both UFW and FW on all tested datasets, while UFW converges faster than FW only on
datasets realsim and mushroom. For smooth step sizes, the per-step-descent property is validated.
The excellent performance of HFW can be partially explained by the similarity of its update, namely
xk+1 = (1− ηk)xk + ηkR

gk+1

‖gk+1‖2 , with normalized gradient descent (NGD) one, that is given by
xk+1 = ProjX

(
xk − ηk gk+1

‖gk+1‖2

)
. However, there is also a subtle difference between HFW and NGD

updates. Indeed, when projection is in effect, xk+1 in NGD will lie on the boundary of the `2-norm
ball. Due to the convex combination nature of the update in HFW, it is unlikely to have xk+1 on the
boundary, though it can come arbitrarily close.

`1-norm ball constraint. Here X = {x|‖x‖1 ≤ R} denotes the constraint set that promotes sparse
solutions. In the simulation, R is tuned for a solution with similar sparsity as the dataset itself. The
results are showcased in the second row of Fig. 1. For smooth step sizes, FW-s, UFW-s, and WFW-s
exhibit similar performances, and their curves are smooth. On the other hand, parameter-free step
sizes eventually outperform smooth step sizes though the curves zig-zag. (The curves on realsim are
smoothed to improve figure quality.) UFW has similar performance on w7a and mushroom with FW
and faster convergence on other datasets. Once again, WFW consistently outperforms FW and UFW.

n-support norm ball constraint. The n-support norm ball is a tighter relaxation of a sparsity
enforcing `0-norm ball combined with an `2-norm penalty compared with ElasticNet [38]. It gives
rise to X = conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R}, where conv{·} denotes the convex hull [3]. The
closed-form solution of vk+1 is given in [25]. In the simulation, we choose n = 2 and tune R for
a solution whose sparsity is similar to the adopted dataset. The results are showcased in the third
row of Fig. 1. For smooth step sizes, FW-s and WFW-s exhibit similar performance, while UFW-s
converges slightly slower on ijcnn1. Regarding parameter-free step sizes, UFW does not offer faster
convergence compared with FW on the tested datasets, but WFW again has numerical merits.

Directionally smooth step sizes. The results in Fig. 2 validate the effectiveness of directionally
smooth (-ds) step sizes. For all datasets tested, the benefit of adopting L(xk,vk+1) is evident, as
it improves the performance of smooth step sizes by an order of magnitude. In addition, it is also
observed that UFW-ds performs worse than WFW-ds, which suggests that putting too much weight
on past gradients could be less attractive in practice.

Additional comparisons. We also compare HFW with a generalized version of [27], where we set
δk = δ ∈ (0, 1),∀k in Alg. 2. Two specific choices, i.e., δ = 0.6, and δ = 0.8, are plotted in Fig.
3, where the `2-norm ball and n-support norm ball are adopted as constraints. In both cases, WFW
converges faster than the algorithm adapted from [27]. In addition, the choice of δ has major impact
on convergence behavior, while WFW avoids this need for manual tuning of δ. The performance
of WFW with restart, i.e., Alg. 3, is also shown in Fig. 3. Although it slightly outperforms WFW,
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Figure 3: Comparison of HFW with other algo-
rithms on muchroom.

restart also doubles the computational burden
due to the need of solving two FW subproblems.
From this point of view, WFW with restart is
more of theoretical rather than practical inter-
est. In addition, it is observed that Alg. 3 is
not restarted after the first few iterations, which
suggests that the generalized FW gap is smaller
than the vanilla one, at least in the early stage
of convergence. Thus, the generalized FW gap
is attractive as a stopping criterion when a so-
lution with moderate accuracy is desirable.
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Figure 4: Performance of FW variants for matrix completion on MovieLens100K.

