A Omitted Proofs for Section 4

A. 1 Proof of Proposition 1 (Consistency)

Proposition 6 (MDS LLN [16, Example 7.11]). Let \bar{Y}_{T} be the sample mean from a martingale difference sequence (MDS), $\bar{Y}_{T}=\frac{1}{T} \sum_{t=1}^{T} Y_{i}$, with $\mathbf{E}\left[\left|Y_{t}\right|^{r}\right]<\infty$ for some $r>1$. Then $\bar{Y}_{T} \xrightarrow{p} 0$.
Lemma 2 (Uniform convergence). Let $a_{i}(\theta):=S_{i} \tilde{a}\left(\theta, X_{i}\right)$ be a real-valued function where $S_{i} \in$ $\{0,1\}$ is H_{i-1}-measurable and X_{i} are i.i.d. Suppose that (i) Θ is compact and (ii) $\tilde{a}\left(\theta, X_{i}\right)$ satisfies Property 1 Then

$$
\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} a_{*}(\theta)\right]\right| \xrightarrow{p} 0
$$

where $a_{*}(\theta)=\mathbf{E}\left[\tilde{a}\left(\theta ; X_{i}\right)\right]$.
Proof. We follow a standard uniform law of large numbers proof (e.g. Tauchen [39, Lemma 1]) and modify it to work for dependent data. The key modification is replacing the law of large numbers (LLN) in that proof with a MDS LLN.

Let $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$ be a minimal δ-cover of Θ and $N_{\delta}\left(\theta_{k}\right)$ denote the δ-ball around θ_{k}. By compactness of Θ, K is finite. For $k \in[K]$ and $\theta \in N_{\delta}\left(\theta_{k}\right)$, we have

$$
\begin{aligned}
& \left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} a_{*}(\theta)\right]\right| \\
& =\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-a_{i}\left(\theta_{k}\right)+a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k}\right)+S_{i} a_{*}\left(\theta_{k}\right)-S_{i} a_{*}(\theta)\right]\right| \\
& \leq \frac{1}{T} \sum_{i=1}^{T}\left|a_{i}(\theta)-a_{i}\left(\theta_{k}\right)\right|+\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k}\right)\right]\right|+\frac{1}{T} \sum_{i=1}^{T}\left|S_{i} a_{*}\left(\theta_{k}\right)-S_{i} a_{*}(\theta)\right| \\
& =\frac{1}{T} \sum_{i=1}^{T}\left|S_{i}\left(\tilde{a}\left(\theta ; X_{i}\right)-\tilde{a}\left(\theta_{k} ; X_{i}\right)\right)\right|+\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k}\right)\right]\right|+\frac{1}{T} \sum_{i=1}^{T}\left|S_{i}\left(a_{*}\left(\theta_{k}\right)-a_{*}(\theta)\right)\right| \\
& \leq \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}\left(\theta ; X_{i}\right)-\tilde{a}\left(\theta_{k} ; X_{i}\right)\right|+\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k}\right)\right]\right|+\left|a_{*}\left(\theta_{k}\right)-a_{*}(\theta)\right| .
\end{aligned}
$$

We now show that each of the three terms on the RHS above is small. In the third term, by continuity of $a_{*}(\theta), \forall \epsilon>0, \exists \delta>0$ s.t. $\left|a_{*}\left(\theta_{k}\right)-a_{*}(\theta)\right|<\epsilon$.
In the second term, $\left[a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k} ; S_{i}\right)\right]$ is a MDS. By Property 1 i) and Proposition 6, we have $\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{k}\right)-S_{i} a_{*}\left(\theta_{k}\right)\right]\right| \xrightarrow{p} 0$.
Next, we examine first term on the RHS. Let $u_{i}(\delta)=\sup _{\theta, \theta^{\prime} \in \Theta,\left\|\theta-\theta^{\prime}\right\| \leq \delta}\left|\tilde{a}\left(\theta, X_{i}\right)-\tilde{a}\left(\theta^{\prime}, X_{i}\right)\right|$. By continuity of $\tilde{a}\left(\theta, X_{i}\right)$, compactness of Θ, and the Heine-Cantor theorem, $\tilde{a}\left(\theta, X_{i}\right)$ is uniformly continuous in θ. This ensures that $u_{i}(\delta)$ is continuous in δ and thus $u_{i}(\delta) \downarrow 0$ as $\delta \downarrow 0$. Since $u_{i}(\delta) \leq 2 A\left(X_{i}\right)$ (by Property 1 (iii)), using dominated convergence, we have $\mathbf{E}\left[u_{i}(\delta)\right] \downarrow 0$ as $\delta \downarrow 0$. Therefore, $\forall \epsilon>0, \exists \delta>0$ s.t. $\mathbf{E}\left[u_{i}(\delta)\right]<\epsilon$. Thus we can write the first term as

$$
\begin{aligned}
\frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}\left(\theta ; X_{i}\right)-\tilde{a}_{i}\left(\theta_{k} ; X_{i}\right)\right| & \leq \frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta) \\
& =\frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-\mathbf{E}\left[u_{i}(\delta)\right]+\mathbf{E}\left[u_{i}(\delta)\right] \\
& \leq \frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-\mathbf{E}\left[u_{i}(\delta)\right]+\epsilon \\
& \stackrel{(a)}{=} o_{p}(1)+\epsilon,
\end{aligned}
$$

where (a) follows by the weak law of large numbers which applies because $E\left[u_{i}(\delta)\right] \leq \mathbf{E}\left[A\left(X_{i}\right)\right]<$ ∞ (by Property 1(iii)).

Proposition (Consistency). Suppose that (i) Assumption 2 holds, (ii) $\forall j \in[M], \tilde{g}_{t, j}(\theta)$ satisfies Property $\left[\right.$ and (iii) $\forall(i, j) \in[M]^{2},\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]_{i, j}$ satisfies Property 1 - Then, for any policy π, $\widehat{\theta}_{T}^{(\pi)} \xrightarrow[T \rightarrow \infty]{p} \theta^{*}$.

Proof. We begin by defining the empirical and population analogues of the two-step GMM objective for a given policy π :

$$
\begin{aligned}
& \text { Empirical objective: } \widehat{Q}_{T}^{(\pi)}(\theta)=\left[\frac{1}{T} \sum_{t=1}^{T} g_{t}(\theta)\right]^{\top} \widehat{W}\left[\frac{1}{T} \sum_{t=1}^{T} g_{t}(\theta)\right], \\
& \text { Population objective: } \bar{Q}_{T}^{(\pi)}(\theta)=\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[g_{t}(\theta) \mid H_{t-1}\right]\right]^{\top} W\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[g_{t}(\theta) \mid H_{t-1}\right]\right] \\
& =\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right)\right) \otimes g_{*}(\theta)\right]^{\top} W\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right)\right) \otimes g_{*}(\theta)\right] \\
& =\left[m_{T} \otimes g_{*}(\theta)\right]^{\top} W\left[m_{T} \otimes g_{*}(\theta)\right],
\end{aligned}
$$

where $g_{*}(\theta)=\mathbf{E}\left[\tilde{g}_{i}(\theta)\right]$ and $m_{T}=\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right)$. We have $\widehat{W}=\left[\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right]^{-1}$, where $\widehat{\theta}_{T}^{(\mathrm{os})}$ is the one-step GMM estimate and

$$
\begin{aligned}
\widehat{\Omega}_{T}(\theta) & =\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta) g_{t}(\theta)^{\top}\right] \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(\left[m\left(s_{t}\right) m\left(s_{t}\right)^{\top}\right] \otimes\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]\right)
\end{aligned}
$$

Furthermore, we have $W=\left[m_{\Omega}\left(\kappa_{T}\right) \otimes \Omega\left(\theta^{*}\right)\right]^{-1}$, where

$$
\begin{array}{r}
m_{\Omega}\left(\kappa_{T}\right)=\sum_{t=1}^{T}\left(m\left(s_{t}\right) m\left(s_{t}\right)^{\top}\right) \\
\Omega(\theta)=\mathbf{E}\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]
\end{array}
$$

The two-step GMM estimator is obtained by minimizing the empirical objective: $\widehat{\theta}_{T}=$ $\arg \min _{\theta \in \Theta} \widehat{Q}_{T}^{(\pi)}(\theta)$. At the true parameter $\theta^{*}, \bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)=0$ and by Assumption 2 a), θ^{*} uniquely minimizes $\bar{Q}_{T}^{(\pi)}(\theta)$. By Newey and McFadden [30, Theorem 2.1], $\sup _{\theta \in \Theta}\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \xrightarrow{p}$ $0 \Longrightarrow \widehat{\theta}_{T} \xrightarrow{p} \theta^{*}$.

Uniform convergence of $\widehat{Q}_{T}^{(\pi)}(\theta)$. We now prove that $\sup _{\theta \in \Theta}\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \xrightarrow{p} 0$. Following the proof of Newey and McFadden [30, Theorem 2.6], we have

$$
\begin{align*}
& \left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \\
& \leq\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\|^{2}\|\widehat{W}\|^{2}+2\left\|g_{*}(\theta)\right\|\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\|\|\widehat{W}\|+ \\
& \quad\left\|g_{*}(\theta)\right\|^{2}\|\widehat{W}-W\| . \tag{2}
\end{align*}
$$

We first prove that $\|\widehat{W}-W\| \xrightarrow{p} 0$. Due to Condition (iii) of the theorem, we can apply Lemma 2 to get

$$
\begin{gathered}
\forall(i, j) \in[M]^{2}, \forall \epsilon>0, \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\widehat{\Omega}_{T}(\theta)_{i, j}-\left[m_{\Omega}\left(\kappa_{T}\right) \otimes \Omega(\theta)\right]\right|>\epsilon\right) \rightarrow 0, \\
\therefore \forall(i, j) \in[M]^{2}, \forall \epsilon>0, \mathbf{P}\left(\left|\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{\text {(os) }}\right)_{i, j}-\left[m_{\Omega}\left(\kappa_{T}\right) \otimes \Omega\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right]\right|>\epsilon\right) \rightarrow 0, \\
\therefore \forall(i, j) \in[M]^{2}, \forall \epsilon>0, \mathbf{P}\left(\left|\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)_{i, j}-\left[m_{\Omega}\left(\kappa_{T}\right) \otimes \Omega\left(\theta^{*}\right)\right]\right|>\epsilon\right) \xrightarrow{(a)} 0, \\
\therefore \forall(i, j) \in[M]^{2}, \forall \epsilon>0, \mathbf{P}\left(\left|\widehat{W}_{i, j}-W_{i, j}\right|>\epsilon\right) \xrightarrow{(b)} 0, \\
\therefore\|\widehat{W}-W\| \xrightarrow{p} 0,
\end{gathered}
$$

where (a) follows because $\hat{\theta}_{T}^{(\text {os })} \xrightarrow{p} \theta^{*}$ (by Proposition 1) and (b) by the continuous mapping theorem. Therefore, we have

$$
\begin{aligned}
\|\widehat{W}\| & \leq\|W\|+o_{p}(1) \\
& \leq \underbrace{\limsup _{T \rightarrow \infty}\left\|\left[m_{\Omega}\left(\kappa_{T}\right) \otimes \Omega\left(\theta^{*}\right)\right]^{-1}\right\|}_{:=\lambda_{0}}+o_{p}(1)
\end{aligned}
$$

Substituting these results in Eq. 2, we get

$$
\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \leq\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\|^{2} \lambda_{0}^{2}+2\left\|g_{*}(\theta)\right\|\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\| \lambda_{0}+o_{p}(1)
$$

Thus, to show uniform convergence of $\widehat{Q}_{T}^{(\pi)}(\theta)$, we need to show that $\sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\| \xrightarrow{p} 0$. For any $\epsilon>0$, we have

$$
\begin{aligned}
& \mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\|<\epsilon\right) \geq \mathbf{P}\left(\sup _{\theta \in \Theta} \sum_{j=1}^{M}\left|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t, j}(\theta)-m_{j}\left(s_{t}\right) g_{*}(\theta)_{j}\right]\right|<\epsilon\right) \\
& \stackrel{(a)}{\geq} 1-\sum_{j=1}^{M} \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t, j}(\theta)-m_{j}\left(s_{t}\right) g_{*}(\theta)_{j}\right]\right| \geq \frac{\epsilon}{M}\right) \\
& \stackrel{(b)}{\geq} 1-o_{p}(1), \\
& \therefore \sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m\left(s_{t}\right) \otimes g_{*}(\theta)\right]\right\| \xrightarrow{p} 0
\end{aligned}
$$

where (a) follows by the union bound and (b) by applying Lemma 2 for every $j \in[M]$ (using Condition (ii)).

A. 2 Proof of Proposition 2 (Asymptotic normality)

Proposition 7 (Martingale CLT [15], Corollary 3.1]). Let M_{i} with $1 \leq i \leq n$ be a martingale adapted to the filtration \mathcal{F}_{i} with differences $X_{i}=M_{i}-M_{i-1}$ and $M_{0}=0$. Suppose that the following two conditions hold: (i) (Conditional Lindeberg) $\forall \epsilon>0, \quad \sum_{i=1}^{n} \mathbf{E}\left[X_{i}^{2} I\left(\left|X_{i}\right|>\epsilon\right) \mid \mathcal{F}_{i-1}\right] \xrightarrow{p} 0$, and (ii) (Convergence of conditional variance) For some constant $\sigma>0, \sum_{i=1}^{n} \mathbf{E}\left[X_{i}^{2} \mid \mathcal{F}_{i-1}\right] \xrightarrow{p} \sigma^{2}$.

