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A Constructive Definition of RKHS

A constructive definition of RKHS requires the use of Mercer theorem, which provides an alternative
representation for kernels as an inner product of infinite dimensional feature maps [see, e.g., 1,
Theorem 4.1].

Mercer Theorem: Let k be a continuous kernel with respect to a finite Borel measure. There exists
{(λm, φm)}∞m=1 such that λm ∈ R+, φm ∈ Hk, for m ≥ 1, and

k(x, x′) =

∞∑
m=1

λmφm(x)φm(x′).

The RKHS can consequently be represented in terms of {(λm, φm)}∞m=1 using Mercer’s representa-
tion theorem [see, e.g., 1, Theorem 4.2].

Mercer’s Representation Theorem: Let {(λm, φm)}∞m=1 be the same as in Mercer Theorem.
Then, the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmλ
1
2
mφm(·) : ||f ||2Hk ,

∞∑
m=1

w2
m <∞

}
.

Mercer’s representation theorem indicates that {λ
1
2
mφm}∞m=1 form an orthonormal basis for Hk. It

also provides a constructive definition for the RKHS as the span of this orthonormal basis, and a
definition for the norm of a member f as the l2 norm of the weights wm.

The RKHS of Matérn is equivalent to a Sobolev space with parameter ν + d
2 [1, 2]. This observation

provides an intuitive interpretation for the norm of Matérn RKHS as proportional to the cumulative L2

norm of the weak derivatives of f up to ν + d
2 order. I.e., in the case of Matérn family, Assumption 1

on the norm of f translates to the existence of weak derivatives of f up to ν + d
2 order, which can be

understood as a versatile measure for the smoothness of f controlled by ν. In the case of SE kernel,
the regularity assumption implies the existence of all weak derivatives of f . For the details on the
definition of weak derivatives and Sobolev spaces see [3].

B Proof of Proposition 1

Recall the notations Yn = [y1, y2, . . . , yn]>, Fn = [f(x1), f(x2), . . . , f(xn)]>, Z>n (x) =

k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
. Let ζi(x) = [Zn(x)]i. From the closed form expression for the

posterior mean of GP models, we have µn(x) = Z>n (x)Yn.
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The proof of Proposition 1 uses the following lemma.

Lemma 1 For a positive definite kernel k and its corresponding RKHS, the following holds.

sup
f :||f ||Hk≤1

(
f(x)−

n∑
i=1

ζi(x)f(xi)

)2

=

∣∣∣∣∣∣∣∣k(., x)−
n∑
i=1

ζi(x)k(., xi)

∣∣∣∣∣∣∣∣2
Hk

. (1)

The lemma establishes the equivalence of the RKHS norm of a linear combination of feature vectors
induced by k to the supremum of the linear combination of the corresponding function values, over
the functions in the unit ball of the RKHS. For a proof, see [1, Lemma 3.9].

Expanding the RKHS norm in the right hand side through an algebraic manipulation, we get∣∣∣∣∣∣∣∣k(., x)−
n∑
i=1

ζi(x)k(., xi)

∣∣∣∣∣∣∣∣2
Hk

= k(x, x)− 2

n∑
i=1

ζi(x)k(x, xi) +

n∑
i=1

n∑
j=1

ζi(x)ζj(x)k(xi, xj)

= k(x, x)− 2

n∑
i=1

ζi(x)k(x, xi) + (Zn(x))>k(Xn, Xn)Zn(x)

= k(x, x)− 2(k(x,Xn))>(k(Xn, Xn) + λ2In)−1k(x,Xn)

+ (k(x,Xn))>(k(Xn, Xn) + λ2In)−1k(Xn, Xn)(k(Xn, Xn) + λ2In)−1k(x,Xn)

= k(x, x)− 2k(x,Xn)>(k(Xn, Xn) + λ2In)−1k(x,Xn)

+ k(x,Xn)>(k(Xn, Xn) + λ2In)−1(k(Xn, Xn) + λ2In − λ2In)(k(Xn, Xn) + λ2In)−1k(x,Xn)

= k(x, x)− 2k(x,Xn)>(k(Xn, Xn) + λ2In)−1k(x,Xn)

+ k(x,Xn)>(k(Xn, Xn) + λ2In)−1k(x,Xn)− λ2k(x,Xn)>(kXn,Xn + λ2In)−2k(x,Xn)