In a nutshell, the numerical experiments suggest that heavy ball momentum performs best with
parameter-free step sizes with the momentum weight carefully adjusted. WFW is mainly recom-
mended because it achieves improved empirical performance compared to UFW and FW, regardless
of the constraint sets. The smooth step sizes on the other hand, eliminate the zig-zag behavior at the
price of convergence slowdown due to the need of L, while directionally smooth step sizes can be
helpful to alleviate this convergence slowdown.

5.2 Matrix completion

This subsection focuses on matrix completion problems for recommender systems. Consider a
matrix A ∈ Rm×n with partially observed entries, i.e., entries Aij for (i, j) ∈ K are known, where
K ⊂ {1, . . . ,m} × {1, . . . , n}. Based on the observed entries that can be contaminated by noise, the
goal is to predict the missing entries. Within the scope of recommender systems, a commonly adopted
empirical observation is that A is low rank [4, 5, 8], leading to the following problem formulation.

min
X

1

2

∑
(i,j)∈K

(Xij −Aij)2 s.t. ‖X‖nuc ≤ R. (16)

Problem (16) is difficult to solve using GD because projection onto a nuclear norm ball requires a
full SVD, which has complexity O

(
mn(m ∧ n)

)
with (m ∧ n) := min{m,n}. In contrast, FW and

its variants are more suitable for (16) since the FW subproblem has complexity less than O(mn) [2].

Heavy ball based FW are tested using dataset MovieLens100K3. Following the initialization of [11],
the numerical results can be found in Fig. 4. Subfigures (a) and (b) depict the optimality error and
rank versus k for R = 3. For parameter-free step sizes, WFW converges faster than FW while finding
solutions with lower rank. The low rank solution of UFW is partially because it does not converge
sufficiently. For smooth step sizes, UFW-s finds a solution with slightly larger objective value but
much lower rank compared with WFW-s and FW-s. Overall, when a small optimality error is the
priority, WFW is more attractive; while UFW-s is useful for finding low rank solutions.

6 Conclusions and future directions

This work demonstrated the merits of heavy ball momentum for FW. Multiple choices of the step
size ensured a tighter Type II primal-dual error bound that can be efficiently computed when adopted
as stopping criterion. An even tighter PD error bound can be achieved by relying jointly on heavy
ball momentum and restart. A novel and general approach was developed to compute local Lipschitz
constants in FW type algorithms. Numerical tests in the paradigms of logistic regression and matrix
completion demonstrated the effectiveness of heavy ball momentum in FW.

Our future research agenda includes performance evaluation of heavy ball momentum for various
learning tasks. For example, HFW holds great potential when fairness is to be accounted for [35].

3https://grouplens.org/datasets/movielens/100k/
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A Preludes

A.1 f(xk+1) ≤ f(xk) for the smooth step sizes in Alg. 1

When using the step size (4) in Alg. 1, f(xk+1) ≤ f(xk) is ensured automatically. To see this, we
have from Assumption 1 that

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 (17)

(a)
= ηk〈∇f(xk),vk+1 − xk〉+

η2kL

2
‖vk+1 − xk‖2

(b)

≤ 0

where (a) uses xk+1 = (1− ηk)xk + ηkvk+1; and (b) is because ηk minimizes the RHS of (17) over
[0, 1].

A.2 f(xk+1) ≤ f(xk) for the smooth step sizes in Alg. 2

When using the step size (10) in Alg. 2, f(xk+1) ≤ f(xk) is ensured.

f(xk+1)− f(xk) ≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL

2
‖vk+1 − xk‖2 ≤ 0

where the last ineqaulity is because ηk minimizes η〈∇f(xk),vk+1 − xk〉+ η2L
2 ‖vk+1 − xk‖2 over

[0, 1].

B Missing proofs in Section 3.

B.1 Proof of Lemma 1

Proof. Using gk+1 =
∑k
τ=0 w

τ
k∇f(xτ ), we have

arg min
x∈X

Φk+1(x) = arg min
x∈X

〈 k∑
τ=0

wτk∇f(xτ ),x
〉

= arg min
x∈X

〈
gk+1,x

〉
.