Then $\sum_{i=1}^{n} X_{i} \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right)$.
Proposition (Asymptotic normality). Suppose that (i) $\widehat{\theta}_{T}^{(\pi)} \xrightarrow{p} \theta^{*}$; (ii) $\forall(i, j) \in[M] \times$ $[D],\left[\frac{\partial \tilde{g}_{t}}{\partial \theta}(\theta)\right]_{i, j}$ satisfies Property $\left[1\right.$. (iii) $\exists \delta>0$ such that $\mathbf{E}\left[\left\|\tilde{g}_{i}\left(\theta^{*}\right)\right\|^{2+\delta}\right]<\infty$, and (iv) (Selection ratio convergence) $\kappa_{T}^{(\pi)} \xrightarrow{p} k$ for some constant $k \in \Delta_{\psi}$. Then $\widehat{\theta}_{T}$ is asymptotically normal:

$$
\sqrt{T}\left(\hat{\theta}_{T}^{(\pi)}-\theta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, \Sigma\left(\theta^{*}, k\right)\right),
$$

where $\Sigma\left(\theta^{*}, k\right)$ is a constant matrix that depends only on θ^{*} and k. By Assumption 2 e) and the Delta method, $\widehat{\beta}_{T}$ is asymptotically normal:

$$
\sqrt{T}\left(\widehat{\beta}_{T}-\beta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, V\left(\theta^{*}, k\right)\right), \text { where } V\left(\theta^{*}, k\right)=\nabla_{\theta} f_{\text {tar }}\left(\theta^{*}\right)^{\top}\left[\Sigma\left(\theta^{*}, k\right)\right] \nabla_{\theta} f_{t a r}\left(\theta^{*}\right)
$$

Proof. We follow a standard GMM asymptotic normality proof (e.g. Newey and McFadden [30, Theorem 3.4]) and modify it to work for dependent data. Applying the GMM first-order condition to the two-step GMM estimator, we get

$$
\sqrt{T}\left(\widehat{\theta}_{T}-\theta^{*}\right)=\left[\widehat{G}^{\top}\left(\widehat{\theta}_{T}\right) \widehat{\Omega}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)^{-1} \widehat{G}(\tilde{\theta})\right]^{-1} \widehat{G}^{\top}\left(\widehat{\theta}_{T}\right) \widehat{\Omega}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{i}\left(\theta^{*}\right)
$$

where $\widehat{\theta}_{T}^{\text {(os) }}$ is the one-step GMM estimator, $\tilde{\theta}$ is a point on the line-segment joining $\widehat{\theta}_{T}$ and θ^{*},

$$
\begin{aligned}
\widehat{G}(\theta) & =\frac{1}{T} \sum_{t=1}^{T} \frac{\partial g_{t}(\theta)}{\partial \theta} \\
& =\frac{1}{T} \sum_{t=1}^{T} \frac{\partial m\left(s_{t}\right) \otimes \tilde{g}_{t}(\theta)}{\partial \theta} \\
& =\frac{1}{T} \sum_{t=1}^{T}(\underbrace{\left[m\left(s_{t}\right), m\left(s_{t}\right), \ldots, m\left(s_{t}\right)\right]}_{D \text { times }} \otimes\left[\frac{\partial \tilde{g}_{t}(\theta)}{\partial \theta}\right]) \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(m_{G}\left(s_{t}\right) \otimes\left[\frac{\partial \tilde{g}_{t}(\theta)}{\partial \theta}\right]\right), \text { and } \\
\widehat{\Omega}(\theta) & =\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta) g_{t}(\theta)^{\top}\right] \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(\left[m\left(s_{t}\right) m\left(s_{t}\right)^{\top}\right] \otimes\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]\right) \\
& =\frac{1}{T} \sum_{t=1}^{T}\left(m_{\Omega}\left(s_{t}\right) \otimes\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]\right)
\end{aligned}
$$

where $m_{G}\left(s_{t}\right)=\underbrace{\left[m\left(s_{t}\right), m\left(s_{t}\right), \ldots, m\left(s_{t}\right)\right]}_{D \text { times }}$ is a $M \times D$ matrix and $m_{\Omega}\left(s_{t}\right)=m\left(s_{t}\right) m\left(s_{t}\right)^{\top}$.
Convergence of $\widehat{G}\left(\widehat{\theta}_{T}\right)$. Let $G(\theta)=\mathbf{E}\left[\frac{\partial \tilde{g}_{t}(\theta)}{\partial \theta}\right]$. Applying Lemma 2 to every element of \widehat{G} (using Condition (ii)) and using the union bound, we get

$$
\begin{gather*}
\sup _{\theta \in \Theta}\left\|\widehat{G}(\theta)-\left(\frac{1}{T} \sum_{t=1}^{T} m_{G}\left(s_{t}\right)\right) \otimes G(\theta)\right\| \xrightarrow{p} 0, \\
\therefore \forall \epsilon>0, \mathbf{P}\left(\left\|\widehat{G}\left(\widehat{\theta}_{T}\right)-\left(\frac{1}{T} \sum_{t=1}^{T} m_{G}\left(s_{t}\right)\right) \otimes G\left(\widehat{\theta}_{T}\right)\right\|>\epsilon\right) \rightarrow 0 . \tag{3}
\end{gather*}
$$

Since $\kappa_{T} \xrightarrow{p} k$ for some constant k (by Condition (iv)), $\left(\frac{1}{T} \sum_{t=1}^{T} m_{G}\left(s_{t}\right)\right)$ also converges in probability to a constant matrix. That is, $\frac{1}{T} \sum_{t=1}^{T} m_{G}\left(s_{t}\right) \xrightarrow{p} m_{G}^{*}(k)$ for some constant matrix $m_{G}^{*}(k)$ that only depends on k. By the continuity of G and the fact that $\widehat{\theta}_{T} \xrightarrow{p} \theta^{*}$ (by Condition (i)), we have $G\left(\widehat{\theta}_{T}\right) \xrightarrow{p} G\left(\theta^{*}\right)$. Using these results with Eq. 3, we get

$$
\begin{align*}
\widehat{G}\left(\widehat{\theta}_{T}\right) & \xrightarrow{p} m_{G}^{*}(k) \otimes G(\theta) \\
& =G_{*}\left(\theta^{*}, k\right), \tag{4}\\
\text { Similarly, } \widehat{G}(\tilde{\theta}) & \xrightarrow[(a)]{p} G_{*}\left(\theta^{*}, k\right), \tag{5}
\end{align*}
$$

where $G_{*}\left(\theta^{*}, k\right)=m_{G}^{*}(k) \otimes G\left(\theta^{*}\right)$ and (a) follows because $\tilde{\theta} \xrightarrow{p} \theta^{*}$.

Convergence of the weight matrix \widehat{W}. Let $\Omega(\theta)=\mathbf{E}\left[\tilde{g}_{t}(\theta) \tilde{g}_{t}(\theta)^{\top}\right]$. By applying Lemma 2 to every element of $\widehat{\Omega}$ (using Condition (iii)) and the union bound, we get

$$
\begin{gather*}
\sup _{\theta \in \Theta}\left\|\widehat{\Omega}(\theta)-\left(\frac{1}{T} \sum_{t=1}^{T} m_{\Omega}\left(s_{t}\right)\right) \otimes \Omega(\theta)\right\| \xrightarrow{p} 0, \\
\therefore \forall \epsilon>0, \mathbf{P}\left(\left\|\widehat{\Omega}\left(\widehat{\theta}_{T}^{(\text {(os })}\right)-\left(\frac{1}{T} \sum_{t=1}^{T} m_{\Omega}\left(s_{t}\right)\right) \otimes \Omega\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right\|>\epsilon\right) \rightarrow 0 . \tag{6}
\end{gather*}
$$

Since $\kappa_{T} \xrightarrow{p} k$ for some constant k (by Condition (iv)), $\left(\frac{1}{T} \sum_{t=1}^{T} m_{\Omega}\left(s_{t}\right)\right) \xrightarrow{p} m_{\Omega}^{*}(k)$ for some constant matrix $m_{\Omega}^{*}(k)$ that only depends on k. By continuity of Ω and the fact that $\widehat{\theta}_{T}^{(\text {os) }} \xrightarrow{p} \theta^{*}$ (which follows by Proposition 1 , we have $\Omega\left(\hat{\theta}_{T}^{(\text {os })}\right) \xrightarrow{p} \Omega\left(\theta^{*}\right)$. Using these results with Eq. 6, we get

$$
\begin{align*}
& \widehat{\Omega}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right) \xrightarrow[\rightarrow]{p} m_{\Omega}^{*}(k) \otimes \Omega\left(\theta^{*}\right) \\
&=\Omega_{*}\left(\theta^{*}, k\right), \\
& \therefore \widehat{W}=\widehat{\Omega}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)^{-1} \xrightarrow{p} \Omega_{*}\left(\theta^{*}, k\right)^{-1}, \tag{7}
\end{align*}
$$

where $\Omega_{*}\left(\theta^{*}, k\right)=m_{\Omega}^{*}(k) \otimes \Omega\left(\theta^{*}\right)$.

Asymptotic normality of $\frac{1}{\sqrt{T}} \sum_{t=1}^{T} g_{i}\left(\theta^{*}\right)$. For this part, we use the Cramer-Wold theorem and the martingale CLT in Proposition 7 . For any $v \in \mathbf{R}^{M}$ s.t. $\|v\|=1, \frac{v^{\top} g_{i}\left(\theta^{*}\right)}{\sqrt{T}}$ is a MDS because $\mathbf{E}\left[v^{\top} g_{i}\left(\theta^{*}\right) \mid H_{i-1}\right]=v^{\top} \mathbf{E}\left[g_{i}\left(\theta^{*}\right) \mid H_{i-1}\right]=0$. We now show that the two conditions of Proposition 7 apply to this MDS.
(i) Conditional Lindeberg: The Lyapunov condition implies the Lindeberg condition [5] pg. 6]. In our case, the Lyapunov condition is easier to check and we show that it holds. For some $\delta>0$, we have

$$
\begin{aligned}
\frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T}\left|v^{\top} g_{i}\left(\theta^{*}\right)\right|^{2+\delta} & \stackrel{(a)}{\leq} \frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T}\|v\|^{2+\delta}\left\|g_{i}\left(\theta^{*}\right)\right\|^{2+\delta} \\
& \stackrel{(b)}{=} \frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T}\left\|g_{i}\left(\theta^{*}\right)\right\|^{2+\delta} \\
\therefore \frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T} \mathbf{E}\left[\left|v^{\top} g_{i}\left(\theta^{*}\right)\right|^{2+\delta} \mid H_{i-1}\right] & \leq \frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T} \mathbf{E}\left[\left\|g_{i}\left(\theta^{*}\right)\right\|^{2+\delta} \mid H_{i-1}\right] \\
& =\frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T} \mathbf{E}\left[\left\|m\left(s_{i}\right) \otimes \tilde{g}_{i}\left(\theta^{*}\right)\right\|^{2+\delta}\right] \\
& \stackrel{(c)}{\leq} \frac{1}{T^{1+\delta / 2}} \sum_{i=1}^{T} \mathbf{E}\left[\left\|\tilde{g}_{i}\left(\theta^{*}\right)\right\|^{2+\delta}\right] \\
& \xrightarrow{(d)} 0,
\end{aligned}
$$

where (a) follows by Cauchy-Schwarz, (b) because $\|v\|=1$, (c) because $m\left(s_{i}\right)$ is a binary vector, and (d) because $\mathbf{E}\left[\left\|\tilde{g}_{i}\left(\theta^{*}\right)\right\|^{2+\delta}\right]<\infty$ (by Condition (iii)).
(ii) Convergence of conditional variance: The conditional variance can be written as

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[v^{\top} g_{t}\left(\theta^{*}\right) g_{t}\left(\theta^{*}\right)^{\top} v \mid H_{i-1}\right] & =\frac{1}{T} \sum_{t=1}^{T} v^{\top} \mathbf{E}\left[g_{t}\left(\theta^{*}\right) g_{t}\left(\theta^{*}\right)^{\top} \mid H_{i-1}\right] v \\
& =v^{\top}\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right) m\left(s_{t}\right)^{\top}\right) \otimes \Omega\left(\theta^{*}\right)\right] v \\
& \xrightarrow[p]{(a)} v^{\top}\left[m_{\Omega}^{*}(k) \otimes \Omega\left(\theta^{*}\right)\right] v \\
& =v^{\top}\left[\Omega_{*}\left(\theta^{*}, k\right)\right] v
\end{aligned}
$$

where (a) holds because $\kappa_{T} \xrightarrow{p} k$ (by Condition (iv)). Thus, using Proposition $7, \forall v \in \mathbf{R}^{M}$ s.t. $\|v\|=1$, we have

$$
\frac{1}{\sqrt{T}} \sum_{i=1}^{T} v^{\top} g_{i}\left(\theta^{*}\right) v \xrightarrow{d} \mathcal{N}\left(0, v^{\top} \Omega_{*}\left(\theta^{*}, k\right) v\right)
$$

Thus, by the Cramer-Wold theorem, we get

$$
\begin{equation*}
\frac{1}{\sqrt{T}} \sum_{i=1}^{T} g_{i}\left(\theta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, \Omega_{*}\left(\theta^{*}, k\right)\right) \tag{8}
\end{equation*}
$$

Asymptotic normality of $\widehat{\theta}_{T} \quad$ By Eqs. $4,5,7$, and 8 and Slutsky's theorem, we get

$$
\sqrt{T}\left(\widehat{\theta}_{T}-\theta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, \Sigma\left(\theta^{*}, k\right)\right),
$$

$$
\text { where } \Sigma\left(\theta^{*}, k\right)=\left[G_{*}^{\top}\left(\theta^{*}, k\right)\left(\Omega_{*}\left(\theta^{*}, k\right)^{-1}\right) G_{*}\left(\theta^{*}, k\right)\right]^{-1}
$$

A. 3 Proof of Theorem 1 (Regret of OMS-ETC)

Lemma 3 (Consistency of \widehat{k}_{t}). Suppose that Assumption 3 holds. If $\widehat{\theta}_{t} \xrightarrow{p} \theta^{*}$, then $\widehat{k}_{t} \xrightarrow{p} \kappa^{*}$ where $\widehat{k}_{t}=\arg \min _{\kappa \in \Delta_{\psi}} V\left(\widehat{\theta}_{t}, \kappa\right)$.