= k(x, x)− (k(Xn, Xn))>(k(Xn, Xn) + λ2In)−1k(Xn, Xn)− λ2k(x,Xn)>(k(Xn, Xn) + λ2In)−2k(x,Xn)>

= σ2
n(x)− λ2(Zn(x))>Zn(x)

= σ2
n(x)− λ2

∣∣∣∣∣∣∣∣Zn(x)

∣∣∣∣∣∣∣∣2.
The first equation uses the reproducing property of the RKHS. The second equation results from
expressing the series in the vector product form. The third equation follows from the definition
of Zn(x). The fourth and fifth equations follow from adding and subtracting a λ2In term to the
covariance matrix and some algebraic calculation. Sixth equation uses the closed form expression for
the posterior variance of GP models and the definition of Zn(x).

Rearranging and combining with (1), we arrive at

σ2
n(x) = sup

f :||f ||Hk≤1

(
f(x)− Z>n (x)Fn

)2
+ λ2

∣∣∣∣∣∣∣∣Zn(x)

∣∣∣∣∣∣∣∣2.
C Proof of Theorems 1 and 2

Recall the closed form expression for the posterior mean of GP models µn(x) = Z>n (x)Yn. We can
expand the prediction error in terms of prediction error due to noise-free observations and the effect
of noise as follows

f(x)− µn(x) = f(x)− Z>n (x)Yn

= f(x)− Z>n (x)Fn − Z>n (x)En. (2)

We now use Proposition 1 to bound both terms.
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Prediction error due to noise free observations can be simply bounded by Bσn as a direct re-
sult of Proposition 1. Specifically let f̃(.) = f(.)/B so that ||f̃ ||Hk ≤ 1. Also, let F̃n =

[f̃(x1), f̃(x2), . . . , f̃(xn)]>.

|f(x)− Z>n (x)Fn| = B|f̃(x)− Z>n (x)F̃n|
≤ Bσn(x), (3)

where the inequality follows from Proposition 1 and ||f̃ ||Hk ≤ 1.

We now proceed using Assumption 2 to prove Theorem 1.

The effect of noise is bounded using the sub-Gaussianity assumption. In particular, we show that
Z>n (x)En is a sub-Gaussian random variable whose moment generating function is bounded by that
of a Gaussian random variable with variance R2σ2

n(x)
λ2 .

E
[

exp(Z>n (x)En)

]
= E

[
exp

(
n∑
i=1

ζi(x)εi

)]

=

n∏
i=1

E[exp(ζi(x)εi)]

≤
n∏
i=1

exp(
R2(ζi(x))2

2
)

= exp

(
R2
∑n
i=1(ζi(x))2

2

)
= exp

(
R2||Zn(x)||2

2

)
≤ exp

(
R2σ2

n(x)

2λ2

)
.

where the second equation is a result of independence of ζi(x)εi terms that follows from the as-
sumptions of i.i.d. noise terms and Xn being independent of En. The first inequality holds by
Assumption 2. We utilize Proposition 1 to conclude that ‖Zn(x)‖2 ≤ σ2

n(x)
λ2 which results in the

second inequality. Thus, using Chernoff-Hoeffding inequality [4],

Zn(x)En ≥ −σn(x)R

λ

√
2 log(

1

δ
) w.p. at least 1− δ,

Zn(x)En ≤ σn(x)R

λ

√
2 log(

1

δ
) w.p. at least 1− δ. (4)

Putting together (2), (3) and (4), Theorem 1 is proven.

We now move to the proof of Theorem 2. For the simplicity of the notation let us use

τ = ‖Zn(x)‖

√
2(ξ0 ∨

2 log(1/δ)

h20
) log(

1

δ
), (5)

ξ = ξ0 ∨
2 log(1/δ)

h20
. (6)

We have, for θ = τ
ξ||Zn(x)||2 ,
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Pr[Z>n (x)En ≥ τ ] = Pr

[
exp(θZ>n (x)En) ≥ exp(θτ)

]
≤ exp(−θτ)E

[
exp(θZ>n (x)En)

]
= exp(−θτ)E

[
exp

(
n∑
i=1

θζi(x)εi

)]

= exp(−θτ)

n∏
i=1

E
[

exp(θζi(x)εi)

]

≤ exp(−θτ)

n∏
i=1

exp

(
1

2
ξ0θ

2(ζi(x))2
)

= exp

(
1

2
ξ0θ

2||Zn(x)||2 − θτ
)

