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A. Theoretical Support

Here we summarize some theories from literature that supports the development of this paper by making it self-contained.
Attempts have been made to unify the notations, making them consistent with our paper, and also drop some contents from
the original presentations that not directly relevant in this context.

A.1. Nonlinear ICA with auxiliary variables

The following theory lists the technical conditions required for the identification of conditional nonlinear ICA model,
based on which our work was built.

Definition A.1 (Conditionally exponential of order k). A random variable (independent component) [s]i is conditionally
exponential of order k given random vector c if its conditional pdf can be given in the form

p([s]i|c) =
Qi([s]i)

Zi(c)
exp

 k∑
j=1

q̃ij([s]i)λij(c)

 (S1)

almost everywhere in the support of c, with q̃ij , λij , Qi and Zi scalar-valued functions. The sufficient statistics q̃ij are
assumed linearly independent.
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Theorem A.2 (Theorem 3, [4], identification of Nonlinear ICA). Assume (i) the data follows the nonlinear ICA model with
the conditional independence q(s|c) =

∏
j qj([s]j |c); (ii) Each [s]j is conditionally exponential given c (Definition A.1);

(iii) There exist nk + 1 points c0, · · · , cnk, such that the following matrix of size nk × nk

L̃ =

(
λ11(c1)− λ11(c0) · · · λ11(cnk)− λ11(c0)
λnk(c1)− λnk(c0) · · · λnk(cnk)− λnk(c0)

)
(S2)

is invertible; (iv) nonlinear Logistic regression system Eqn (1) is trained using functions with universal approximation
capacity. Then in the limit of infinite data, f(z) provides a consistent estimator of the nonlinear ICA model, up to a linear
transformation of point-wise scalar functions of the independent components.

A.2. Variance and generalization bound

The following theories explore the consequence of training using only nonparametric causal augmentation. First we define
the risk estimators.

Definition A.3. Let S̃ be the non-parametric source augmentation defined in Eqn (3) main text, `(·) be the loss function,
g(z) be the hypothesis function. We define the risk R and causally augmented risk estimator R̆ wrt g respectively as

R(g) , EZ [`(g(Z))], R̆(g) , ES̃ [`(g(f̂−1(S̃)))], (S3)

where f̂ is the estimated causal de-mixing function.

The following theorem revealed that assuming perfect knowledge of de-mixing function f , the causally augmented risk
estimator is optimal.

Proposition A.4. Assuming f̂ = f , and let `(h(x), y) be the classification loss for predictor h ∈ H. Let R̂(h) =∑
m wmR̂m(h) be an estimator for R(h) = E[`(h(x), y)], such that R̂(h) is an unbiased estimator for Rm(h) =

Ey=m[`(h(x), y)]. Then R̃(h) =
∑
m wmR̃m(h), where R̃m(h) , Eyi=m[`(h(x̃i), yi)] is the minimum variance unbi-

ased estimator among all R̂(h).

Proof. This is a direct consequence of Theorem A.5. If R̃(h) is not the minimal variance estimator, then at least one of
R̃m(h) is not optimal, which contradicts Theorem A.5.

Theorem A.5 (Theorem 1, [9], minimum variance property). Assuming f̂ = f . Then for each g ∈ G, the causal augmented
risk estimator R̃(g) is the uniformly minimum variance unbiased estimator of R(g), i.e., E[R̆(g)] = R(g) and for any
unbiased estimator R̆ of R(g) (i.e., E[R̆(g)] = R(g)),

Var[R̃(g)] ≤ Var[R̆(g)]. (S4)

Since we are bound to have estimation errors, the next theorem establishes the generalization bounds wrt such errors.