By comparing with Line 4 of Alg. 2, one can see that vk+1 is a minimizer of Φk+1(x) over X . To
prove that Φk+1(x) is a lower bound of f(x), we appeal to convexity to write

Φk+1(x) =

k∑
τ=0

wτk
[
f(xτ ) + 〈∇f(xτ ),x− xτ 〉

]
≤

k∑
τ=0

wτkf(x) = f(x)

where the last equation is because
∑k
τ=0 w

τ
k = 1 holds for any k. The proof is thus complete.

B.2 Proof of Theorem 1

Proof. Using Assumption 1, we have

f(xk+1)− f(xk) (18)

≤
〈
∇f(xk),xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2

= ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kL

2
‖vk+1 − xk‖2.

Inequality (18) is standard in the analysis of FW and its variants. Letting Φ0(x) ≡ 0, and v0 be any
point in X , it can be verified that Φk+1(x) = (1 − δk)Φk(x) + δk

[
f(xk) +

〈
∇f(xk),x − xk

〉]
,
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from which we have

Φk+1(vk+1) (19)

= (1− δk)Φk(vk+1) + δk

[
f(xk) +

〈
∇f(xk),vk+1 − xk

〉]
(a)

≥ (1− δk)Φk(vk) + δk

[
f(xk) +

〈
∇f(xk),vk+1 − xk

〉]
where (a) is because 1 − δk ≥ 0 and vk minimizes Φk(x) over X (hence Φk(vk) ≤ Φk(vk+1)).
Now subtracting Φk+1(vk+1) on both sides of (18), we have

f(xk+1)− Φk+1(vk+1) (20)
(b)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2
(c)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kLD

2

2

where (b) uses ηk = δk and (19); and (c) relies on Assumption 3. For convenience, let ∆(i, j) :=∏j
τ=i(1− δτ ), and unroll (20) to arrive at

f(xk+1)− Φk+1(vk+1)

≤ ∆(0, k)
[
f(x0)− Φ0(v0)

]
+

k∑
τ=0

LD2δ2τ
2

∆(τ + 1, k).

Plugging in the values of δk completes the proof.

B.3 Proof of Theorem 2

Proof. The first a few steps are the same as the proof of Theorem 1; i.e., we have (18) and (19).
Combining (18) and (19), we arrive at

f(xk+1)− Φk+1(vk+1) (21)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL‖vk+1 − xk‖2

2
.

It can be verified that the specific choice of ηk minimizes the RHS of (21) over [0, 1]. Hence we have

f(xk+1)− Φk+1(vk+1) (22)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
α2
kL‖vk+1 − xk‖2

2
+ (αk − δk)

〈
∇f(xk),vk+1 − xk

〉
(b)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤
[
f(x0)− Φ0(v0)

] k∏
τ=0

(1− δτ ) +

k∑
τ=0

LD2δ2τ
2

k∏
j=τ+1

(1− δj)

≤ 2LD2

k + 2

where in (a) αk can be chosen as any number in [0, 1]; in (b) we set αk = δk. This completes the
proof.

B.4 An extension of Theorem 2 for per step descent of Gk

In this section, we show that it is possible to ensure per step descent on generalized FW gap when a
more difficult subproblem can be solved. In particular, we will replace Line 4 of Alg. 2 and choose

14



parameters as

(δk,vk+1) = arg min
δ∈[0,1],v∈X

(1− δ)
[
f(xk)− Φk(vk)

]
+
δ2L‖v − xk‖2

2
(23a)

ηk = δk. (23b)

It is clear that (23a) is harder to solve compared with a FW subproblem. The choice of δk enables an
adaptive weights for∇f(xk) in gk+1. Next we present the main result for such a parameter choice.
Theorem 5. When Assumptions 1, 2 and 3 are satisfied, choosing vk+1, ηk and δk according to (23),
Alg. 2 guarantees that: i) Gk+1 ≤ Gk, and ii)

Gk = f(xk)− Φk(vk) ≤ 2LD2

k + 1
, ∀k ≥ 1.