= exp

(
ξ0τ

2

2ξ2||Zn(x)||2
− τ2

ξ||Zn(x)||2

)
≤ exp(− τ2

2ξ||Zn(x)||2
)

= δ. (7)

The first line is obtained since exp(θz) in an increasing function in z. The first inequality amounts
for an application of Markov inequality. The fourth line is a result of independence of ζi(x)εi terms
that follows from the assumptions of i.i.d. noise terms and Xn being independent of En. The second
inequality holds by definition of light-tailed distributions. Notice that the careful choice of τ and θ
ensures θζi(x) ≤ h0, which will be validated next. The seventh line is obtained by replacing the
value of θ. The last inequality is obtained by ξ0 ≤ ξ. The last line is resulted from replacing the value
of τ from (5).

It remains to validate θζi(x) ≤ h0.

θζi(x) =
τ

ξ||Zn(x)||2
ζi(x)

=

√
2 log(1

δ )ζi(x)
√
ξ||Zn(x)||

≤ h0
ζi(x)

||Zn(x)||
≤ h0,

where we replace θ = τ
ξ||Zn||2 , and the values of τ and ξ from (5) and (6), respectively. For the first

inequality, notice that 2 log(1/δ)
h2
0

≤ ξ from the definition of ξ (6). For the second inequality notice that
ζi(x) ≤ ||Zn(x)||.
We thus proved

Zn(x)En ≤ τ, w.p. at least 1− δ. (8)

Similarly, we can prove

Zn(x)En ≥ −τ, w.p. at least 1− δ. (9)

Replacing ||Zn(z)|| ≤ R
λ σn(x) from Proposition 1 in the value of τ (5), and combining (8) and (9)

with (2) and (3), Theorem 2 is proven.

4



D Proof of Theorem 3

The MVR algorithm selects the points with the highest variance first. Thus, ∀x ∈ X ,

σ2
n−1(x) ≤ σ2

n−1(xn). (10)

By definition of conditional variance of normal distributions and due to positive definiteness of
covariance matrix, conditioning on a larger set of points reduces the variance. Specifically, we have,
for all x ∈ X and ∀n ≤ N ,

σ2
N (x) ≤ σ2

n−1(x). (11)

Combining (10) and (11), we have, ∀x ∈ X and ∀n ≤ N ,

σ2
N (x) ≤ σ2

n−1(xn).

Averaging both sides over n (from 1 to N ), we have

σ2
N (x) ≤ 1

N

N∑
n=1

σ2
n−1(xn). (12)

We now use the following lemma to bound σ2
N (x).

Lemma 2 Recall I(Yn; f̂) = 1
2 log det(In + 1

λ2 k(Xn, Xn)). For the cumulative conditional vari-
ance of the GP model, we have

N∑
n=1

σ2
n−1(xn) ≤ 2

log(1 + 1
λ2 )
I(YN ; f̂).

A proof can be found in [5].

We thus have, for all x ∈ X ,

σ2
N (x) ≤ 2I(Yn; f̂)

log(1 + 1
λ2 )N

≤ 2γN

log(1 + 1
λ2 )N

, (13)

where γN is the maximal information gain defined in Sec. 2.4.

Let B0(δ) = B +
√
Nβ(2δ/N). At the end of this section, in Lemma 4, we prove that

‖µN‖Hk ≤ B0(δ), w.p. at least 1− δ. (14)

Notice that µn is a random function due to the randomness in noise. Let us define the event
E = {‖µN‖Hk ≤ B0(δ/3)}. We have Pr[E ] ≥ 1− δ

3 .

Under event E , we use Assumption 4 on the existence of a discretization DN (δ) of X such that
f(x) − f([x]N ) ≤ 1√

N
, µN (x) − µN ([x]N ) ≤ 1√

N
, and |DN (δ)| ≤ CBd0 (δ/3)Nd/2. Notice that

we do not need to actually create this discretization. We only use its existence to handle the analysis
in a continuous space, using a probability union bound based on this discretization.

For a fixed x ∈ DN , from the confidence bounds for GP models proven in Theorems 1 and 2, we
have

f(x) ≥ µn(x)− (B + β(
δ

3|DN (δ)|
))σn(x), w.p. at least 1− δ

3|DN (δ)|
.