Theorem A.6 (Theorem 2, [9], excess risk bound). Let ğ = arg min R̆ and g∗ = arg minR(g), then under appropriate
assumptions (Assumptionss 1-8 in [9]), for arbitrary δ, δ′ ∈ (0, 1), we have probability at least 1− (δ + δ′),

R(ğ)−R(g∗) ≤ C
d∑
j=1

‖fj − f̂‖W 1,1︸ ︷︷ ︸
Approximation error

+ 4dR(G) + 2dB`

√
log 2/δ

2n︸ ︷︷ ︸
Estimation error

+κ1(δ′, n) + dB`Bqκ2(f − f̂)︸ ︷︷ ︸
Higher-order terms

. (S5)

Here ‖ · ‖W 1,1 is the Sobolev norm and R(G) is the effective Rademacher complexity defined by

R(G) ,
1

n
EŜEσ

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

σisES′
2,··· ,S′

d

˜̀(ŝi, S
′
2, · · · , S′d)

∣∣∣∣∣
]
, (S6)
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where {σi}ni=1 are independent sign variables, EŜ is the expectation wrt {ŝi}ni=1, the dummy variables S′2, · · · , S′d are i.i.d.
copies of ŝ1, and ˜̀ is defined by

˜̀(s1, · · · , sd) ,
1

d!

∑
π

`(g, f̂−1(sπ(1), · · · , sπ(d))), (S7)

where π denotes the permutations. κ1, κ2 are higher order terms, Bq, B` respectively depends on density q and loss `, while
C ′ depends on (f, q, `, d).

A.3. Speedup from shared embedding

[8] built some interesting theories trying to answer the following question: “Can large amounts of weakly labeled data
provably help learn a better model than strong labels alone?” The answer is positive, assuming there is a shared embedding
between the weak and strong tasks, which respectively refers auxiliary (secondary) and main tasks of interests. We summarize
its main findings below and elaborate how it lends support for ECRT.

In the setting of weakly supervised learning, we have the triplet (X ,W,Y), where X and Y respectively denote the
features and labels of interest (strong task), and W denote weak task labels that are relevant to the prediction of Y . It is
assumed that there is this unknown good embedding Z = f0(X) that predicts W , that could be leveraged to derive a model
of the form ĝ(·, f̂) : X → Y that improves learning.

Algorithm 1 Weakly supervised learning
1. Pretrain encoder with weak labels

f̂ ← Alg(F ,PXW )

2. Augment data with
zi = f̂(xi)⇒ {(xi, yi, zi)} ∼ P̂XY Z

3. Optimize the strong task
ĝ ← Alg(G, P̂XY Z)

Theorem A.7 (Theorem 3, [8]). Suppose that Ratem(F ,PXW ) = O(m−α) and that Algn(G, P̂) is ERM. Under suitable
assumptions on (`,P,F), Algorithm 1 obtains excess risk

O
(
αβ log n+ log(1/δ)

n
+

1

nαβ

)
(S8)

with probability 1− δ, when m = Ω(nβ) forW discrete, or m = Ω(n2β) forW continuous.

For concrete examples, in a typical learning scenario where Algm(F ,PXW ) = O(m−1/2), one obtains the fast rates
O(1/n) for m = Ω(n2).

In the context of our ECRT, we identify the learning of common causal de-mixing function f(z) as the weak learning
task, and the source space S is the common embedding space of interest. This allows us to tape into the power of weakly
supervised learning to improve the main classification task. See Figure 9 in the main text for evidence.

A.4. Energy-based GCL

Mutual information (MI) is a popular metric to quantify the associations between random variables, and has been applied
to a lot of areas like independent component analysis, fair learning and etc. Inspired by the FDV loss introduced in [3], rooted
from the MI between the feature z and label y. Following the Equation (4) in the main text for IFDV, we have a novel MI
objective, pointwise mutual information (PMI) which takes the place of logistic regression objective in GCL,

LFDV(fψ, gν) , ÎDV({zi,yi}) +

∑
j exp[(gν(yj , zi)− gν(yi, zi))/τ ]∑
j exp[(ĝν(yj , zi)− ĝν(yi, zi))/τ ]

− 1, (S9)

where yi is the embedding of label, τ is a learnable temperature parameter, gν(y, z) = sim(y,
∑d
a=1 γ

a
ν (y, [s]a)), and

sim(x,y) = x>y
‖x‖‖y‖ , γν and s are the same as Equation (1) with slightly change of dimension with linear transformations.
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One notably difference between Equation (S9) and Equation (1) from the GCL lies in the negative sample size. In energy-
based GCL, the model can treat all the examples within a minibatch as negative examples, while the original GCL contrasts
with only one negative example in the minibatch by permutating labels. This refinement can benefit the learning efficiency
of the NICA step, the correlation between labels decrease faster than the original GCL, as illustrated in Figure S1.