Proof. By continuity of V, compactness of Δ_{ψ}, and Assumption $3 \widehat{k}_{t} \xrightarrow{p} \arg \min _{\kappa \in \Delta_{\psi}} V\left(\theta^{*}, \kappa\right)=$ κ^{*}.

Theorem (Regret of OMS-ETC). Suppose that (i) Conditions (i)-(iii) of Proposition 2 hold and (ii) Assumption 3 holds. Case (a): For a fixed $e \in(0,1)$, if $\kappa^{*} \in \tilde{\Delta}$, then the regret converges to zero: $R_{\infty}\left(\pi_{E T C}\right)=0$. If $\kappa^{*} \notin \tilde{\Delta}$, then $\pi_{E T C}$ suffers constant regret: $R_{\infty}\left(\pi_{E T C}\right)=r$ for some constant $r>0$. Case (b): If e depends on T such that $e=o(1)$ and $T e \rightarrow \infty$ as $T \rightarrow \infty$ (e.g. $e=\frac{1}{\sqrt{T}}$), then $\forall \theta^{*} \in \Theta$, we have $R_{\infty}\left(\pi_{E T C}\right)=0$.

Proof. We first analyze Case (a) of the theorem where e is fixed. By Condition (i), $\widehat{\theta}_{T e} \xrightarrow{p} \theta^{*}$. We have $\widehat{k}=\arg \min _{\kappa \in \Delta_{\psi}} V\left(\widehat{\theta}_{T e}, \kappa\right)$ and therefore $\widehat{k} \xrightarrow[\rightarrow]{p} \kappa^{*}$ (by Lemma 3). Thus, if $\kappa^{*} \in \tilde{\Delta}$, then $\kappa_{T} \xrightarrow{p} \widehat{k}$ and therefore $\kappa_{T} \xrightarrow{p} \kappa^{*}$. Using Proposition 2, we get

$$
\begin{aligned}
& \sqrt{T}\left(\widehat{\beta}_{T}-\beta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, V\left(\theta^{*}, \kappa^{*}\right)\right) \\
\therefore & R_{\infty}\left(\pi_{\mathrm{ETC}}\right)=V\left(\theta^{*}, \kappa^{*}\right)-V\left(\theta^{*}, \kappa^{*}\right)=0
\end{aligned}
$$

If $\kappa^{*} \notin \tilde{\Delta}$, then $\kappa_{T} \xrightarrow{p} \bar{\kappa} \neq \kappa^{*}$, where $\bar{\kappa}=\arg \min _{\kappa \in \tilde{\Delta}} V\left(\theta^{*}, \kappa\right)$. Using Proposition 2 , we have

$$
\begin{aligned}
& \sqrt{T}\left(\widehat{\beta}_{T}-\beta^{*}\right) \xrightarrow{d} \mathcal{N}\left(0, V\left(\theta^{*}, \bar{\kappa}\right)\right) \\
\therefore & R_{\infty}\left(\pi_{\mathrm{ETC}}\right)=V\left(\theta^{*}, \bar{\kappa}\right)-V\left(\theta^{*}, \kappa^{*}\right) \stackrel{(a)}{>} 0
\end{aligned}
$$

where (a) follows by Condition (ii).
Now we analyze part (b) of the theorem. When e depends on T such that $e=o(1)$, the feasible region converges to the entire simplex: $\tilde{\Delta} \rightarrow \Delta_{\psi}$ as $T \rightarrow \infty$. Thus $\kappa_{T}-\widehat{k} \xrightarrow{p} 0$. Furthermore, since $T e \rightarrow \infty$ as $T \rightarrow \infty$, we have $\widehat{k} \xrightarrow{p} \kappa^{*}$ and therefore $\kappa_{T} \xrightarrow{p} \kappa^{*}$. Using Proposition 2, we get the desired result.

A. 4 Proof of Lemma 1(GMM concentration inequality)

Proposition 8 (MDS concentration inequality [43, Theorem 2.19]). Let $\left\{\left(D_{k}, \mathcal{F}_{k}\right)\right\}_{k=1}^{\infty}$ be a MDS, and suppose that $\mathbf{E}\left[\exp \left\{\lambda D_{k}\right\} \mid \mathcal{F}_{k-1}\right] \leq \exp \left\{\frac{\lambda^{2} \nu^{2}}{2}\right\}$ almost surely for any $\lambda<\frac{1}{\alpha}$. Then the sum satisfies the concentration inequality

$$
\mathbf{P}\left(\left|\frac{1}{n} \sum_{k=1}^{n} D_{k}\right|>\eta\right) \leq 2 \exp \left\{-\frac{n \eta^{2}}{2 \nu^{2}}\right\} \text { if } 0 \leq \eta<\frac{\nu^{2}}{\alpha}
$$

Lemma 4 (Uniform law for dependent data). Let $a_{i}(\theta):=S_{i} \tilde{a}\left(\theta ; X_{i}\right)$, where a_{i} is a real-valued function, $S_{i} \in\{0,1\}$ is H_{i-1}-measurable, and $X_{i} \stackrel{i i d}{\sim} \mathbf{P}_{\theta^{*}}$. Let $\tilde{a}_{*}(\theta)=\mathbf{E}\left[\tilde{a}\left(\theta ; X_{i}\right)\right]$. Suppose that $\tilde{a}(\theta)$ satisfies Property 2 Note that $\mathbf{E}\left[a_{i}(\theta) \mid H_{i-1}\right]=S_{i} \tilde{a}_{*}(\theta)$. Then, for some constant $\delta_{0}>0$ and $\forall \delta \in\left(0, \delta_{0}\right)$,

$$
\mathbf{P}\left(\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} \tilde{a}_{*}(\theta)\right]\right|>\delta\right)<\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}
$$

Proof. Let $U=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}$ be a minimal δ-cover of Θ. We have $N \leq \frac{C}{\delta^{D}}$ for some constant C. Let $q: \Theta \rightarrow U$ be a function that returns the closest point from the cover: $q(\theta)=\arg \min _{\theta^{\prime} \in U} \| \theta-$ $\theta^{\prime} \|$. We have

$$
\begin{aligned}
& \sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} \tilde{a}_{*}(\theta)\right]\right| \\
& =\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-a_{i}(q(\theta))+a_{i}(q(\theta))-S_{i} \tilde{a}_{*}(q(\theta))+S_{i} \tilde{a}_{*}(q(\theta))-S_{i} \tilde{a}(\theta)\right]\right| \\
& \leq \sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|a_{i}(\theta)-a_{i}(q(\theta))\right|+\max _{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|+\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T} S_{i}\left|\tilde{a}_{*}(q(\theta))-\tilde{a}_{*}(\theta)\right| \\
& =\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|S_{i}\left(\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right)\right|+\max _{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|+\sup _{\theta \in \Theta}\left|\tilde{a}_{*}(q(\theta))-\tilde{a}_{*}(\theta)\right| \\
& \leq \sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right|+\max _{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|+\sup _{\theta \in \Theta}\left|\tilde{a}_{*}(q(\theta))-\tilde{a}_{*}(\theta)\right|
\end{aligned}
$$

We now examine the three terms on the RHS one at a time.

Third term. By Lipschitzness of \tilde{a}_{*} (Property 2 i)), we have:

$$
\sup _{\theta \in \Theta}\left|\tilde{a}_{*}(q(\theta))-\tilde{a}_{*}(\theta)\right| \leq L_{1} \sup _{\theta \in \Theta}\|q(\theta)-\theta\| \leq L_{1} \delta
$$

Second term. We note that it is a sum of a MDS. By Property 2 ii) and Proposition 8 , there exists a constant $C_{1}>0$ such that for $\delta \in\left(0, C_{1}\right)$, we have

$$
\begin{aligned}
\forall n \in[N], \mathbf{P}\left(\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|<\delta\right) & >1-\exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
\therefore \mathbf{P}\left(\max _{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|<\delta\right) & >1-\mathbf{P}\left(\bigcup_{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|>\delta\right) \\
& >1-N \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
& >1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} .
\end{aligned}
$$

First term. We have

$$
\begin{align*}
u_{*}(\eta) & =\mathbf{E}\left[\sup _{\theta, \theta^{\prime} \in \Theta ;\left\|\theta-\theta^{\prime}\right\| \leq \eta}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(\theta^{\prime}, X_{i}\right)\right|\right] \\
& \leq \mathbf{E}\left[\sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\| \sup _{\theta, \theta^{\prime} \in \Theta ;\left\|\theta-\theta^{\prime}\right\| \leq \eta}\left\|\theta-\theta^{\prime}\right\|\right] \\
& \leq \eta \sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\| \\
& \left(\begin{array}{l}
\text { (a) } \\
\end{array} A_{0} \eta .\right. \tag{9}
\end{align*}
$$

where (a) follows by Property 2 (iii).
Suppose that Property 2 (iv)(a) holds. Then

$$
\begin{aligned}
\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right| & \leq \frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta) \\
& \leq \frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-u_{*}(\delta)+u_{*}(\delta) \\
& \stackrel{(a)}{\leq} \frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-u_{*}(\delta)+A_{0} \delta
\end{aligned}
$$

where (a) follows by Eq. 9, By Property 2 iv)(a), $\left(u_{i}(\delta)-u_{*}(\delta)\right)$ is sub-Exponential. By the sub-exponential tail bound [43, Proposition 2.9], for some constant $C_{2}>0$ and $\delta \in\left(0, C_{2}\right)$, we have

$$
\begin{array}{r}
\mathbf{P}\left(\left|\frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-u_{*}(\delta)\right|<\delta\right) \\
\therefore \mathbf{P}\left(\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right|<\left(A_{0}+1\right) \delta\right)>1-\exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
\therefore \mathbf{P}\left(\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right|<\delta\right)
\end{array}>1-\exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} .
$$

Now suppose that Property 2 (iv)(b) holds instead. Then

$$
\begin{aligned}
\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right| & \leq \frac{1}{T} \sum_{i=1}^{T} \sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\| \sup _{\theta \in \Theta}\|\theta-q(\theta)\| \\
& \leq \frac{\delta}{T} \sum_{i=1}^{T} \sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|
\end{aligned}
$$

Since $\sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|$ is sub-Exponential, so is $\sum_{i=1}^{T} \sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|$. By a sub-Exponential tail bound [42, Proposition 2.7.1(a)], we have for any $\bar{C}_{3}>0$,

$$
\begin{aligned}
\mathbf{P}\left(\frac{1}{T} \sum_{i=1}^{T} \sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|>C_{3}\right) & \leq \exp \left\{-\mathcal{O}\left(T C_{3}\right)\right\} \\
\therefore \mathbf{P}\left(\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right|>\delta C_{3}\right) & \leq \exp \left\{-\mathcal{O}\left(T C_{3}\right)\right\} \\
\therefore \mathbf{P}\left(\sup _{\theta \in \Theta} \frac{1}{T} \sum_{i=1}^{T}\left|\tilde{a}_{i}\left(\theta, X_{i}\right)-\tilde{a}_{i}\left(q(\theta), X_{i}\right)\right|>\delta\right) & \leq \exp \{-\mathcal{O}(T)\}
\end{aligned}
$$

Combining these results together using the union bound, we get

$$
\begin{aligned}
& \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} \tilde{a}_{*}(\theta ; k)\right]\right|<\left(L_{1}+L_{2}+2\right) \delta\right) \\
& >\mathbf{P}\left(\max _{n \in[N]}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|<\delta,\left|\frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-u_{*}(\delta)\right|<\delta\right) \\
& >1-\sum_{n=1}^{N} \mathbf{P}\left(\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}\left(\theta_{n}\right)-S_{i} \tilde{a}_{*}\left(\theta_{n}\right)\right]\right|>\delta\right)-\mathbf{P}\left(\left|\frac{1}{T} \sum_{i=1}^{T} u_{i}(\delta)-u_{*}(\delta)\right|>\delta\right) \\
& >1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
\therefore & \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{i=1}^{T}\left[a_{i}(\theta)-S_{i} \tilde{a}_{*}(\theta ; k)\right]\right|<\delta\right)>1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} .
\end{aligned}
$$

Proposition 9 (Boundedness and Property 2(iv)(a)). Property 2 iv)(a) is satisfied for bounded function classes, i.e., when $\left\|\tilde{a}_{i}\right\|_{\infty}<A<\infty$.

Proof. We have:

$$
\begin{aligned}
u_{i}(\eta) & =\sup _{\theta, \theta^{\prime} \in \Theta,\left\|\theta-\theta^{\prime}\right\| \leq \eta}\left|\tilde{a}\left(\theta, X_{i}\right)-\tilde{a}\left(\theta^{\prime}, X_{i}\right)\right| \\
& \leq 2 \sup _{\theta \in \Theta}\left|\tilde{a}_{i}\right| \\
& \leq 2 A
\end{aligned}
$$

Thus $u_{i}(\eta)$ is bounded and therefore sub-Gaussian for every η.