Using a probability union bound, we have, ∀x ∈ DN (δ)

f(x) ≥ µn(x)− (B + β(
δ

3|DN (δ)|
))σn(x), w.p. at least 1− δ

3
. (15)
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We thus have, under event E ,
f(x∗)− f(x̂∗N ) = f(x∗)− f([x̂∗N ]N ) + f([x̂∗N ]N )− f(x̂∗N )

≤ f(x∗)− f([x̂∗N ]N ) +
1√
N

≤ f(x∗)− µN (x∗) + µN (x̂∗N )− f([x̂∗N ]N ) +
1√
N

= f(x∗)− µN (x∗) + µN (x̂∗N )− µN ([x̂∗N ]N ) + µN ([x̂∗N ]N )− f([x̂∗N ]N ) +
1√
N

≤ f(x∗)− µN (x∗) + µN ([x̂∗N ]N )− f([x̂∗N ]N ) +
2√
N
.

The first inequality comes from Assumption 4 on discretization DN (δ) and f . The second inequality
comes from the definition of MVR which ensures µN (x̂∗N ) ≥ µN (x), for all x ∈ X . For the last
inequality, we use Assumption 4 on discretization DN (δ) and µN . Notice that under event E , the
posterior mean of the GP model belongs to the same RKHS with its norm bounded by B0(δ/3).

Thus, noting that the inequality given in (15), the confidence interval for f(x∗) with 1 − δ/3
confidence, and E , each hold true with probability at least 1− δ

3 , using a probability union bound, we
have

f(x∗)− f(x̂∗N ) ≤ (B + β(
δ

3
))σN (x∗) + (B + β(

δ

3|DN (δ)|
)σN ([x̂∗N ]N ) (16)

+
2√
N
, w.p. at least 1− δ.

Using (13) to bound σN (x∗) and σN ([x̂∗N ]N ), and replacing |DN (δ)| with its upper bound, we get

f(x∗)− f(x̂∗N ) ≤
√

2γN

log(1 + 1
λ2 )N

(
2B + β(

δ

3
) + β(

δ

3C(B +
√
Nβ(2δ/3N))dNd/2

)

)
+

2√
N
, w.p. at least 1− δ, (17)

which completes the proof.

We now prove a high probability upper bound on ‖µn‖Hk .

Let us first formally state the equivalence of the posterior mean in GP models and the regressor in
kernel ridge regression.

Lemma 3 Conditioned on a set of noisy observation Hn from f , recall the expression for the
posterior mean of the GP model µn(x) = Z>n (x)Yn. We have the following equality

µn = argming∈Hk

(
λ2||g||2Hk +

n∑
i=1

(g(xi)− yi)2
)
. (18)

For a proof, see [1, Theorem 3.4]. Lemma 3 establishes the equivalence of the posterior mean in GP
models and the regressor in kernel ridge regression. It indicates that the posterior mean of GP models
is a mean squared error estimator, regularized by the RKHS norm, where λ2 is the regularization
parameter. We use this lemma to show that the posterior mean of the GP model, with high probability,
lives in the same RKHS as f .

Lemma 4 Conditioned on a set of noisy observationHn from f with ‖f‖Hk ≤ B, the RKHS norm
of the posterior mean of the GP model µn(x) = Z>n (x)Yn satisfies the following

‖µn‖Hk ≤ B +
√
nβ(2δ/n), w.p. at least 1− δ, (19)

where β(δ) = R
λ

√
2 log(1

δ ) under Assumption 2, and β(δ) = 1
λ

√
2(ξ0 ∨ 2 log(1/δ)

h2
0

) log(1
δ ) under

Assumption 3.
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Proof of Lemma 4: We have

‖µn‖Hk = ‖Z>n (.)Fn + Z>n (.)En‖Hk
≤ ‖Z>n (.)Fn‖Hk + ‖Z>n (.)En‖Hk . (20)

From Lemma 3, we have

λ2‖Z>n (.)Fn‖2Hk +

n∑
i=1

(Z>n (xi)Fn − f(xi))
2 ≤ λ2‖f‖2Hk +

n∑
i=1

(f(xi)− f(xi))
2

Thus,

‖Z>n (.)Fn‖Hk ≤ ‖f‖Hk , (21)

where ‖f‖Hk ≤ B. It thus remains to bound the second term on the right hand side of (20).