A.5. Invertible neural network
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Figure S1. Comparison of correlation decreasing
with GCL and FDV in the MNIST dataset. FDV
approaches the optimality faster, which indicates
better efficiency.

The recent interest in generative modeling has popularized the use of
invertible neural networks (INN) in machine learning, with prominent ex-
amples such as normalizing flows [7] and neural ordinary differential equa-
tions (ODEs) [2]. Unlike standard neural networks, an INN seeks to es-
tablish a one-to-one mapping between the input and output domains, i.e.,
the forward map s = fψ(z) as well as the corresponding inverse map
z = f−1ψ (s). Standard constructions of INN achieve representational flex-
ibility by stacking simple invertible transformations. In practice, the effi-
ciency of the forward or inverse passes are often trade-off depending on
the application needs [6]. Here we aim for fast forward computations, thus
adopt the masked auto-regressive flow (MAF) design for our INN [6], which
allows efficient parallelization of the autoregressive architecture via causal
masking.

Let {zt}Tt=0 be a flow of length T , in which z0 = z, zt+1 = Ft(z
t),

s = zT , and we let fψ = F1 ◦ F2 · · · ◦ FT−1. Specifically, the MAF is
constructed as a series of shift and scale transformations zt+1 = Ft(z

t) , at(z
t) � zt + bt(z

t), where � is the element-
wise product, and at(·) and bt(·) are vector transformations known as scale and shift, respectively, that follow a causal
autoregressive structure, i.e., that [zt+1]k only depends on [zt]<k. As a direct consequence of this structure, the MAF-based
INN results in a tractable Jacobian J(z) , |det(∇zfψ)| of fψ(z) that facilitates likelihood computations. In fact, assuming
the sources S have prior density p(s), the likelihood of the features p(z) of the MAF specification is given by [6]:

log p(z) = log |det(∇zfψ)|+ log p(s) =
∑
t

log |at(zt)|+ log p(s) , LFLOW(fψ) (S10)

Jointly withLGCL(fψ, rν) (Equation (1) in the main text), LFLOW(fψ) can be used to optimize the parameters of the de-mixing
function fψ(z).

B. Regression for continuous labels
We can further extend the applicability of the proposed ECRT to the case of regressing continuous outcomes. While in

principle, the procedures described in Sec 3 can be readily applied, we advocate coarse graining wrt label y similar to what
has been practiced in sliced inverse regression [5], especially when the feature dimension is high relative to the sample size.
Specifically, we partition y into different bins, and use feed the bin label as the conditioning variable in the GCL step. We
still use the regression loss for the training of encoder and predictors.

C. Implementation of Augmentation
Let ŝki , i = 1, · · · , nk be the estimated source representation for the k-th class.

• Non-parametric augmentation: shuffling indices as described in the main text.

• Parametric augmentation: estimate µ̂k = mean(ŝk), σ̂k = std(ŝk), then sk,aug ∼ N (µ̂k, σ̂
2
k).

• Oracle augmentation: nonparametric augmentation with an abundance of class-conditional source space samples .

In Figure 9 from main text we compare the efficiency of parametric and nonparametric augmentation schemes under different
minority sample size. In particular, we compute the MMD distance ‖µ̂aug − µ̂ref ‖κ, where µ̂aug =

∑
i κ(s̃i, ·) and µ̂ref =∑

i κ(si, ·). Here κ(·, ·) is the Gaussian rbf kernel κ(x, y) = exp(‖x − y‖2/2σ2), ‖f‖κ =
√
〈f, f〉

κ
is the RKHS norm

and s̃i, si respectively denote augmented class-conditional samples (from few minority samples) and empirical distribution
of class-conditional samples (where we use all samples from the same class that we holdout). In this example we use 2k
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Figure S2. Feature space augmentation for MNIST.

samples for the ground truth and augment minority to the same size. Different kernel bandwidth σ of κ yields qualitatively
similar results, and in the paper we report the one with σ = 0.5.