Proof. It can be seen that (21) still holds, from which we have

f(xk+1)− Φk+1(vk+1) (24)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

where (a) is because ηk = δk. Then by the manner δk is chosen, we have

f(xk+1)− Φk+1(vk+1) (25)

= (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2
(b)

≤ (1− δ̃k)
[
f(xk)− Φk(vk)

]
+
δ̃2kL‖vk+1 − xk‖2

2

where in (b) δ̃k ∈ [0, 1]. Choosing δ̃k = 0, we obtain Gk+1 ≤ Gk. Choosing δ̃k = 2
k+2 , we obtain

the convergence rate.

B.5 Line search for Alg. 2

We can also choose the step size ηk via line search, although this might be more computationally
costly in practice because it requires computing the function value. The parameters are selected as

δk =
2

k + 2
, ∀k ≥ 0 (26a)

ηk = arg min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
. (26b)

Such a parameter choice also ensures per step objective descent since

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
(a)

≤ f
(
(1− θ)xk + θvk+1

) (b)
= f(xk)

where in (a) we have θ ∈ [0, 1]; and in (b) we set θ = 0. Primal-dual convergence is established as
follows.
Theorem 6. If Assumptions 1-3 hold, while δk and ηk are chosen via (26), Alg. 2 guarantees that

Gk = f(xk)− Φk(vk) ≤ 2LD2

k + 1
, ∀k ≥ 1.

Proof. Let η̃k = 2
k+2 ,∀k. By the choice of ηk, we have

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
≤ f

(
(1− η̃k)xk + η̃kvk+1

)
. (27)
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Then using smoothness, we arrive at

f(xk+1)− f(xk) (28)

≤ f
(
(1− η̃k)xk + η̃kvk+1

)
− f(xk)

≤ η̃k
〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL

2
‖vk+1 − xk‖2.

Then combining (28) and (19), and following the same steps in (20), we can prove this theorem.

Through Theorem 6 it is straightforward to derive the primal and dual convergence, respectively,
following the same argument of Corollary 1. For this reason, it is omitted here.

B.6 Proof of Theorem 3

Proof. It can be seen that (21) still holds.

Parameter-free step size. Plugging in δk = ηk = 1
k+1 into (21), we arrive at

f(xk+1)− Φk+1(vk+1) ≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤ ∆(0, k)
[
f(x0)− Φ0(v0)

]
+

k∑
τ=0

LD2δ2τ
2

∆(τ + 1, k)

= O
(LD2 ln(k + 2)

k + 1

)
(29)

where ∆(i, j) :=
∏j
τ=i(1− δτ ), Φ0(x) ≡ 0, and v0 is any point in X .

Smooth step size. Notice that the choice of ηk minimizes the RHS of (21) when δk is fixed, then we
have

f(xk+1)− Φk+1(vk+1) (30)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL‖vk+1 − xk‖2

2
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (η̃k − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL‖vk+1 − xk‖2

2
(b)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

= O
(LD2 ln(k + 2)

k + 1

)
where in (a) η̃k ∈ [0, 1]; and in (b) we set η̃k = δk.

Line search. When ηk is chosen via line search, we have for any η̃k ∈ [0, 1]

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
≤ f

(
(1− η̃k)xk + η̃kvk+1

)
. (31)

Then by smoothness, we have

f(xk+1)− f(xk) ≤ f
(
(1− η̃k)xk + η̃kvk+1

)
− f(xk) (32)

≤ η̃k
〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL

2
‖vk+1 − xk‖2.

Then using the same argument as the derivation of (21), we can obtain

f(xk+1)− Φk+1(vk+1) (33)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (η̃k − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL‖vk+1 − xk‖2

2
.