‖Z>n (.)En‖2Hk = ‖k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
En‖2Hk

= E>n
(
k(Xn, Xn) + λ2In

)−1
k(Xn, Xn)

(
k(Xn, Xn) + λ2In

)−1
En

= E>n
(
k(Xn, Xn) + λ2In

)−1 (
k(Xn, Xn) + λ2In

) (
k(Xn, Xn) + λ2In

)−1
En

−λ2E>n
(
k(Xn, Xn) + λ2In

)−2
En

≤ E>n
(
k(Xn, Xn) + λ2In

)−1
En

≤ 1

λ2
‖En‖2l2 ,

where for the second line we used the reproducing property of the RKHS, for the first inequality
we used positive definiteness of

(
k(Xn, Xn) + λ2In

)−2
that is a result of positive definiteness of

k(Xn, Xn), and for the last inequality we used positive definiteness of k(Xn, Xn).

Under Assumption 2, as a result of Chernoff-Hoeffding inequality,

ε2i ≤ 2R2 log(
1

2δ′
), w.p. at least 1− δ′.

Using a probability union bound over i = 1, 2, . . . , n, with δ′ = δ
n ,

1

λ2
‖En‖2l2 ≤

2nR2

λ2
log(

n

2δ
), w.p. at least 1− δ. (22)

Under Assumption 3, as a result of (7) (with n = 1, and Zn = 1),

ε2i ≤ 2(ξ0 ∨
2 log(1/2δ′)

h20
) log(

1

2δ′
), w.p. at least 1− δ′.

Using a probability union bound over i = 1, 2, . . . , n, with δ′ = δ
n ,

1

λ2
‖En‖2l2 ≤

2n

λ2
(ξ0 ∨

2 log(n/2δ)

h20
) log(

n

2δ
), w.p. at least 1− δ. (23)

Combining the bounds on the both terms on the right hand side of (20), the lemma is proven.

E Proof of Corollary 1

We use Theorem 3 to derive a bound on the expected regret of MVR.

First, notice that |f(x)| ≤ k0B where k20 = maxx∈X k(x, x), which can be proven using the
reproducing property of the RKHS.

|f(x)| = |〈f(.), k(., x)〉Hk |
≤ ||f ||Hk ||k(., x)||Hk
= ||f ||Hk

√
k(x, x)

≤ k0B.
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So, we have maxx∈X f(x∗)− f(x) ≤ 2k0B. Let E denote the even that rMVR
N ≤ r̄, where

r̄ =

√
2γN

log(1 + 1
λ2 )N

2B + β(
1

3
√
N

) + β

 1

3C
√
N
(
B +

√
Nβ(2/3N

√
N)
)d
Nd/2


+

2√
N

is the upper bound on regret given in Theorem 3 with δ = 1√
N

. From Theorem 3, we have
Pr[E ] ≥ 1− 1√

N
.

Using the law of total expectation, we have

E[rMVR
N ] = E

[
rMVR
N |E

]
Pr[E ] + E

[
rMVR
N |Ē

]
Pr[Ē ]

≤ r̄ +
2k0B√
N

= O
(√

γN
N
β(

1

Nd+ 1
2

)

)
.

Under Assumption 2,

E[rMVR
N ] = O

(√
γN
N

log(Nd+ 1
2 )

)
. (24)

Under Assumption 3,

E[rMVR
N ] = O

(√
γN
N

log(Nd+ 1
2 )

)
. (25)

In the case of SE kernel, γN = O
(
(log(N))d+1

)
[5]. Selecting N ∝ ( 1

ε )2(log( 1
ε ))d+2 and

N ∝ ( 1
ε )2(log( 1

ε ))d+3, with proper constants, under Assumptions 2 and 3, respectively, results
in E[rMVR

N ] ≤ ε.

In the case of Matérn kernel, γN = O
(
N

d
2ν+d (log(N))

2ν
2ν+d

)
[6]. Selecting N ∝

( 1
ε )2+

d
ν (log( 1

ε ))
4ν+d
2ν and N ∝ ( 1

ε )2+
d
ν (log( 1

ε ))
6ν+2d

2ν , with proper constants, under Assumptions 2

and 3, respectively, results in E[rMVR
N ] ≤ ε.

Finding the exact constants requires solving a non-linear equation involving log function which is a
tedious task.

Noticing that E[rMVR
n ] is a decreasing function in n completes the proof.

F Supplemental Material on the Experiments

In this section, we provide further details on the experiments and the source code. We also provide
additional experiments on two commonly used benchmark functions for Bayesian optimization.