In Figure S2, we visualize the augmentation in feature space for the MNIST dataset. And we see for boundary points
the discrepancy can be amplified by the neural network inversion, which partly explained the sub-optimal performance from
feature space augmentation. In contrast, the source space augmentation advocated in this paper is more computationally
efficient and robust.

Note that while in principle the majority classes can be similarly augmented, we choose not to refine our model with
the augmented majorities. This decision is justified by the classical consideration for bias-variance trade-off: estimation
errors of f(z) is inevitable (e.g., finite sample size, SGD, limited network capacity, etc.), and they will carry over to the
augmented samples, resulting biases in the augmented estimation of our predictor. On the other hand, using augmented
samples helps bring down estimation variance. For minority labels, the reduction in variance is greater than the induced bias,
and consequently merits the application of ECRT to improve performance. For majority labels, this might not be the case.

D. Toy Model Experiment
D.1. Toy data demo

We sample seven groups of two-dimensional uncorrelated Gaussian of each with size 2000, with different means and vari-
ances as our real source representation s. Specifically, si ∼ N(µi,Σi), i = 0, · · · , 6, where µ0 = [−0.5,−1],µ1 =
[2, 1],µ2 = [5, 2],µ3 = [1, 3],µ4 = [−2, 1],µ5 = [−3.5, 4],µ6 = [−4,−1],Σ0 = [0.5, 0.5],Σ1 = [3, 1],Σ2 =
[1, 2],Σ3 = [0.3, 2],Σ4 = [1, 0.2],Σ5 = [1, 1],Σ6 = [2, 0.3]. Then we perform classical Hénon transformation
z(1) = 1− 1.4 s̃2(1) + s̃(2), z(2) = 0.3, s̃(1) to generate the data in feature space.

D.2. Extreme-classification Toy Data

We sample 1000 groups of two-dimensional uncorrelated Gaussian with mean ranges uniformly sampled from range
(−4, 4) and standard deviation fixed to 0.1. Validation dataset is fixed with 20 samples per-class, and the sampler per class
in training dataset varies with 5, 10, 20, 50, 75, 100, 150. The summary for extreme-classification is presented in Table S1.

Note that when the total number of categories is 10 with 20 samples per class, ERM has top-1 accuracy as high as 0.914,
and the performance drops when the number of categories increasing. With 500 categories, the accuracy decreases to 0.005,
and in the scenario where we presented in the main text with 1000 categories, ERM performs no better than random guessing.

Table S1. Validation Results for Extreme classification
METRIC NLL TOP 1 TOP5

SAMPLE-SIZE ERM ECRT W/O AUG ECRT ERM ECRT W/O AUG ECRT ERM ECRT W/O AUG ECRT

5 6.9246 4.3884 3.7098 0.0015 0.0450 0.0760 0.0053 0.2275 0.3220
10 6.9242 4.0536 3.4752 0.0018 0.0638 0.0856 0.0060 0.2666 0.3549
20 6.9185 3.5405 3.3657 0.0016 0.0741 0.0877 0.0070 0.3126 0.3675
50 6.9240 3.3794 3.2957 0.0010 0.0834 0.0934 0.0045 0.3493 0.3835
75 6.9190 3.3499 3.2594 0.0020 0.0846 0.0939 0.0060 0.3571 0.3950

100 6.9182 3.3394 3.2675 0.0020 0.0834 0.0934 0.0053 0.3580 0.3918
150 6.9174 3.2731 3.2597 0.0011 0.0906 0.0984 0.0059 0.3777 0.4034
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E. Real-world Data Experiments
E.1. Image Data Benchmarks

We summarized the image datasets in Table S2 and the network architectures used for respective datasets in Tables S3,
S4, S5 and S6. The hyperparameters we used in these experiments are presented in S10. The results reported here are from
our regularized non-parametric ECRT implementation, parametric ECRT implementation show a similar trend, with slightly
improved performance (results now shown). We use 2 latent dims for MNIST and 32 latent dims for CIFAR100, iNaturalist
and Tiny-Imagenet.