Proposition 10 (Linearity and Property 2 (iv)(b)). Suppose that (i) $\tilde{a}\left(\theta, X_{i}\right)$ is a linear function of θ, i.e., $\tilde{a}\left(\theta, X_{i}\right)=\theta^{T} \phi\left(X_{i}\right)+\rho\left(X_{i}\right)$, where ϕ and ρ are arbitrary functions; and (ii) $\forall d \in[D], \phi\left(X_{i}\right)_{d}$ is sub-Exponential. Then $\tilde{a}\left(\theta, X_{i}\right)$ satisfies Property 2 iv) (b).

Proof. We have that $A\left(X_{i}, \theta\right)=\frac{\partial \tilde{a}\left(X_{i} ; \theta\right)}{\partial \theta}=\phi\left(X_{i}\right)$ and thus $\sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|=\left\|\phi\left(X_{i}\right)\right\| \leq$ $\sum_{d=1}^{D}\left|\phi\left(X_{i}\right)_{d}\right|$. Therefore, for any $\eta>0$, we have

$$
\begin{aligned}
\mathbf{P}\left(\sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|<\eta\right) & =\mathbf{P}\left(\left\|\phi\left(X_{i}\right)\right\|<\eta\right) \\
& \geq \mathbf{P}\left(\sum_{d=1}^{D}\left|\phi\left(X_{i}\right)_{d}\right|<\eta\right) \\
& \geq \mathbf{P}\left(\forall d \in[D],\left|\phi\left(X_{i}\right)_{d}\right|<\frac{\eta}{D}\right) \\
& \stackrel{(a)}{\geq} 1-\sum_{d=1}^{D} \mathbf{P}\left(\left|\phi\left(X_{i}\right)_{d}\right|>\frac{\eta}{D}\right) \\
& \stackrel{(b)}{\geq} 1-\sum_{d=1}^{D} \exp \{-\mathcal{O}(\eta)\} \\
& \geq 1-\exp \{-\mathcal{O}(\eta)\}
\end{aligned}
$$

where (a) follows by the union bound and (b) because $\phi\left(X_{i}\right)_{d}$ is sub-Exponential. This shows that $\sup _{\theta \in \Theta}\left\|A\left(X_{i}, \theta\right)\right\|$ is also sub-Exponential (see Vershynin [42, Definition 2.7.5]).
Remark. Rakhlin et al. [32] derive a uniform martingale LLN and develop sequential analogues of classical complexity measures used in empirical process theory. These techniques are a potential alternative for deriving the tail bound in Lemma 4 However, the conditions required for these techniques are difficult to check. In our case, the dependent and i.i.d. components can be separated more easily. Thus we opted for deriving a uniform concentration bound by modifying the classical uniform LLN proof. Zhan et al. [46] also derive a uniform LLN without requiring boundedness of the martingale difference terms, but with structural assumptions on the summands related to their specific application.
Lemma (GMM concentration inequality). Let $\lambda_{*}, C_{0}, \eta_{1}, \eta_{2}$, and δ_{0} be some positive constants. Suppose that (i) Assumption 2 holds; (ii) $\forall j, \tilde{g}_{i, j}(\theta)$ satisfies Property 2. (iii) The spectral norm of the GMM weight matrix \widehat{W} is upper bounded with high probability: $\forall \delta \in$ $\left(0, C_{0}\right), \mathbf{P}\left(\|\widehat{W}\| \leq \lambda_{*}\right) \geq 1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}$ (see Remark $\|$; (iv) (Local strict convexity) $\forall \theta \in N_{\eta_{1}}\left(\theta^{*}\right), \mathbf{P}\left(\left\|\frac{\partial^{2} \bar{Q}}{\partial \theta^{2}}(\theta)^{-1}\right\| \leq h\right)=1(\bar{Q}(\theta)$ is defined in Assumption $2(a))$; (v) (Strict minimization) $\forall \theta \in N_{\eta_{2}}\left(\theta^{*}\right)$, there is a unique minimizer $\kappa(\theta)=\arg \min _{\kappa} V(\theta, \kappa)$ s.t. $V(\theta, \kappa)-V(\theta, \kappa(\theta)) \leq c \delta^{2} \Longrightarrow\|\kappa-\kappa(\theta)\| \leq \delta$; and $(v i) \sup _{\kappa}\left|V(\theta, \kappa)-V\left(\theta^{\prime}, \kappa\right)\right| \leq L\left\|\theta-\theta^{\prime}\right\|$. Then, for $\widehat{k}_{t}=\arg \min _{\kappa \in \Delta_{\psi}} V\left(\widehat{\theta}_{T}^{(\pi)}, \kappa\right)$, any policy π, and $\forall \delta \in\left(0, \delta_{0}\right)$,

$$
\mathbf{P}\left(\left\|\widehat{\theta}_{T}^{(\pi)}-\theta^{*}\right\|>\delta\right)<\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{4}\right)\right\} \text { and } \mathbf{P}\left(\left\|\widehat{k}_{T}-\kappa^{*}\right\|>\delta\right)<\frac{1}{\delta^{4 D}} \exp \left\{-\mathcal{O}\left(T \delta^{8}\right)\right\}
$$

Proof. Below we give the empirical and population analogues of the GMM objective for a given policy π :
Empirical objective: $\widehat{Q}_{T}^{(\pi)}(\theta)=\left[\frac{1}{T} \sum_{t=1}^{T} g_{t}(\theta)\right]^{\top} \widehat{W}\left[\frac{1}{T} \sum_{t=1}^{T} g_{t}(\theta)\right]$,
Population objective: $\bar{Q}_{T}^{(\pi)}(\theta)=g_{T}^{*}(\theta) \widehat{W} g_{T}^{*}(\theta)^{\top}$

$$
\begin{aligned}
& =\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[g_{t}(\theta) \mid H_{t-1}\right]\right]^{\top} \widehat{W}\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[g_{t}(\theta) \mid H_{t-1}\right]\right] \\
& =\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right)\right) \otimes \tilde{g}_{*}(\theta)\right]^{\top} \widehat{W}\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right)\right) \otimes \tilde{g}_{*}(\theta)\right]
\end{aligned}
$$

where $\tilde{g}_{*}(\theta)=\mathbf{E}\left[\tilde{g}_{t}(\theta)\right]$.

To simplify notation, let $m_{t}=m\left(s_{t}\right)$. By the triangle and Cauchy-Shwartz inequalities (see Newey and McFadden [30, Theorem 2.6]),

$$
\begin{aligned}
& \left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \\
& \quad \leq\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|^{2}\|\widehat{W}\|^{2}+2\left\|\tilde{g}_{*}(\theta)\right\|\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|\|\widehat{W}\| \\
& \quad \leq\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|^{2}\|\widehat{W}\|^{2}+2 C\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|\|\widehat{W}\|
\end{aligned}
$$

where $C=\sup _{\theta \in \Theta}\left\|\tilde{g}_{*}(\theta)\right\|$. By applying Lemma 4 to each element of the vector $g_{i}(\theta)$ and using the union bound, we get:

$$
\begin{align*}
\mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{i=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|<\delta\right) & \geq \mathbf{P}\left(\bigcap_{j=1}^{M} \sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t, j}(\theta)-m_{t, j} \otimes\left(\tilde{g}_{*}\right)_{j}(\theta)\right]\right|<\frac{\delta}{M}\right) \\
& \geq 1-\sum_{j=1}^{M} \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t, j}(\theta)-m_{t, j} \otimes\left(\tilde{g}_{*}\right)_{j}(\theta)\right]\right|>\frac{\delta}{M}\right) \\
& \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \tag{10}
\end{align*}
$$

This means that, for $0<\delta<1$,

$$
\begin{aligned}
& \left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\| \leq \delta,\|\widehat{W}\| \leq \lambda_{*} \Longrightarrow\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right| \leq \lambda_{*}^{2} \delta^{2}+2 \lambda_{*} C \delta, ~=\left(2 C+\lambda_{*} \delta\right) \lambda_{*} \delta \\
& <\left(2 C+\lambda_{*}\right) \lambda_{*} \delta, \\
& \therefore \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right|<\left(2 C+\lambda_{*}\right) \lambda_{*} \delta\right) \geq \mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\| \leq \delta,\|\widehat{W}\| \leq \lambda_{*}\right) \\
& \stackrel{(a)}{\geq} 1-\mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\frac{1}{T} \sum_{t=1}^{T}\left[g_{t}(\theta)-m_{t} \otimes \tilde{g}_{*}(\theta)\right]\right\|>\delta\right)-\mathbf{P}\left(\|\widehat{W}\|>\lambda_{*}\right) \\
& \stackrel{(b)}{\geq} 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
& \therefore \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\widehat{Q}_{T}^{(\pi)}(\theta)-\bar{Q}_{T}^{(\pi)}(\theta)\right|<\delta\right) \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\},
\end{aligned}
$$

where (a) follows by the union bound and (b) follows by Eq. 10 and Condition (iii). Using this uniform concentration bound, we get

$$
\begin{aligned}
& \mathbf{P}\left(\bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)<\widehat{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)+\frac{\delta}{2}\right) \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
& \mathbf{P}\left(\widehat{Q}_{T}^{(\pi)}\left(\theta^{*}\right)<\bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)+\frac{\delta}{2}\right) \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}
\end{aligned}
$$

Since $\widehat{\theta}_{T}$ minimizes $\widehat{Q}_{T}^{(\pi)}$ almost surely, we have $\mathbf{P}\left(\widehat{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right) \leq \widehat{Q}_{T}^{(\pi)}\left(\theta^{*}\right)\right)=1$. Combining these inequalities using the union bound, we get

$$
\begin{array}{r}
\mathbf{P}\left(\bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)<\bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)+\delta\right) \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
\therefore \mathbf{P}\left(\bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)<\delta\right) \stackrel{(a)}{\geq} 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}
\end{array}
$$

where (a) follows because $\bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)=0$.

Intuitively, if $\bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)$ is small, then we would expect $\widehat{\theta}_{T}$ to be close to θ^{*}. To formally show this, we use the local curvature of $\bar{Q}_{T}^{(\pi)}$. By Condition (iv), $\bar{Q}_{T}^{(\pi)}$ is locally strictly convex in the η_{1}-ball $N_{\eta_{1}}\left(\theta^{*}\right)$. Therefore, there exists a closed γ-ball $N_{\gamma}\left(\theta^{*}\right) \subseteq N_{\eta}\left(\theta^{*}\right)$ such that

$$
\forall \theta \notin N_{\gamma}\left(\theta^{*}\right), \bar{Q}_{T}^{(\pi)}(\theta)>\bar{Q}_{N}, \text { where } \bar{Q}_{N}=\sup _{\theta \in N_{\gamma}\left(\theta^{*}\right)} \bar{Q}_{T}^{(\pi)}(\theta)
$$

This is analogous to an identification condition and ensures that $\bar{Q}_{T}^{(\pi)}(\theta) \leq \bar{Q}_{N} \Longrightarrow \theta \in N_{\gamma}\left(\theta^{*}\right)$. Let $H(\theta)=\frac{\partial^{2} \bar{Q}^{(\pi)}}{\partial \theta^{2}}(\theta)$. Then, by twice continuous differentiability of g, for $\theta \in N_{\gamma}\left(\theta^{*}\right)$, we have

$$
\begin{aligned}
\bar{Q}_{T}^{(\pi)}(\theta) & \stackrel{(a)}{=} \bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)+\left(\theta-\theta^{*}\right)\left[H\left(\theta^{\prime}\right)\right]\left(\theta-\theta^{*}\right)^{\top} \\
& \stackrel{(b)}{=}\left(\theta-\theta^{*}\right)\left[H\left(\theta^{\prime}\right)\right]\left(\theta-\theta^{*}\right)^{\top}, \\
\therefore\left\|\theta-\theta^{*}\right\|^{2} & \leq \bar{Q}_{T}^{(\pi)}(\theta)\left\|H^{-1}\left(\theta^{\prime}\right)\right\| \\
& \stackrel{(c)}{\leq}\left[\bar{Q}_{T}^{(\pi)}(\theta)\right] h,
\end{aligned}
$$

where in (a), θ^{\prime} is a point on the line segment joining θ; (b) follows because $\bar{Q}_{T}^{(\pi)}\left(\theta^{*}\right)=0$; and (c) follows by Condition (iv). Thus, for $\delta<\bar{Q}_{N}$, we have

$$
\begin{aligned}
& \bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)<\delta \Longrightarrow\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\sqrt{\delta h} \\
& \therefore \mathbf{P}\left(\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\delta\right) \geq \mathbf{P}\left(\bar{Q}_{T}^{(\pi)}\left(\widehat{\theta}_{T}\right)<\frac{\delta^{2}}{h}\right) \\
& \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{4}\right)\right\} .
\end{aligned}
$$

Concentration inequality for \widehat{k}_{T}

By Condition (vi), $\sup _{\kappa \in \Delta_{\psi}}\left|V\left(\widehat{\theta}_{T}, \kappa\right)-V\left(\theta^{*}, \kappa\right)\right| \leq L\left\|\widehat{\theta}_{T}-\theta^{*}\right\|$. Therefore,

$$
\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\delta \Longrightarrow \sup _{\kappa \in \Delta_{\psi}}\left|V\left(\widehat{\theta}_{T}, \kappa\right)-V\left(\theta^{*}, \kappa\right)\right| \leq L \delta
$$

Furthermore, we have

$$
\begin{aligned}
\sup _{\kappa \in \Delta_{\psi}}\left|V\left(\widehat{\theta}_{T}, \kappa\right)-V\left(\theta^{*}, \kappa\right)\right| \leq L \delta \Longrightarrow & V\left(\theta^{*}, \widehat{k}_{T}\right)<V\left(\widehat{\theta}_{T}, \widehat{k}_{T}\right)+L \delta, \text { and } \\
& V\left(\widehat{\theta}_{T}, \kappa^{*}\right)<V\left(\theta^{*}, \kappa^{*}\right)+L \delta .
\end{aligned}
$$