Simply setting η̃k = 1
k+1 , and using the same derivation as in (30), the proof can be completed.
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B.7 Proof for choosing δk = δ

When Assumptions 1 is satisfied w.r.t. `2-norm, we show the following parameter choice in Alg. 2
leads to convergence as well.

δk = δ, ηk =
c

k + k0
, ∀k ≥ 0 (34)

where δ ∈ (0, 1), and c and k0 are constants to be specified later. Due to the choice of δk = δ, gk+1

is an exponentially moving average of previous gradients. Note that the moving average was adopted
in [27] for stochastic FW to reduce the mean square error of the noisy gradient. However, we use it in
a totally different purpose.
Lemma 2. Choose parameters as in (34). Suppose there exist a constant c0 that satisfies

c21 ≤
[
1− (1− δ) (k0 + 1)2

k20

]
δc20 (35)

then it is guaranteed that

‖gk+1 −∇f(xk)‖22 ≤
c20L

2D2

(k + k0)2
.

Proof.
‖gk+1 −∇f(xk)‖22 (36)

= (1− δ)2‖gk −∇f(xk)‖22
= (1− δ)2‖gk −∇f(xk−1) +∇f(xk−1)−∇f(xk)‖22
(a)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)‖∇f(xk−1)−∇f(xk)‖22

(b)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)L2η2k−1‖xk−1 − vk‖22

(c)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)L2D2η2k−1

(d)

≤ (1− δ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

δ
)L2D2η2k−1

(e)

≤ (1− δ)‖gk −∇f(xk−1)‖22 + L2D2 η
2
k−1
δ

where (a) is by Young’s inequality with θ > 0 to be specified later; (b) follows from Assumption 1; (c)
is because Assumption 3; in (d) we choose θ = δ < 1 and use the fact that (1− δ)2(1 + δ) ≤ (1− δ);
and (e) uses δ ≤ 1 so that (1− δ)2(1 + 1

δ ) = 1
δ − 1 + δ2 − 2δ ≤ 1

δ .

We proof this lemma by induction. Given the choice of g0 = ∇f(x0), we must have g1 = ∇f(x0),
which implies ‖g1−∇f(x0)‖22 = 0 ≤ c20L

2D2

k20
directly. Next we assume that ‖gk−∇f(xk−1)‖22 ≤

c20L
2D2

(k−1+k0)2 holds for some k ≥ 1. Using (36), we have

‖gk+1 −∇f(xk)‖22 ≤ (1− δ)‖gk −∇f(xk−1)‖22 + L2D2 η
2
k−1
δ

≤ (1− δ) c20L
2D2

(k + k0 − 1)2
+ L2D2 η

2
k−1
δ

≤ (1− δ) c20L
2D2

(k + k0 − 1)2
+ L2D2 c21

δ(k + k0)2

= (1− δ) c
2
0L

2D2

(k + k0)2
(k + k0)2

(k + k0 − 1)2
+ L2D2 c21

δ(k + k0)2

≤ (1− δ) c
2
0L

2D2

(k + k0)2
(k0 + 1)2

k20
+ L2D2 c21

δ(k + k0)2

≤ c20L
2D2

(k + k0)2
(37)
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where the last inequality comes from the choice of c1. The proof is thus completed.

To avoid the complexity of choosing constants, we consider an instance where k0 = 2, δ = 0.8,
c1 = 2, and c0 ≈ 3.05. It can be verified that (35) is satisfied. Then applying Lemma 2, the
convergence of Alg.2 can be obtained.
Theorem 7. Let g0 = ∇f(x0), ηk = 2

k+3 , and δ = 0.8. Then for ∀k ≥ 1, the convergence rate of
Alg. 2 with (34) is

f(xk)− f(x∗) = O
(LD2

k

)
.

Proof. Using Assumption 1, we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗) +
〈
∇f(xk),xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖22 (38)

= f(xk)− f(x∗) + ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kL

2
‖vk+1 − xk‖22

≤ f(xk)− f(x∗) + ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kLD

2

2
.