0 10−5 10−4 10−3 λ 10−1 .5 .991

92

93

94 Accuracy Sensitivity to Aug.

10 30 50

Figure S3. Sensitivity analysis (overall top 1 accuracy) of augmenta-
tion strength λ. Complementing Figure 11 in main text.
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Figure S4. Class-conditional Top-1 accuracy curve for iNat2019.
Complementing Figure 1 (F1 score). Note that ERM and LDAM
show better accuracy for sample-rich majorities, but worse F1 scores.
This evidences majority bias, that a predictor has a low specificity for
data rich classes.

Preprocessing For iNaturalist dataset, we used pretrained Inception V3 to extract the features with dim=2048. For Tiny-
imagenet we finetuned the Resnet 18 to extract the features with dim = 512.

Baselines We used the ERM, LDAM 1, Focal 2, IW 3, and VAT 4 baseline implementations. For GAN we adopted the
CGAN model with architecture shown in S9 and noise dimension listed in S11 for each dataset. We compared all the models
with their own best performance after early stopping.

Discrepancy of baseline performance. We noticed that our implementation of baseline models, especially for the ERM
baseline, yields results better than what’s reported in literature (LDAM in particular). Specifically, our results look better.
After carefully compared our implementation to the LDAM codebase, we see that the discrepancy comes from the choice
of optimizer. The use of vanilla SGD optimizer, as practiced in LDAM, results in degraded performance of baseline, and
consequently a larger performance gap compared to strong solutions.

Majority bias. In Figure S4, we give the top-1 accuracy wrt different minority size on the iNaturalist dataset. This figure
is complementary to the F1-label frequency plot given in Figure 14 from the main text. While the improvement at the tail
part are strong under both metrics, we see clear evidence of majority bias in the Top-1 accuracy plot. ERM and LDAM
show better performance in accuracy for the sample abundant majority regime, but severe performance drop in the sample
deficient minority regime. This is because ERM and alike finds it more rewarding to favor the majorities during inference,
which gives better sensitivity but much worse specificity for the majority samples, and consistently hurting the performance
for minorities.

E.2. Language Data Benchmark

Dataset and preprocessing. In this experiment, have used the arXiv dataset hosted on Kaggle 5. We use the pretrained
BERT model from the transformers package 6 to extract sentence features. Specifically, we applied the SciBERTmodel
(allenai/scibert scivocab uncased) [1], and used the BERT default 768-dimensional sentence embedding for
each abstract. The training set includes 160k data, where class labels with more than 5k samples are identified as majority

1https://github.com/kaidic/LDAM-DRW
2https://github.com/artemmavrin/focal-loss
3https://github.com/idiap/importance-sampling
4https://github.com/lyakaap/VAT-pytorch
5https://www.kaggle.com/Cornell-University/arxiv
6https://github.com/huggingface/transformers
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classes, with the rest assigned to minority label classes. All label classes with less than 20 samples have been excluded from
our analysis. This gives us a total of 14 majority classes and 138 minority classes.

Setup. Different from the image benchmarks, the arXiv data is a multi-label prediction task. Each abstract is associated
with at least one, possibly multiple labels, and we make binary classifications for each label class. In the training of GCL
model, we allow samples with multiple labels to be reused by different classes, as each constructs a valid source IC distribu-
tion under our hypothesis. Only standard ECRT is considered in this experiment. We set the source space dimension to 64
and use the network architecture described in Table S7.

Evaluation. The accuracy reported for this experiment is defined as follows: say a sample is associated with k-labels, then
we compared the top-k predicted labels to the true labels, and report the averaged accuracy for this sample. Like previous
experiments, we target a balanced evaluation set. However, getting a perfectly balanced evaluation set is impossible here,
as samples are associated with multiple labels. We extracted a nearly-balanced evaluation set including 847 samples, where
each label has 10 to 50 counts. Most of classes have 10-15 samples in our nearly-balanced evaluation set.