Since \widehat{k}_{T} is the minimizer, we have $V\left(\widehat{\theta}_{T}, \widehat{k}_{T}\right) \leq V\left(\widehat{\theta}_{T}, \kappa^{*}\right)$. Combining these inequalities, we get

$$
\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\delta \Longrightarrow V\left(\theta^{*}, \widehat{k}_{T}\right)-V\left(\theta^{*}, \kappa^{*}\right)<2 L \delta
$$

Due to Condition (v), we have

$$
\begin{aligned}
& V\left(\theta^{*}, \widehat{k}_{T}\right)-V\left(\theta^{*}, \kappa^{*}\right)<2 L \delta \Longrightarrow\left\|\widehat{k}_{T}-\kappa^{*}\right\|<\sqrt{\frac{2 L \delta}{c}} \\
& \therefore\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\delta \Longrightarrow\left\|\widehat{k}_{T}-\kappa^{*}\right\|<\sqrt{\frac{2 L \delta}{c}} \\
& \therefore \mathbf{P}\left(\left\|\widehat{k}_{T}-\kappa^{*}\right\|<\delta\right)>1-\mathbf{P}\left(\left\|\widehat{\theta}_{T}-\theta^{*}\right\|<\mathcal{O}\left(\delta^{2}\right)\right) \\
&>1-\frac{1}{\delta^{4 D}} \exp \left\{-\mathcal{O}\left(T \delta^{8}\right)\right\} .
\end{aligned}
$$

Lemma 5 (Sufficient condition for \widehat{W}). Suppose that $\forall(j, k),\left[\tilde{g}_{i, j}(\theta) \tilde{g}_{i, k}(\theta)\right]$ satisfies Property 2 Let $\widehat{W}_{T}\left(\widehat{\theta}_{T}^{(o s)}\right)=\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(o s)}\right)^{-1}=\left[\frac{1}{T} \sum_{t=1}^{T} g_{t}\left(\widehat{\theta}_{T}^{(o s)}\right) g_{t}^{\top}\left(\widehat{\theta}_{T}^{(o s)}\right)\right]^{-1}$, where $\widehat{\theta}_{T}^{(o s)}$ is the one-step GMM estimator (that uses $\widehat{W}=I$). Then $\widehat{W}_{T}\left(\widehat{\theta}_{T}^{(o s)}\right)$ satisfies Condition (iii) of Lemma 1 .

Proof. We define $W_{T}\left(\theta^{*}\right)$ as

$$
\begin{aligned}
W_{T}\left(\theta^{*}\right)=\Omega_{T}\left(\theta^{*}\right)^{-1} & =\left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{E}\left[g_{t}\left(\theta^{*}\right) g_{t}^{\top}\left(\theta^{*}\right) \mid H_{t-1}\right]\right]^{-1} \\
& =\left[\left(\frac{1}{T} \sum_{t=1}^{T} m\left(s_{t}\right) m^{\top}\left(s_{t}\right)\right) \otimes \mathbf{E}\left[\tilde{g}_{t}\left(\theta^{*}\right) \tilde{g}_{t}^{\top}\left(\theta^{*}\right)\right]\right]^{-1} .
\end{aligned}
$$

Let $\Delta=\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)-\Omega_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)$ and $\lambda_{\text {min }}$ denote smallest eigenvalue. Using the eigenvalue stability inequality [38, Section 1.3.3], we get:

$$
\begin{align*}
& \left|\lambda_{\min }\left(\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right)-\lambda_{\min }\left(\Omega_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right)\right| \leq\|\Delta\| \\
\therefore & \left\|\widehat{W}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right\|=\left\|\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)^{-1}\right\|=\frac{1}{\lambda_{\min }\left(\widehat{\Omega}_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right)} \leq \frac{1}{\lambda_{\min }\left(\Omega_{T}\left(\widehat{\theta}_{T}^{(\mathrm{os})}\right)\right)-\|\Delta\|} . \tag{11}
\end{align*}
$$

By applying Lemma 4 to each term of the matrix and using the union bound, we have

$$
\begin{align*}
\mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\widehat{\Omega}_{T}(\theta)-\Omega_{T}(\theta)\right\| \leq \delta\right) & \stackrel{(a)}{\geq} \mathbf{P}\left(\sup _{\theta \in \Theta}\left\|\widehat{\Omega}_{T}(\theta)-\Omega_{T}(\theta)\right\|_{F} \leq \delta\right) \\
& \geq \mathbf{P}\left(\sup _{\theta \in \Theta} \sum_{i, j}\left|\widehat{\Omega}_{T, i, j}(\theta)-\Omega_{T, i, j}(\theta)\right| \leq \delta\right) \\
& \geq 1-\sum_{i, j} \mathbf{P}\left(\sup _{\theta \in \Theta}\left|\widehat{\Omega}_{T, i, j}(\theta)-\Omega_{T, i, j}(\theta)\right|>\frac{\delta}{M^{2}}\right) \\
& =1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\} \\
\therefore \mathbf{P}(\|\Delta\| \leq \delta)=\mathbf{P}\left(\left\|\widehat{\Omega}_{T}\left(\tilde{\theta}_{T}\right)-\Omega\left(\tilde{\theta}_{T}\right)\right\| \leq \delta\right) & \geq 1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}, \tag{12}
\end{align*}
$$

where in (a) $\|\cdot\|_{F}$ denotes the Frobenius norm.
For some $\delta_{0}>0$, let $\bar{\lambda}=\inf _{\theta \in N_{\delta_{0}}\left(\theta^{*}\right), \kappa \in \Delta_{\psi}} \lambda_{\min }\left(\Omega_{T}(\theta)\right)$. For $\delta \leq \min \left\{\delta_{0}, \frac{\bar{\lambda}}{2}\right\}$, we have

$$
\begin{aligned}
\|\Delta\| \leq \delta & \stackrel{(a)}{\Longrightarrow}\left\|\widehat{W}_{T}\left(\tilde{\theta}_{T}\right)\right\| \leq \frac{2}{\bar{\lambda}} \\
\therefore \mathbf{P}\left(\left\|\widehat{W}_{T}\left(\tilde{\theta}_{T}\right)\right\| \leq \frac{2}{\bar{\lambda}}\right) & \geq \mathbf{P}(\|\Delta\| \leq \delta) \\
& \stackrel{(b)}{\geq} 1-\frac{1}{\delta^{D}} \exp \left\{-\mathcal{O}\left(T \delta^{2}\right)\right\}
\end{aligned}
$$

where (a) follows by Eq. 11 and (b) by Eq. 12 .
In the next lemma, we present a concentration inequality for \widehat{k}_{T} with better rates under additional restrictions on θ^{*}. We do not require these better rates for proving zero regret for OMS-ETG. We present this lemma for the sake of completeness.
Lemma 6 (Another concentration inequality for \widehat{k}_{T}). Let $\kappa(\theta)=\arg \min _{\kappa} V(\theta, \kappa), \Theta_{\text {boundary }}=$ $\left\{\theta \in \Theta: \kappa(\theta) \in\right.$ boundary $\left.\left(\Delta_{\psi}\right)\right\}$, where boundary $\left(\Delta_{\psi}\right)=\left\{\kappa \in \Delta_{\psi}: \exists i\right.$, s.t. $\left.\kappa_{i}=0\right\}$, $\Theta_{\text {minima }}=\left\{\theta \in \Theta: \frac{\partial V}{\partial \kappa}(\theta, \kappa(\theta))=0\right\}$, and $\Theta_{\text {restricted }}=\Theta \backslash\left(\Theta_{\text {boundary }} \bigcap \Theta_{\text {minima }}\right)$ Suppose that (i) the conditions of Lemma 1 hold, and (ii) $\theta \in \Theta_{\text {restricted. }}$.Then

$$
\mathbf{P}\left(\left\|\widehat{k}_{T}-\kappa^{*}\right\|>\delta\right)<\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(T \delta^{4}\right)\right\}
$$

This means that if θ^{*} is not such that the minimizer $\kappa(\theta)=\arg \min _{\kappa} V(\theta, \kappa)$ is on the boundary of the simplex and is also a local minimum of $V(\theta, \kappa)$ (informally, $\kappa(\theta)$ is not "just" on the boundary), we can get better rates.

Figure 5: Illustration of the proof of OMS-ETG algorithm. When the event $\mathcal{I}(\epsilon)$ occurs, (a) if the selection ratio $\kappa_{b j}$ is outside $N_{\epsilon}\left(\kappa^{*}\right)$, then then selection ratio in the next round $\kappa_{b(j+1)}$ will move closer to $N_{\epsilon}\left(\kappa^{*}\right)$, and (b) if $\kappa_{b j}$ is inside $N_{\epsilon}\left(\kappa^{*}\right)$, it remains inside for all future rounds.

Proof. Now we use the tail bound for $\widehat{\theta}_{T}$ to derive a concentration inequality for \widehat{k}_{T} when $\theta \in$ $\Theta_{\text {restricted. }} \widehat{k}_{T}$ is the solution to the following constrained optimization problem:

$$
\min _{\kappa \in \mathbf{R}|\psi|} V\left(\widehat{\theta}_{T}, \kappa\right) \text { subject to } \sum_{i=1}^{|\psi|} \kappa_{i}=1
$$

The Lagrangian function is

$$
\mathcal{L}(\theta, \kappa, \lambda)=V(\theta, \kappa)+\lambda\left(\sum_{i=1}^{|\psi|} \kappa_{i}-1\right) .
$$

Let $f(\theta, \kappa, \lambda)=\frac{\partial \mathcal{L}}{\partial \kappa}(\theta, \kappa, \lambda)=\frac{\partial V}{\partial \kappa}(\theta, \kappa)+\lambda[1,1, \ldots, 1]^{\top}$. Since $\lambda[1,1, \ldots, 1]^{\top} \neq 0$, there exists a Lagrange multiplier $\lambda^{*} \in \mathbf{R}$ such that $f\left(\theta^{*}, \kappa^{*}, \lambda^{*}\right)=0$.
Condition (ii) is required to ensure that $f\left(\theta, \kappa, \lambda^{*}\right)$ is continuously differentiable in (θ, κ) which allows us to use the implicit function theorem. To show this, we divide the space $\Theta_{\text {restricted }}$ into two disjoint sets: (i) $\Theta_{\text {interior }}=\Theta \backslash \Theta_{\text {boundary }}$, and (ii) $\Theta_{\text {strict-boundary }}=\Theta_{\text {boundary }} \bigcap \Theta_{\text {minima }}^{c}$. When $\theta \in \Theta_{\text {interior }}$, the constraint will not be active and thus $\lambda^{*}=0$. When $\theta \in \Theta_{\text {strict-boundary }}$, the constraint will be active and thus $\lambda^{*}>0$. In both cases, $f\left(\theta, \kappa, \lambda^{*}\right)$ will be continuously differentiable in (θ, κ). Note that if $\theta \in \Theta \backslash \Theta_{\text {restricted }}$, then $\lambda^{*}=0$ but f is not differentiable because the constraint is "just" inactive.
Let $Y(\theta, \kappa)=\frac{\partial f}{\partial \kappa}(\theta, \kappa)=\frac{\partial^{2} V}{\partial \kappa^{2}}(\theta, \kappa)$, and $X(\theta, \kappa)=\frac{\partial f}{\partial \theta}(\theta, \kappa)=\frac{\partial^{2} V}{\partial \theta \partial \kappa}(\theta, \kappa)$. By the implicit function theorem, since $Y\left(\theta^{*}, \kappa^{*}\right)$ is invertible (by Condition (v)), there exist neighbourhoods $N\left(\theta^{*}\right)$ and $N\left(\kappa^{*}\right)$ and a function $\phi: N\left(\theta^{*}\right) \rightarrow N\left(\kappa^{*}\right)$ such that $\widehat{k}_{T}=\phi\left(\widehat{\theta}_{T}\right)$ and $\frac{\partial \phi}{\partial \theta}(\theta)=$ $-\left[Y(\theta, \phi(\theta))^{-1} X(\theta, \phi(\theta))\right]$. By a Taylor expansion, we get

$$
\begin{aligned}
\widehat{k}_{T}=\phi\left(\widehat{\theta}_{T}\right) & \stackrel{(a)}{=} \phi\left(\theta^{*}\right)+\frac{\partial \phi}{\partial \theta}(\tilde{\theta})\left(\widehat{\theta}_{T}-\theta^{*}\right) \\
& =\kappa^{*}+\frac{\partial \phi}{\partial \theta}(\tilde{\theta})\left(\widehat{\theta}_{T}-\theta^{*}\right) \\
\therefore\left\|\widehat{k}_{T}-\kappa^{*}\right\| & \leq\left\|\frac{\partial \phi}{\partial \theta}(\tilde{\theta})\right\|\left\|\widehat{\theta}_{T}-\theta^{*}\right\| \\
& \leq C\left\|\widehat{\theta}_{T}-\theta^{*}\right\|
\end{aligned}
$$

where in (a) $\tilde{\theta}$ is a point on the line segment joining $\widehat{\theta}_{T}$ and θ^{*}, and $C=\sup _{\theta \in \mathcal{N}\left(\theta^{*}\right)}\left\|\frac{\partial \phi}{\partial \theta}(\theta)\right\|$. Therefore, we have

$$
\mathbf{P}\left(\left\|\widehat{\kappa}_{T}-\kappa^{*}\right\| \leq \delta\right) \geq \mathbf{P}\left(\left\|\widehat{\theta}_{T}-\theta^{*}\right\| \leq \frac{\delta}{C}\right) \geq 1-\frac{1}{\delta^{2 D}} \exp \left\{-\mathcal{O}\left(t \delta^{4}\right)\right\}
$$

A. 5 Proof of Theorem 2 (Regret of OMS-ETG)

Theorem (Regret of OMS-ETG). Suppose that Conditions (i)-(iv) of Proposition 2 hold. Let $\tilde{\Delta}(s)=\left\{s \kappa_{b}+(1-s) \kappa: \kappa \in \Delta_{\psi}\right\}$. Case (a): For a fixed $s \in(0,1)$, if the oracle selection ratio
$\kappa^{*} \in \tilde{\Delta}(s)$, then the regret converges to zero: $R_{\infty}\left(\pi_{E T G}\right)=0$. If $\kappa^{*} \notin \tilde{\Delta}(s)$, then $R_{\infty}\left(\pi_{E T G}\right)=r$ for some constant $r>0$. Case (b): Now also suppose that the conditions for Lemma 1 hold. If $s=C T^{\eta-1}$ for some constant C and any $\eta \in[0,1)$, then $\forall \theta^{*} \in \Theta$, the regret converges to zero: $R_{\infty}\left(\pi_{E T G}\right)=0$.