Next we have〈
∇f(xk),vk+1 − xk

〉
=
〈
∇f(xk),x∗ − xk

〉
+
〈
∇f(xk),vk+1 − x∗

〉
(a)

≤ f(x∗)− f(xk) +
〈
∇f(xk),vk+1 − x∗

〉
= f(x∗)− f(xk) +

〈
gk+1,vk+1 − x∗

〉
+
〈
∇f(xk)− gk+1,vk+1 − x∗

〉
(b)

≤ f(x∗)− f(xk) +
〈
∇f(xk)− gk+1,vk+1 − x∗

〉
≤ f(x∗)− f(xk) +D‖∇f(xk)− gk+1‖2 (39)

where (a) is by the convexity of f(x); (b) is because vk+1 minimizes 〈gk+1,x〉 over X ; and the last
inequality relies on Cauchy-Schwarz inequality and Assumption 3. Plugging (39) into (38), we have

f(xk+1)− f(x∗) ≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ηkD‖∇f(xk)− gk+1‖2 +

η2kLD
2

2
. (40)

Let ξk = ηkc0LD
2

k+k0
+

η2kLD
2

2 , then we have

f(xk+1)− f(x∗) ≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ηkD‖∇f(xk)− gk+1‖2 +

η2kLD
2

2

≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ξk

=
[
f(x0)− f(x∗)

] k∏
τ=0

(1− ητ ) +

k∑
τ=0

ξτ

k∏
j=τ+1

(1− ηj)

= O
(LD2

k

)
. (41)

The proof is thus completed.

B.8 Additional discussions

Many of existing works, e.g., [14], study (projected) heavy ball momentum by introducing auxiliary
variables zk such that the update on variable xk can be viewed as a “gradient update” on zk, i.e.,
zk+1 = zk − η∇f(xk). By constructing the {zk} sequence, it is possible to view heavy ball
momentum approximately as GD. Though this trick is smart and analytically convenient, it does not
give too much insight for the heavy ball momentum itself.

By comparing the use of heavy ball momentum in FW and GD, it may suggest new perspectives.
For example, one can view Alg.2 as the dual-averaging version of FW as well. This suggests that it
is intriguing to study (projected) heavy ball momentum from dual-averaging point of view. This is
slightly off the main theme of this work, and we leave it for future research.
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C Stopping criterion

Recall that for a prescribed ε > 0, having f(xk)− Φk(vk) ≤ ε directly implies f(xk)− f(x∗) ≤ ε.
Next, we show how to update Φk(vk) iteratively in order to obtain a stopping criterion. Let us note
that

Φk+1(x) =

k∑
τ=0

wτk
[
f(xτ ) + 〈∇f(xτ ),x− xτ 〉

]
=

k∑
τ=0

wτk
[
f(xτ )− 〈∇f(xτ ),xτ 〉

]
+ 〈gk+1,x〉

:= Ck+1 + 〈gk+1,x〉, ∀k ≥ 0.

Hence, to compute Φk+1(vk+1), we only need to update Ck+1 iteratively. A simple derivation leads
to

Ck+1 = (1−δk)Ck + δk

[
f(xk)− 〈∇f(xk),xk〉

]
,

with C1 = f(x0)− 〈∇f(x0),x0〉. (42)

In sum, one can efficiently obtain Φk+1(vk+1) as
Φk+1(vk+1) = Ck+1 + 〈gk+1,vk+1〉 (43)

with Ck+1 recursively updated via (42).

D Missing proofs in Section 4

D.1 Proof of Theorem 4

Proof. Consider the case where ηsk = δsk. Using Assumption 1, we have

f(xsk+1)− f(xsk) ≤
〈
∇f(xsk),xsk+1 − xsk

〉
+
L

2
‖xsk+1 − xsk‖2 (44)

= ηsk
〈
∇f(xsk),vsk+1 − xsk

〉
+

(ηsk)2L

2
‖vsk+1 − xsk‖2.