Table S2. Summary of datasets
NAME DIM TRAIN (MAJORITY) TRAIN (MINORITY) VALIDATION

MNIST (28× 28) 6000 ×(1 OR 5) (CLS) 1200 ×(1 OR 5) (CLS) 1000× 10 (CLS)
CIFAR (32× 32× 3) 500 ×50 (CLS) 500 ×50 (CLS) 100× 100 (CLS)
INAT (NONE × NONE×3) (≥ 120) ×725 (CLS) (< 120) ×285 (CLS) 3× 1010 (CLS)
TINY (64× 64× 3) 450 ×100 (CLS) 45 ×100 (CLS) 50× 200 (CLS)

ARXIV (None) (> 5000) ×14 (CLS) (< 5000) ×138 (CLS) 12× 152 (CLS)
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Table S3. MNIST experiment network architecture.

NETWORK ARCHITECTURE

ENCODER FC(UNIT=32)+RELU
+ FC(UNIT=32)+RELU
+ FC(UNIT=2)

DECODER FC(UNIT=32)+RELU
+ FC(UNIT=32)+RELU
+ FC(UNIT=10)

FLOW MAF(nblocks = 4,
hiddensize = 128,
nhidden = 2).

Table S4. Cifar100 experiment network architecture.

NETWORK ARCHITECTURE

ENCODER RESNET18 a

+ FC(UNIT=32)

DECODER FC(UNIT=256)+RELU
FC(UNIT=100)

FLOW MAF(nblocks = 4,
hiddensize = 128,
nhidden = 2).

aResnet 18 without last layer

TABLE S5. INATURALIST EXPERIMENT NETWORK ARCHITEC-
TURE.

NETWORK ARCHITECTURE

PRETRAIN INCEPTION(V3)

ENCODER FC(UNIT=1024)+RELU
+DROPOUT(0.1)
+ FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=32)

DECODER FC(UNIT=32)+RELU
+DROPOUT(0.1)
+ FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=1010)

FLOW MAF(nblocks = 4,
hiddensize = 128,
nhidden = 2).

TABLE S6. TINY IMAGENET EXPERIMENT NETWORK ARCHITEC-
TURE.

NETWORK ARCHITECTURE

PRETRAIN RESNET18

ENCODER FC(UNIT=1024)+RELU
+DROPOUT(0.1)
+ FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=32)

DECODER FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=200)

FLOW MAF(nblocks = 4,
hiddensize = 128,
nhidden = 2).

TABLE S7. ARXIV EXPERIMENT NETWORK ARCHITECTURE.
NETWORK ARCHITECTURE

PRETRAIN BERT

ENCODER FC(UNIT=1024)+RELU
+DROPOUT(0.1)
+ FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=64)

DECODER FC(UNIT=64)+RELU
+DROPOUT(0.1)
+ FC(UNIT=512)+RELU
+DROPOUT(0.1)
+ FC(UNIT=152)

FLOW MAF(nblocks = 4,
hiddensize = 128,
nhidden = 2).

Table S8. MNIST results with different numbers of minority
categories

# MINORITY LABEL 1 5

NLL TOP 1 NLL TOP 1

ERM 0.342 0.933 0.390 0.904
LDAM 1.6737 0.9609 1.50 0.940
ECRT 0.186 0.972 0.257 0.950
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TABLE S9. GAN NETWORK ARCHITECTURE.
NETWORK ARCHITECTURE

GENERATOR FC(UNIT=256) +LEAKYRELU
+ FC(UNIT=256)+LEAKYRELU

+FC(UNIT=LATENTdim)

DISCRIMINATOR FC(UNIT=256) +LEAKYRELU
+DROPOUT(0.1)

+ FC(UNIT=256)+LEAKYRELU
+DROPOUT(0.1)

+FC(UNIT=1)+SIGMOID

TABLE S10. HYPERPARAMETER OF DATASETS (ECRT)
NAME REG WEIGHT AUG STRENGTH

MNIST 1E-2 1E-3
CIFAR 1E-2 1E-3
INAT 5E-3 1E-3
TINY 1E-3 1E-3
ARXIV 1E-2 1E-2

TABLE S11. HYPERPARAMETER OF DATASETS (GAN)

NAME NOISE DIM

MNIST 32
CIFAR 64
INAT 128
TINY 128

ARXIV 64
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