Proof. We prove this theorem by first showing that $\kappa_{T} \xrightarrow{p} \kappa^{*}$. Then we can apply Proposition 2 to get the desired result. Recall that $b=T s$ is the batch size.
Case 1: when $s \in(0,1)$ is a fixed constant and $\kappa^{*} \in \tilde{\Delta}(s)$.
Let $\mathcal{I}(\epsilon)$ be the event that $\widehat{k}_{b j}$ remains inside an ϵ-ball of κ^{*} (denoted by $N_{\epsilon}\left(\kappa^{*}\right)$) for all rounds $j \in[J]$. That is, $\mathcal{I}(\epsilon)=\left\{\forall j \in[J], \widehat{k}_{b j} \in N_{\epsilon}\left(\kappa^{*}\right)\right\}$. If $\kappa^{*} \in \tilde{\Delta}(s)$, then to prove that $\kappa_{T} \xrightarrow{p} \kappa^{*}$, it is sufficient to show that $\forall \epsilon>0, \mathcal{I}(\epsilon)$ occurs w.p.a. 1 .
This is because in OMS-ETG, after every round, we move as close to $\widehat{k}_{b j}$ as possible. This is illustrated in Figure 5 for the case when Δ_{ψ} is a 1 -simplex. When $\mathcal{I}(\epsilon)$ occurs, if the selection ratio $\kappa_{b j}$ after round j is outside $N_{\epsilon}\left(\kappa^{*}\right)$, we move towards it in the subsequent round and thus $\kappa_{b(j+1)}$ will be closer to $N_{\epsilon}\left(\kappa^{*}\right)$. Once the selection ratio enters $N_{\epsilon}\left(\kappa^{*}\right)$ (which it is guaranteed to if $\kappa^{*} \in \tilde{\Delta}(s)$), it will remain inside $N_{\epsilon}\left(\kappa^{*}\right)$ for every round after that. Thus $\mathcal{I}(\epsilon) \Longrightarrow \kappa_{T} \in N_{\epsilon}\left(\kappa^{*}\right)$. Therefore, we have

$$
\begin{aligned}
& \forall \epsilon>0, \mathbf{P}\left(\kappa_{T} \in N_{\epsilon}\left(\kappa^{*}\right)\right) \geq \mathbf{P}(\mathcal{I}(\epsilon)) \\
&=\mathbf{P}\left(\forall j \in[J], \widehat{k}_{b j} \in N_{\epsilon}\left(\kappa^{*}\right)\right) \\
&=1-\mathbf{P}\left(\bigcup_{j=1}^{J}\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \stackrel{(a)}{\geq} 1-\sum_{j=1}^{J} \mathbf{P}\left(\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \stackrel{(b)}{\longrightarrow} 1 \\
& \therefore \kappa_{T} \xrightarrow{p} \kappa^{*}
\end{aligned}
$$

where (a) follows by the union bound and (b) follows because J is finite and $\forall j, \widehat{k}_{b j} \xrightarrow{p} \kappa^{*}$ (by Lemma 3.

Case 2: when s depends on the horizon T.

Case 2(a): when $s \in \Omega\left(T^{\eta-1}\right)$ for any $\eta \in(0,1)$.
Similar to Case 1 , it is sufficient to show that the event $\mathcal{I}(\epsilon)=\left\{\forall j \in[J], \widehat{k}_{b j} \in N_{\epsilon}\left(\kappa^{*}\right)\right\}$ occurs w.p.a. 1 for every $\epsilon>0$. However, since $J \rightarrow \infty$, consistency of $\widehat{k}_{b j}$ is no longer sufficient to prove
this. Instead, we use the concentration inequality in Lemma 1

$$
\begin{aligned}
\forall \epsilon>0, \mathbf{P}\left(\kappa_{T} \in N_{\epsilon}\left(\kappa^{*}\right)\right) & \geq \mathbf{P}(\mathcal{I}(\epsilon)) \\
& =\mathbf{P}\left(\forall j \in[J], \widehat{k}_{b j} \in N_{\epsilon}\left(\kappa^{*}\right)\right) \\
& =\mathbf{P}\left(\forall j \in[J],\left\|\widehat{k}_{b j}-\kappa^{*}\right\| \leq \epsilon\right) \\
& =1-\mathbf{P}\left(\bigcup_{j=1}^{J}\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \stackrel{(a)}{\geq} 1-\sum_{j=1}^{J} \mathbf{P}\left(\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \stackrel{(b)}{\geq} 1-\sum_{j=1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(-T s j \epsilon^{8}\right)\right\} \\
& \stackrel{(c)}{\geq} 1-\sum_{j=1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(-T s \epsilon^{8}\right)\right\} \\
& =1-\frac{J}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(-T s \epsilon^{8}\right)\right\} \\
& =1-\frac{1}{s \epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(-T s \epsilon^{8}\right)\right\} \\
& \rightarrow 1 \text { if } s=C T^{\eta-1}
\end{aligned}
$$

for any $\eta \in(0,1)$ and some constant C. Here (a) follows by the union bound, (b) by Lemma 1 , and (c) because $j \geq 1$.

Case 2(b): when $s=\frac{C}{T}$ for some constant $C>0$.
We prove this similarly to Case 2(a). However, in this case, the number of rounds $J=\frac{1}{s} \in \mathcal{O}(T)$. Let $f=T^{\gamma-1}$ for some $\gamma \in(0,1)$ and $\mathcal{I}(f, \epsilon)=\left\{\forall j \in[J f+1, \ldots, J], \widehat{k}_{b j} \in N_{\epsilon}\left(\kappa^{*}\right)\right\}$ be the event that $\widehat{k}_{b j}$ remains inside $N_{\epsilon}\left(\kappa^{*}\right)$ after the first $J f$ rounds.

Since $f \in o(1)$, we have $\mathcal{I}(f, \epsilon) \Longrightarrow \kappa_{T} \in N_{\epsilon}\left(\kappa^{*}\right)$ for every $\epsilon>0$. This is because the fraction f is asymptotically negligible and thus we can effectively ignore the first $J f$ rounds. Therefore we have

$$
\begin{aligned}
\forall \epsilon>0, \mathbf{P}\left(\kappa_{T} \in N_{\epsilon}\left(\kappa^{*}\right)\right) & \geq \mathbf{P}(\mathcal{I}(f, \epsilon)) \\
& =\mathbf{P}\left(\forall j \in[J f+1, J f+2, \ldots, J],\left\|\widehat{k}_{b j}-\kappa^{*}\right\| \leq \epsilon\right) \\
& =1-\mathbf{P}\left(\bigcup_{j=J f+1}^{J}\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \geq 1-\sum_{j=J f}^{J} \mathbf{P}\left(\left\|\widehat{k}_{b j}-\kappa^{*}\right\|>\epsilon\right) \\
& \geq 1-\sum_{j=J f+1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(T s j \epsilon^{8}\right)\right\} \\
& \stackrel{(a)}{\geq} 1-\sum_{j=J f+1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(j \epsilon^{8}\right)\right\} \\
& \stackrel{(b)}{\geq 1-\sum_{j=J f+1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(J f \epsilon^{8}\right)\right\}} \\
& \stackrel{(c)}{\geq} 1-\sum_{j=J f+1}^{J} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(T^{\gamma} \epsilon^{8}\right)\right\} \\
& \geq 1-\frac{J}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(T^{\gamma} \epsilon^{8}\right)\right\} \\
& \geq 1-\frac{T}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(T^{\gamma} \epsilon^{8}\right)\right\} \\
& \rightarrow 1,
\end{aligned}
$$

where (a) follows because $T s=C$, (b) because $j \geq J f$, and (c) because $J f=\mathcal{O}\left(T^{\gamma}\right)$. We note that it is possible to unify the analysis of Case 2(a) and Case 2(b) by ignoring the first $J f$ rounds in Case 2(a) as well. We prove the two cases separately for the sake of clarity.

B Incorporate Cost Structure

B. 1 Proof of Proposition 3 (Regret of OMS-ETC-CS)

Proposition (Regret of OMS-ETC-CS). Suppose that the conditions of Theorem 1 hold. If $e=o(1)$ such that $B e \rightarrow \infty$ as $B \rightarrow \infty$, then $\forall \theta^{*} \in \Theta, R_{\infty}\left(\pi_{E T C-C S}\right)=0$.

Proof. The proof is almost exactly like that of Theorem 1 . We prove that $\kappa_{T} \xrightarrow{p} \kappa^{*}$ and then apply Proposition 2 Let the number of samples used for exploration be T_{e}. Since $\kappa_{T_{e}}=\left[\frac{1}{|\psi|}, \frac{1}{|\psi|}, \ldots, \frac{1}{|\psi|}\right]$, we have

$$
T_{e}=\frac{B e}{\kappa_{T_{e}}^{\top} c}
$$

T_{e} is not a random variable because $\kappa_{T_{e}}$ is fixed. By Lemma 3 we have $\widehat{k}_{T_{e}} \xrightarrow{p} \kappa^{*}$.
When $e \in o(1)$, the feasible region converges to the entire simplex, i.e., $\tilde{\Delta} \rightarrow \Delta_{\psi}$. Thus $\kappa_{T}-\widehat{k}_{T_{e}} \xrightarrow{p}$ 0.

```
Input: \(B, s, c\)
\(\widehat{k}=\operatorname{ctr}\left(\Delta_{\psi}\right)\);
\(b=\frac{B s}{c_{\text {max }}}\);
\(B_{l}=B\);
\(j=0\);
while \(B_{l}>0\) do
    \(j \leftarrow j+1 ;\)
    last_step \(=\frac{B_{l}}{c_{\text {max }}} \leq b\);
    if not last_step then
        Collect \(b\) samples s.t. \(\kappa_{b j}=\widehat{k}\);
        \(B_{l} \leftarrow B-b j\left(\kappa_{b j}^{\top} c\right)\);
        \(t=b(j+1)\);
        \(\widehat{\theta}_{t}=\operatorname{GMM}\left(H_{t}, \widehat{W}=\widehat{W}_{\text {valid }}\right)\);
        \(\widehat{k}_{t}=\arg \min _{\kappa \in \Delta_{\psi}} V\left(\widehat{\theta}_{t}, \kappa\right)\left(\kappa^{\top} c\right) ;\)
        \(\widehat{k}=\operatorname{proj}\left(\widehat{k}_{\text {min }}, \tilde{\Delta}_{j+1}\left(\kappa_{t}\right)\right) ;\)
    else
        Collect samples s.t. \(\kappa_{T}=\widehat{k}\);
        \(B_{l} \leftarrow 0 ;\)
    end
end
\(\widehat{\theta}_{T}=\operatorname{GMM}\left(H_{T}, \widehat{W}=\widehat{W}_{\text {efficient }}\right) ;\)
Output: \(\widehat{\theta}_{T}\)
```

(a) OMS-ETG-FS (fixed samples per batch).

Input: B, s, c
$\widehat{k}=\operatorname{ctr}\left(\Delta_{\psi}\right)$;
$J=\frac{B}{s} ;$
$t=0$;
for $j \in[1,2, \ldots, J]$ do
$b=\frac{B s}{\left(\hat{k}^{\top} c\right)} ;$
$t \leftarrow t+b ;$
Collect b samples s.t. $\kappa_{t}=\widehat{k}$;
$\widehat{\theta}_{t}=\operatorname{GMM}\left(H_{t}, \widehat{W}=\widehat{W}_{\text {valid }}\right)$;
$\widehat{k}_{t}=\arg \min _{\kappa \in \Delta_{\psi}} V\left(\widehat{\theta}_{t}, \kappa\right)\left(\kappa^{\top} c\right) ;$
$\widehat{k}=\operatorname{proj}\left(\widehat{k}_{\text {min }}, \tilde{\Delta}_{j+1}\left(\kappa_{t}\right)\right) ;$
end
$\widehat{\theta}_{T}=\operatorname{GMM}\left(H_{T}, \widehat{W}=\widehat{W}_{\text {efficient }}\right)$;
Output: $\widehat{\theta}_{T}$
(b) OMS-ETG-FB (fixed budget per batch)

Figure 6: Algorithms for OMS-ETG-FS and OMS-ETG-FB.

B. 2 Proof of Proposition 4 (Regret of OMS-ETG-FS)

Proposition (Regret of OMS-ETG-FS). Suppose that the conditions of Theorem 2 hold. If $s=B^{\eta-1}$ and any $\eta \in[0,1)$, then $\forall \theta^{*} \in \Theta, R_{\infty}\left(\pi_{E T G-F S}\right)=0$.