Then we have

Φsk+1(vsk+1) = (1− δsk)Φsk(vsk+1) + δsk

[
f(xsk) +

〈
∇f(xsk),vsk+1 − xsk

〉]
(45)

≥ (1− δsk)Φsk(vsk) + δsk

[
f(xsk) +

〈
∇f(xsk),vsk+1 − xsk

〉]
.

Now subtracting Φsk+1(vsk+1) on both sides of (44), we have

f(xsk+1)− Φsk+1(vsk+1) (46)

≤ f(xsk) + ηsk
〈
∇f(xsk),vsk+1 − xsk

〉
+

(ηsk)2L‖vsk+1 − xsk‖2

2
− Φsk+1(vsk+1)

(a)

≤ (1− δsk)
[
f(xsk)− Φsk(vsk)

]
+

(δsk)2L‖vsk+1 − xsk‖2

2
(b)

≤ (1− δsk)
[
f(xsk)− Φsk(vsk)

]
+

(δsk)2LD2

2
where (a) uses ηsk = δsk and (45); and (b) relies on Assumption 3. For convenience, let us define
∆s(i, j) :=

∏j
τ=i(1− δsτ ). Then unrolling (46), we get

f(xsk+1)− Φsk+1(vsk+1)

≤ ∆s(0, k)
[
f(xs0)− Φs0(vs0)

]
+

k∑
τ=0

LD2(δsτ )2

2
∆s(τ + 1, k)

≤ Cs(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)

[
f(xs0)− Φs0(vs0)

]
+

2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)
.
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When s = 0, plugging C0 = 0, we have

f(x0
k+1)− Φk+1(v0

k+1) ≤ 2LD2

k + 2
. (47)

Hence (14a) in Theorem 4 is proved. Next consider s ≥ 1. Using the observation that f(xs0) −
Φs0(vs0) = Ḡs−1Ks−1

< Gs−1Ks−1
, we then have

Gsk+1 = f(xsk+1)− Φsk+1(vsk+1) (48)

<
Cs(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)
Gs−1Ks−1

+
2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)

(c)
=

2LD2(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)
+

2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)
=

2LD2

k + 1 + Cs
.

where (c) uses the definition of Cs. Hence (14b) in Theorem 4 is proved.

Finally, we only need to show that Cs ≥ 1 +
∑s−1
j=0Kj by induction. First by definition of C1 =

2LD2/(G0K0
), with G0K0

≤ 2LD2

K0+1 , it is clear that C1 ≥ 1 +K0. Then suppose Cs ≥ 1 +
∑s−1
j=0Kj

hold for some s, we will show that Cs+1 ≥ 1 +
∑s
j=0Kj .

Using (48), we have Cs+1 = 2LD2/(GsKs
) ≥ Cs + Ks ≥ 1 +

∑s−1
j=0Kj + Ks. Hence (14b) is

proved.

For the smooth step size (12) and line search (13), the same bound can be obtained by using the same
arguments as in Theorems 2 and 6. Hence they are omitted here.

E Directionally smooth step size

E.1 Proof of Corollary 2

Proof. Using Definition 2 and following the standard derivation of descent lemma [29, Lemma 1.2.3],
we can show that

f(xk+1)− f(xk) (49)

≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL(xk,xk+1)

2
‖vk+1 − xk‖2

≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL(xk,vk+1)

2
‖vk+1 − xk‖2.

The reason for L(xk,vk+1) ≥ L(xk,xk+1) is that xk+1 lives in between xk and vk+1. Although
L(xk,xk+1) can provide a tighter bound, it is not tractable.

Combining (49) and (19), we have
f(xk+1)− Φk+1(vk+1) (50)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL(xk,vk+1)‖vk+1 − xk‖2

2
.