F.1 Additional Experiments

In Section 5, we provided experiments on comparison of the simple regret performance of Bayesian
optimization algorithms on synthetically generated functions in RKHS. In this section, we consider
two commonly used benchmark functions for Bayesian optimization: Hartman3 and Rosenbrock
as presented in [7, 8]. The parameters of the kernels, noise and λ are set exactly as described in
Section 5. We plot the average simple regret for all four learning algorithms considered in Section 5,
over 50 independent experiments, with Hartman3 test function in Figure 1, and with Rosenbrock test
function in Figure 2. The details on the source code is provided in the next section. The data used for
generating the figures is provided in the supplementary material.
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(a) SE, Gaussian Noise (b) Matérn, Gaussian Noise

(c) SE, Laplace Noise (d) Matérn, Laplace Noise

Figure 1: Comparison of the simple regret performance of Bayesian optimization algorithms on
Hartman3 test function.

(a) SE, Gaussian Noise (b) Matérn, Gaussian Noise

(c) SE, Laplace Noise (d) Matérn, Laplace Noise

Figure 2: Comparison of the simple regret performance of Bayesian optimization algorithms on
Rosenbrock test function.

F.2 Additional Details on the Experiments and the Source Code

In the paper, we have provided a complete theoretical analysis of sample complexity. Here, we briefly
mention the computational complexity of the algorithms. There are two computational bottlenecks in
implementing Bayesian optimization algorithms. First bottleneck is the update of the GP model based
on past observations which requires an O(n3) computation at time n, due to the matrix inversion,
(k(Xn, Xn) + λ2In)−1, step. Sparse approximations of matrix inversion [9] or sparse variational
models [10, 11, 12] can reduce the computational complexity from O(n3) to O(n), however at the
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price of introducing an approximation error. Second bottleneck is the selection of the observation
point based on the acquisition functions which are summarized next for each algorithm.

• IGP-UCB: µn(x) + βδnσn(x) where βδn =
(
B +R

√
2(γn + 1 + log( 1

δ ))
)

.

• GP-PI: Pr[f(x) ≥ µ+ +α] = Φ
(
µn(x)−µ+−α

σn(x)

)
, where µ+ = maxi<n µi−1(xi), α > 0 is

a user selected hyper-parameter (set to 0.01 in our experiments as suggested in [13]), and Φ
is the cumulative density function of the standard normal distribution.

• GP-EI: κΦ( κ
σn(x)

) + σn(x)φ( κ
σn(x)

), where κ = µn(x) − µ+ − α, and φ and Φ denote
the probability density function and cumulative density function of the standard normal
distribution, respectively. The parameters µ+ and α are set similar to GP-PI, following [13].

The standard approach in finding the maximizer of the acquisition function is to evaluate it on a grid
discretizing the search space [14]. For a grid of size M , this requires O(Mn) computations at time n.
We have used the same discretization for all algorithms.

A practical idea to improve the computational cost in implementing Bayesian optimization algorithms
is to use an off-the-shelf optimizer to solve the optimization of the acquisition function at each
iteration (instead of using a grid). This method, although can lead to significant gains in computa-
tional complexity, invalidates the existing regret bounds, due to lack of guarantees for an accurate
optimization of the acquisition function (that is often non-convex). We thus used the discretization
method, following most related work with analytical regret guarantees [e.g., 5, 14]

The source code includes the following files:

• algorithms.py: Contains all learning algorithm (IGP-UCB, MVR, GP-PI and GP-EI) classes
and the corresponding routines

• function.py: Contains the definition of the objective functions including Rosenbrock, Hart-
man3, and RKHS elements.

• main_synthetic_test_fct.py, main_rosenbrock.py, main_hartman.py: each contains the main
file which runs the experiment with the corresponding objective function.

In addition, we have provided two files main_demo_1.py, main_demo_2.py for demonstration pur-
poses.

At the beginning of each main file a run command example is provided that contains the various
keyword arguments which may be passed to the experiment. Those include values such as the number
of samples and the learning algorithm. For instance, the run command “python main_rosenbrock.py
-N 100 -n_samples 20 -n_points 200 -methods MVR GP_PI” runs the experiments on Rosenbrock
test function for N = 100 exploration trials, for 20 times (the final figures shall be generated by
averaging over the output values of these 20 experiments), where a discretization of the domain with
M = 200 points is used. It will generate a simple regret vector [rAn ]Nn=1, as output values, for each
experiment, for all of the specified learning algorithms (MVR and GP-PI in this example), that will
be stored as a column in a .csv file. See also the README.md file provided with the source code.

Our experiments take approximately 100 hours, on four devices with 16, 16, 16 and 64 GB RAM,
and all with Intel Core i7 processors.
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