Proof. We can prove this similarly to Theorem 2 . The key difference is that the number of rounds J is now a random variable. But we can use the fact the J is bounded:

$$
\begin{aligned}
& \frac{1}{s} \leq J \leq \frac{c_{\max }}{s c_{\min }} \\
& \therefore J \in \mathcal{O}\left(\frac{1}{s}\right) .
\end{aligned}
$$

Now we can proceed like Case 2 in the proof of Theorem 2 .

B. 3 Proof of Proposition 5 (Regret of OMS-ETG-FB)

Proposition (Regret of OMS-ETG-FB). Suppose that the conditions of Theorem 2 hold. If $s=B^{\eta-1}$ and any $\eta \in[0,1)$, then $\forall \theta^{*} \in \Theta, R_{\infty}\left(\pi_{E T G-F B}\right)=0$.

Proof. We show this similarly to Theorem 2. In this case, the size of each batch is random but the numbers of rounds $J=\frac{1}{s}$ is not random. Thus we can't use the concentration inequality in Lemma 1 directly since that only holds for a fixed time step t. We get around this by showing that the estimated selection ratio \widehat{k}_{t} will remain in an ϵ-ball around κ^{*} uniformly over all time steps after some asymptotically negligible fraction of the horizon T.
Let T_{j} be the number of samples collected after round j, i.e., $T_{j}=\frac{B s j}{\kappa_{T_{j}}^{\top}}$. Let $f=B^{\gamma-1}$ for some $\gamma \in(0,1)$. Like the proof of Theorem 2, we can ignore the first $J f$ rounds since they are $f \in o(1)$ is
an asymptotically negligible fraction. And similarly to the proof of Theorem 2, in order to show that $\kappa_{T} \xrightarrow{p} \kappa^{*}$, it is sufficient to show that $\mathbf{P}\left(\forall j \in[J f+1, J f+2, \ldots, J],\left\|\widehat{k}_{T_{j}}-\kappa^{*}\right\| \leq \epsilon\right) \xrightarrow{B \rightarrow \infty}$ 1. We can show this as follows:

$$
\begin{equation*}
\mathbf{P}\left(\forall j \in[J f+1, J f+2, \ldots, J],\left\|\widehat{k}_{T_{j}}-\kappa^{*}\right\| \leq \epsilon\right) \geq \mathbf{P}\left(\forall t \in\left[T_{J f+1}, \ldots, T_{J}\right],\left\|\widehat{k}_{t}-\kappa^{*}\right\| \leq \epsilon\right) \tag{13}
\end{equation*}
$$

The minimum and maximum batch sizes are $b_{\min }=\frac{B s}{c_{\max }}$ and $b_{\max }=\frac{B s}{c_{\text {min }}}$, respectively. Therefore,

$$
\begin{aligned}
T_{J f+1} & \geq J f b_{\min }=J f \frac{B s}{c_{\max }} \\
T_{J} & \leq J b_{\max }
\end{aligned}=J \frac{B s}{c_{\min }} .
$$

Using these facts and continuing Eq. 13, we get:

$$
\begin{aligned}
\mathbf{P}\left(\forall j \in[J f+1, J f+2, \ldots, J],\left\|\widehat{k}_{T_{j}}-\kappa^{*}\right\| \leq \epsilon\right) & \geq \mathbf{P}\left(\forall t \in\left[T_{J f+1}, \ldots, T_{J}\right],\left\|\widehat{k}_{t}-\kappa^{*}\right\| \leq \epsilon\right) \\
& \geq \mathbf{P}\left(\forall t \in\left[J f b_{\min }, \ldots, J b_{\max }\right],\left\|\widehat{k}_{t}-\kappa^{*}\right\| \leq \epsilon\right) \\
& \stackrel{(a)}{\geq} 1-\sum_{t=J f b_{\min }}^{J b_{\max }} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(t \epsilon^{8}\right)\right\} \\
& \stackrel{(b)}{\geq 1-\sum_{t=J f b_{\min }}^{J b_{\max }} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(J f b_{\min } \epsilon^{8}\right)\right\}} \\
& \geq 1-\sum_{t=J f b_{\min }}^{J b_{\max }} \frac{1}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(B f \epsilon^{8}\right)\right\} \\
& \geq 1-\frac{J b_{\max }}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(B f \epsilon^{8}\right)\right\} \\
& \geq 1-\frac{B}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(B f \epsilon^{8}\right)\right\} \\
& \geq 1-\frac{B}{\epsilon^{4 D}} \exp \left\{-\mathcal{O}\left(B^{\gamma} \epsilon^{8}\right)\right\} \\
& \rightarrow 1,
\end{aligned}
$$

where (a) follows by the union bound and (b) because $t \geq J f b_{\min }$.

C Feasible regions

In this section, we derive the feasibility regions for the various policies.

OMS-ETC

Recall that in OMS-ETC, we first collect $T e$ samples such that $\kappa_{T e}=\operatorname{ctr}\left(\Delta_{\psi}\right)$. For the remaining $T(1-e)$ samples, the agent can query the data sources with any fraction $\kappa \in \Delta_{\psi}$. Therefore, the feasible values of κ_{T} are

$$
\begin{aligned}
\tilde{\Delta} & =\left\{\frac{T e \kappa_{T e}+T(1-e) \kappa}{T}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{e \kappa_{T e}+(1-e) \kappa: \kappa \in \Delta_{\psi}\right\}
\end{aligned}
$$

OMS-ETG

After j rounds, the selection ratio is denoted by $\kappa_{b j}$. In every round, we collect $b=T s$ samples. For the batch collected in round $j+1$, the agent can query the data sources with any fraction $\kappa \in \Delta_{\psi}$.

Therefore, the feasible values of $\kappa_{b(j+1)}$ are

$$
\begin{aligned}
\tilde{\Delta}_{j+1}\left(\kappa_{b j}\right) & =\left\{\frac{b j \kappa_{b j}+b \kappa}{b(j+1)}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{T s j \kappa_{b j}+T s \kappa}{T s(j+1)}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{j \kappa_{b j}+\kappa}{(j+1)}: \kappa \in \Delta_{\psi}\right\}
\end{aligned}
$$

OMS-ETC-CS

The agent uses $B e$ budget to uniformly query the available data sources. Let T_{e} denote the number of samples collected after exploration. We have

$$
T_{e}=\frac{B e}{\kappa_{T_{e}}^{\top} c}
$$

where $\kappa_{T_{e}}^{\top}=\operatorname{ctr}\left(\Delta_{\psi}\right)$ and c is the cost vector. With the remaining $B(1-e)$ budget, the agent can collect samples with any fraction $\kappa \in \Delta_{\psi}$. However, since the data sources can have different costs, the total number of samples T depends on the choice of κ :

$$
T=T_{e}+\frac{B(1-e)}{\kappa^{\top} c}
$$

for $\kappa \in \Delta_{\psi}$. Therefore the feasible values of κ_{T} are

$$
\begin{aligned}
\tilde{\Delta} & =\left\{\frac{T_{e} \kappa_{T_{e}}+\left(T-T_{e}\right) \kappa}{T}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{\frac{B e}{\kappa_{T_{e}} c} \kappa_{T_{e}}+\frac{B(1-e)}{\kappa^{\top} c} \kappa}{\frac{B e}{\kappa_{T_{e}}^{\top} c}+\frac{B(1-e)}{\kappa^{\top} c}}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{e\left(\kappa^{\top} c\right) \kappa_{T_{e}}+(1-e)\left(\kappa_{T_{e}}^{\top} c\right) \kappa}{e\left(\kappa^{\top} c\right)+(1-e)\left(\kappa_{T_{e}}^{\top} c\right)}: \kappa \in \Delta_{\psi}\right\} .
\end{aligned}
$$

OMS-ETG-FS

Since we collect a fixed number of samples in each round, the feasibility region for OMS-ETG-FS is that same as OMS-ETG:

$$
\tilde{\Delta}_{j+1}\left(\kappa_{b j}\right)=\left\{\frac{j \kappa_{b j}+\kappa}{(j+1)}: \kappa \in \Delta_{\psi}\right\}
$$

OMS-ETG-FB

Let the selection ratio after j rounds be $\kappa_{T_{j}}$ where T_{j} number of samples collected after round j : $T_{j}=\frac{B s j}{\kappa_{b_{j} c}^{\top}}$. For the batch collected in round $j+1$, the agent can query the data sources with any fraction $\kappa \in \Delta_{\psi}$. However, the number of samples collected in round $j+1$ would depend on the choice κ due to the cost structure. Therefore the number of samples collected after round $j+1$ is

$$
T_{j+1}=T_{j}+\frac{B s j}{\kappa^{\top} c}
$$

for $\kappa \in \Delta_{\psi}$. Hence, the feasible values of $\kappa_{T_{j+1}}$ are

$$
\begin{aligned}
\tilde{\Delta}_{j+1}\left(\kappa_{T_{j}}\right) & =\left\{\frac{T_{j} \kappa_{T_{j}}+\left(T_{j+1}-T_{j}\right) \kappa}{T_{j+1}}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{\frac{B s j}{\kappa_{b j}^{\top} c} \kappa_{T_{j}}+\frac{B s j}{\kappa^{\top} c} \kappa}{\frac{B s j}{\kappa_{b j}^{\top} c}+\frac{B s j}{\kappa^{\top} c}}: \kappa \in \Delta_{\psi}\right\} \\
& =\left\{\frac{j\left(\kappa^{\top} c\right) \kappa_{T_{j}}+\left(\kappa_{T_{j}}^{\top} c\right) \kappa}{j\left(\kappa^{\top} c\right)+\left(\kappa_{T_{j}}^{\top} c\right)}: \kappa \in \Delta_{\psi}\right\} .
\end{aligned}
$$

D Experiments

D. 1 Linear IV graph

Data from the linear IV graph (Figure 2a) is simulated as follows:

$$
\begin{aligned}
Z & \sim \mathcal{N}\left(0, \sigma_{z}^{2}\right), \\
U & \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right), \\
X & :=\alpha Z+\gamma U+\epsilon_{x}, \epsilon_{x} \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right), \\
Y & :=\beta X+\phi U+\epsilon_{y}, \epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{y}^{2}\right),
\end{aligned}
$$

where ϵ_{x} and ϵ_{y} are exogenous noise terms independent of other variables and each other and U is an unobserved confounder. Here $\left\{\beta, \alpha, \gamma, \phi, \sigma_{z}^{2}, \sigma_{u}^{2}, \sigma_{x}^{2}, \sigma_{y}^{2}\right\}$ are parameters that we set for simulating the data. For the experiment in Section6.1, we used $\beta=1, \alpha=1, \gamma=1, \phi=1, \sigma_{z}=1, \sigma_{u}=$ $1, \sigma_{x}=1, \sigma_{y}=1$.

The moment conditions used for estimation are

$$
g_{t}(\theta)=\underbrace{\left[\begin{array}{c}
s_{t, 1} \\
s_{t, 2}
\end{array}\right]}_{=m\left(s_{t}\right)} \otimes \underbrace{\left[\begin{array}{c}
Z_{t}\left(X_{t}-\alpha Z_{t}\right) \\
Z_{t}\left(Y_{t}-\alpha \beta Z_{t}\right)
\end{array}\right]}_{=\tilde{g}_{t}(\theta)} .
$$

The parameter we estimate is $\theta=[\beta, \alpha]^{\top}$ and $\beta=f_{\operatorname{tar}}(\theta)=\theta_{0}$.

D. 2 Two IVs graph

Data from the two IVs graph (Figure 2b) is simulated as follows:

$$
\begin{aligned}
Z_{1} & \sim \mathcal{N}\left(0, \sigma_{z_{1}}^{2}\right) \\
Z_{2} & \sim \mathcal{N}\left(0, \sigma_{z_{2}}^{2}\right) \\
U & \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right) \\
X & :=\alpha_{1} Z_{1}+\alpha_{2} Z_{2}+\gamma U+\epsilon_{x}, \epsilon_{x} \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right) \\
Y & :=\beta X+\phi U+\epsilon_{y}, \epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{y}^{2}\right)
\end{aligned}
$$

where ϵ_{x} and ϵ_{y} are exogenous noise terms independent of other variables and each other and U is an unobserved confounder. For the experiment in Section6.1, we used $\beta=1, \alpha=1, \gamma=1, \phi=$ $1, \sigma_{z}=1, \sigma_{u}=1, \sigma_{x}=1, \sigma_{y}=1$.
The moment conditions used for estimation are

$$
g_{t}(\theta)=\underbrace{\left[\begin{array}{l}
s_{t, 1} \\
s_{t, 2}
\end{array}\right]}_{=m\left(s_{t}\right)} \otimes \underbrace{\left[\begin{array}{l}
\left(Z_{1}\right)_{t}\left(Y_{t}-\beta X_{t}\right) \\
\left(Z_{2}\right)_{t}\left(Y_{t}-\beta X_{t}\right)
\end{array}\right]}_{=\tilde{g}_{t}(\theta)}
$$

The parameter we estimate is $\theta=[\beta]$ and $\beta=f_{\operatorname{tar}}(\theta)=\theta_{0}$.

D. 3 Confounder-mediator graph

Data from the confounder-mediator graph (Figure 2b) is simulated as follows:

$$
\begin{aligned}
W & \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right), \\
X & :=d W+\epsilon_{x}, \epsilon_{x} \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right) \\
M & :=\frac{\beta}{a} X+\epsilon_{m}, \epsilon_{m} \sim \mathcal{N}\left(0, \sigma_{m}^{2}\right) \\
Y & :=a M+b W+\epsilon_{y}, \quad \epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{y}^{2}\right)
\end{aligned}
$$

where $\epsilon_{x}, \epsilon_{m}$, and ϵ_{y} are exogenous noise terms independent of other variables and each other. For the experiment in Section6.1, we used $\beta=-0.32, a=0.33, b=-0.34, d=0.45, \sigma_{w}=1, \sigma_{x}=$ $1, \sigma_{m}=1, \sigma_{y}=1$.