It can be verified that the specific choice of ηk in (10) minimizes the RHS of (50) over [0, 1]. Hence
we have
f(xk+1)− Φk+1(vk+1) (51)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL(xk,vk+1)‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
α2
kL(xk,vk+1)‖vk+1 − xk‖2

2
+ (αk − δk)

〈
∇f(xk),vk+1 − xk

〉
(b)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL(xk,vk+1)‖vk+1 − xk‖2

2
(c)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤ 2LD2

k + 2
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where in (a) αk can be chosen as any number in [0, 1]; in (b) we set αk = δk; and (c) uses
L(xk,vk+1) ≤ L. This completes the proof.

E.2 Computing directionally smooth constant

Define a one dimensional function g(η) := f
(
xk + η(vk+1 − xk)

)
, where dom η = [0, 1]. Then it

is clear that∇g(η) = 〈vk+1 − xk,∇f
(
xk + η(vk+1 − xk)

)
〉. Therefore, it is easy to see that g(η)

is smooth, i.e.,∣∣∇g(η1)−∇g(η2)
∣∣ = |〈vk+1 − xk,∇f

(
xk + η1(vk+1 − xk)

)
−∇f

(
xk + η2(vk+1 − xk)

)
〉|

≤ ‖vk+1 − xk‖
∥∥∇f(xk + η1(vk+1 − xk)

)
−∇f

(
xk + η2(vk+1 − xk)

)∥∥
∗

≤ L(xk,vk+1)‖vk+1 − xk‖2|η1 − η2| (52)

On the other hand, one can also analytically find Lg by definition; i.e.,
∣∣∇g(η1) − ∇g(η2)

∣∣ ≤
Lg
∣∣η1 − η2∣∣. Comparing Lg with RHS of (52), we can obtain L(xk,vk+1). This method can be

applied when f is e.g., quadratic loss and logistic loss.

F More on numerical tests

All numerical experiments are performed using Python 3.7 on an Intel i7-4790CPU @3.60 GHz (32
GB RAM) desktop.

F.1 Binary classification

Table 2: A summary of datasets used in numerical tests

Dataset d N (train) nonzeros
w7a 300 24, 692 3.89%

realsim 20, 958 50, 617 0.24%
mushromm 122 8, 124 18.75%

ijcnn1 22 49, 990 40.91%

Sparsity promoting property of FW variants for `1-norm ball constraint. FW in Alg. 1 directly
promotes sparsity on the solution if it is initialized at x0 = 0. To see this, suppose that the i-th entry of
∇f(xk) has the largest absolute value, then we have vk+1 = [0, . . . ,−sgn

(
[∇f(xk)]i

)
R, . . . , 0]>

with the i-th entry being non-zero. Hence, xk has at most k non-zero entries given k − 1 entries are
non-zero in xk−1. This sparsity promoting property also holds for Alg. 2 for the same reason.

F.2 Matrix completion

The dataset used for the test is MovieLens100K, where 1682 movies are rated by 943 users with
6.30% ratings observed. The initialization and data processing are the same as those used in [11].

Besides the projection-free property, FW and its variants are more suitable for problem (16) compared
to GD because they also guarantee rank(Xk) ≤ k + 1 [11, 15]. Take FW in Alg. 1 for example.
First it is clear that ∇f(Xk) = (Xk − A)K. Suppose that the SVD of ∇f(Xk) is given by
∇f(Xk) = PkΣkQ

>
k . Then the FW subproblem can be solved easily by

Vk+1 = −Rpkq
>
k (53)

where pk and qk denote the left and right singular vectors corresponding to the largest singular
value of ∇f(Xk), respectively. Clearly Vk+1 in (53) has rank at most 1. Hence it is easy to see
Xk+1 = (1− δk)Xk + δkVk+1 has rank at most k + 2 if Xk is a rank-(k + 1) matrix (i.e., X0 has
rank 1). Using similar arguments, Alg. 2 also ensures rank(Xk) ≤ k + 1. Therefore, the low rank
structure is directly promoted by FW variants.
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