The moment conditions used for estimation are

$$
g_{t}(\theta)=\underbrace{\left[\begin{array}{c}
s_{t, 1} \\
s_{t, 1} \\
s_{t, 2} \\
s_{t, 2} \\
s_{t, 2} \\
s_{t, 1} \\
s_{t, 1} \\
s_{t, 1} \\
1
\end{array}\right]}_{=m\left(s_{t}\right)} \otimes \underbrace{\left[\begin{array}{c}
\tilde{g}_{t}(\theta)
\end{array}\right] . . . ~}_{\left.=\begin{array}{c}
X_{t}\left(Y_{t}-b W_{t}-\beta X_{t}\right) \\
W_{t}\left(Y_{t}-b W_{t}-\beta X_{t}\right) \\
X_{t}\left(M_{t}-\frac{\beta}{a} X_{t}\right) \\
M_{t}\left(Y_{t}-a M_{t}-\frac{b d \sigma_{w}^{2}}{d^{2} \sigma_{w}^{2}+\sigma_{x}^{2}} X_{t}\right) \\
X_{t}\left(Y_{t}-a M_{t}-\frac{b d \sigma_{w}^{2}}{d^{2} \sigma_{w}^{2}+\sigma_{x}^{2}} X_{t}\right) \\
W_{t}^{2}-\sigma_{w}^{2} \\
W_{t}\left(X_{t}-d W\right) \\
X_{t}^{2}-\left(d^{2} \sigma_{w}^{2}+\sigma_{x}^{2}\right)
\end{array}\right]}
$$

The parameter we estimate is $\theta=\left[\beta, a, b, d, \sigma_{w}^{2}, \sigma_{x}^{2}\right]^{\top}$ and $\beta=f_{\operatorname{tar}}(\theta)=\theta_{0}$.

D. 4 IHDP dataset

To generate semi-synthetic IHDP dataset, we use two covariates: birth weight (denoted by W_{1}) and whether the mother smoked (denoted by W_{2}). The binary treatment is denoted by X and the outcome is denoted by Y. The corresponding causal graph is shown in Figure 4a. For every sample of the semi-synthetic dataset, W_{1}, W_{2}, and X are sampled uniformly at random from the real data. The outcome Y is simulated as follows:

$$
Y:=\beta X+\alpha_{1} W_{1}+\alpha_{2} W_{2}+\epsilon_{y}, \epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{y}^{2}\right)
$$

where ϵ_{y} is an independent exogenous noise term. For the experiment in Section 6.2, we used $\beta=1, \alpha_{1}=1, \alpha_{2}=0.1, \sigma_{y}=1$.
The moment conditions used for estimation are

The parameter we estimate is $\theta=\left[\beta, \alpha_{1}, \alpha_{2}, d, \tau_{1}, \tau_{2}, \sigma_{w}^{2}, \sigma_{y}^{2}\right]^{\top}$ and $\beta=f_{\operatorname{tar}}(\theta)=\theta_{0}$.

D. 5 The Vietnam draft and future earnings dataset

The causal graph for this dataset corresponds to Figure 2a with a binary IV Z, binary treatment X and continuous outcome Y. In this dataset, $\{Z, X\}$ and $\{Z, Y\}$ are collected from different data sources and thus $\{Z, X, Y\}$ are not observed simultaneously. For our experiment, we only use data from the 1951 cohort.

In the semi-synthetic dataset, we sample Z uniformly at random from the real dataset. The treatment X is generated similarly to a probit model. We first generate an intermediate variable X^{*} and then use that to generate X as follows:

$$
\begin{aligned}
X^{*} & :=\alpha Z+c^{*}+\epsilon_{x}, \quad \epsilon_{x} \sim \mathcal{N}(0,1) \\
X & :=\mathbf{1}\left(X^{*}>0\right)
\end{aligned}
$$

where $\mathbf{1}$ is the indicator function. To reduce clutter, let $\mu_{z}=\widehat{\mathbf{P}}(Z=1)=0.3425, \mu_{x}^{(1)}=\mathbf{P}(X=$ $1 \mid Z=1)$ and $\mu_{x}^{(0)}=\mathbf{P}(X=1 \mid Z=0)$. We set the parameters α and c^{*} such that $\mu_{x}^{(1)}=0.2831$ and
$\mu_{x}^{(0)}=0.1468$ (these values have been taken from [2, Table 2] to match the empirical distribution):

$$
\begin{aligned}
\mu_{x}^{(0)} & =\mathbf{P}\left(\mathbf{1}\left(X^{*}>0\right) \mid Z=0\right) \\
& \left.=\mathbf{P}\left(c^{*}+\epsilon_{x}>0\right)\right) \\
& \left.=\mathbf{P}\left(\epsilon_{x}>-c^{*}\right)\right) \\
& \left.=\mathbf{P}\left(\epsilon_{x}<c^{*}\right)\right) \\
& =\Phi\left(c^{*}\right) \\
\therefore c^{*} & =\Phi^{-1}\left(\mu_{x}^{(0)}\right) \\
& =\Phi^{-1}(0.1468) \\
& =-1.050, \\
\mu_{x}^{(1)} & =\mathbf{P}\left(\mathbf{1}\left(X^{*}>0\right) \mid Z=1\right) \\
& \left.=\mathbf{P}\left(\alpha+c^{*}+\epsilon_{x}>0\right)\right) \\
& =\Phi\left(\alpha+c^{*}\right) \\
\therefore \alpha & =\Phi^{-1}\left(\mu_{x}^{(1)}\right)-c^{*} \\
& =\Phi^{-1}\left(\mu_{x}^{(1)}\right)-\Phi^{-1}\left(\mu_{x}^{(0)}\right) \\
& =\Phi^{-1}(0.2831)-\Phi^{-1}(0.1468) \\
& =0.4766,
\end{aligned}
$$

where Φ is the cumulative distribution function of the standard normal distribution.
In the real data, we standardize the outcome Y by subtracting its mean and dividing by its standard deviation and thus $\widehat{\mathbf{E}}[Y]=0$ and $\widehat{\operatorname{Var}}(Y)=1$. To generate the simulated outcome Y, we use $Y:=\beta X+\gamma+c_{0} \epsilon_{x}+\epsilon_{y}$, where $\epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{\epsilon_{y}}^{2}\right)$. When $c_{0} \neq 0$, the noise term $\left(c_{0} \epsilon_{x}+\epsilon_{y}\right) \not \Perp X$. Thus c_{0} determines the extent of the confounding between X and Y.
We now describe how we set β and γ. Since $E[Y]=0$, we have

$$
\begin{aligned}
\gamma & =-\beta \mathbf{E}[X] \\
& =-\beta\left(\mu_{x}^{(0)}\left(1-\mu_{z}\right)+\mu_{x}^{(1)} \mu_{z}\right) \\
& =-0.1934 \beta
\end{aligned}
$$

Using the covariance of Y and Z, we have

$$
\begin{aligned}
\operatorname{Cov}(Y, Z) & =\mathbf{E}[Y Z] \\
& =\beta \mathbf{E}[Z X]+\gamma \mathbf{E}[Z] \\
& =\beta(\mathbf{E}[Z X]-\mathbf{E}[X] \mathbf{E}[Z]) \\
& =\beta\left(\mathbf{E}\left[Z \mathbf{1}\left(\alpha Z+c^{*}+\epsilon_{x}>0\right)\right]-\mathbf{E}[X] \mathbf{E}[Z]\right) \\
& =\beta\left(\mathbf{E}\left[Z \mathbf{E}\left[\mathbf{1}\left(\alpha Z+c^{*}+\epsilon_{x}>0\right) \mid Z\right]\right]-\mathbf{E}[X] \mathbf{E}[Z]\right) \\
& =\beta\left(\mathbf{E}\left[Z \mathbf{E}\left[\mathbf{1}\left(\epsilon_{x}>-\left(\alpha Z+c^{*}\right)\right) \mid Z\right]\right]-\mathbf{E}[X] \mathbf{E}[Z]\right) \\
& =\beta\left(\mathbf{E}\left[Z \Phi\left(\alpha Z+c^{*}\right)\right]-\mathbf{E}[X] \mathbf{E}[Z]\right) \\
& =\beta\left(\Phi\left(\alpha Z+c^{*}\right) \mu_{z}-\mathbf{E}[X] \mathbf{E}[Z]\right) \\
& =\beta \mu_{z}\left(\mu_{x}^{(1)}-\mathbf{E}[X]\right) .
\end{aligned}
$$

Therefore, we set β and γ as

$$
\begin{aligned}
\beta & =\frac{\widehat{E}[Y Z]}{\mu_{z}\left(\mu_{x}^{(1)}-\mathbf{E}[X]\right)}=-0.4313 \\
\gamma & =-0.1934 \beta=0.0834
\end{aligned}
$$

Now we describe how we set c_{0} and $\sigma_{\epsilon_{y}}^{2}$. For this, we use the variance of Y :

$$
\begin{equation*}
\operatorname{Var}(Y)=1=\beta^{2} \operatorname{Var}(X)+c_{0}^{2} \sigma_{\epsilon_{y}}^{2}+2 \beta c_{0} \mathbf{E}\left[X \epsilon_{x}\right] \tag{14}
\end{equation*}
$$

We have

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}[\mathbf{E}(X \mid Z)]+\mathbf{E}[\operatorname{Var}(X \mid Z)] \\
& =\operatorname{Var}\left(Z \mu_{x}^{(1)}+(1-Z) \mu_{x}^{(0)}\right)+\mu_{z} \mu_{x}^{(1)}\left(1-\mu_{x}^{(1)}\right)+\left(1-\mu_{z}\right) \mu_{x}^{(0)}\left(1-\mu_{x}^{(0)}\right) \\
& =\mu_{z}\left(1-\mu_{z}\right)\left(\mu_{x}^{(1)}-\mu_{x}^{(0)}\right)^{2}+\mu_{z} \mu_{x}^{(1)}\left(1-\mu_{x}^{(1)}\right)+\left(1-\mu_{z}\right) \mu_{x}^{(0)}\left(1-\mu_{x}^{(0)}\right) \\
& =0.1560, \\
\mathbf{E}\left[X \epsilon_{x}\right] & =\mathbf{E}\left[\mathbf{E}\left[\mathbf{1}\left(Z \alpha+c^{*}+\epsilon_{x}>0\right) \epsilon_{x} \mid Z\right]\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\mathbf{1}\left(\epsilon_{x}>-\left(Z \alpha+c^{*}\right)\right) \epsilon_{x} \mid Z\right]\right] \\
& \stackrel{(a)}{=} \mathbf{E}_{Z}\left[\int_{-\left(Z \alpha+c^{*}\right)}^{\infty} x f(x) d x\right] \\
& =\mathbf{E}\left[\frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-\left(Z \alpha+c^{*}\right)^{2}}{2}\right\}\right] \\
& =\frac{1}{\sqrt{2 \pi}}\left[\exp \left\{\frac{-\left(c^{*}\right)^{2}}{2}\left(1-\mu_{z}\right)+\exp \left\{\frac{-\left(\alpha+c^{*}\right)^{2}}{2}\right\} \mu_{z}\right\}\right] \\
& =0.2670,
\end{aligned}
$$

where in (a), $f(x)$ is the probability density function of the standard normal distribution. We set $c_{0}=0.5$ and using Eq. 14 , we get $\sigma_{\epsilon_{y}}^{2}=0.6058$.
To summarize, the data is generated as follows:

$$
\begin{aligned}
Z & \sim \operatorname{Bernoulli}\left(\mu_{z}\right) \\
X^{*} & :=\alpha Z+c^{*}+\epsilon_{x}, \epsilon_{x} \sim \mathcal{N}(0,1) \\
X & :=\mathbf{1}\left(X^{*}>0\right) \\
Y & :=\beta X+\gamma+c_{0} \epsilon_{x}+\epsilon_{y}, \epsilon_{y} \sim \mathcal{N}\left(0, \sigma_{\epsilon_{y}}^{2}\right),
\end{aligned}
$$

where $\mu_{z}=0.3424, \alpha=0.4766, c^{*}=-1.0502, \beta=-0.4313, \gamma=0.0834$, and $\sigma_{\epsilon_{y}}^{2}=0.6058$.
The moment conditions used for estimation are

$$
g_{t}(\theta)=\underbrace{\left[\begin{array}{c}
s_{t, 1} \\
s_{t, 1} \\
s_{t, 2} \\
s_{t, 2}
\end{array}\right]}_{=m\left(s_{t}\right)} \otimes \underbrace{\left[\begin{array}{c}
Z_{t}\left(Y_{t}-\mu_{1}\right) \\
\left(1-Z_{t}\right)\left(Y_{t}-\mu_{0}\right) \\
Z_{t}\left(X_{t}-\tau_{1}\right) \\
\left(1-Z_{t}\right)\left(X_{t}-\tau_{0}\right)
\end{array}\right]}_{=\tilde{g}_{t}(\theta)} .
$$

The parameter we estimate is $\theta=\left[\mu_{1}, \mu_{0}, \tau_{1}, \tau_{0}\right]$ and the target parameter is $\beta=f_{\operatorname{tar}}(\theta)=\frac{\mu_{1}-\mu_{0}}{\tau_{1}-\tau_{0}}$.

