
A Approximate Marginal Inference Algorithm

Algorithm 2 CONVEX-GBP: Convex Generalized Belief Propagation [25]

Input: Region Graph G = (V, E), parameters θ = (θr)r∈V , convex counting numbers κr > 0
Output: Model marginals τ = (τ r)r∈C
κr,t = κr/(κt +

�
p→t κp)

Initialize mr→t(xt) = 0 and λt→r(xt) = 0
for i = 1, . . . do

for r → t do
mr→t(xt) = κr log

��
xr\xt

exp
�
(θr(xr) +

�
c�=r λc→r(xc)−

�
p λr→p(xp))/κr)

��

λt→r(xt) = κr,t

�
θt(xt) +

�
c λc→t(xt) +

�
p mp→t(xt)

�
−mt→r(xt)

for r ∈ C do
τ r(xr) ∝ exp

�
(θr(xr) +

�
t λt→r(xt)−

�
p λr→p(xr))/κr

�

return τ = (τ r)r∈V

Lemma 1. Let G be a region graph, let κ be positive counting numbers, and suppose τ̂ =

CONVEX-GBP(G, θ̂,κ) for parameters θ̂. Then, for any vector z:

argmin
τ∈L(G)

−τ� (−∇Hκ(τ̂ ) + z)−Hκ(τ ) = argmin
τ∈L(G)

−τ��θ̂ + z
�
−Hκ(τ )

For the remainder of this section, let S be the linear subspace parallel to the affine hull of L(G), and
let S⊥ be the orthogonal complement of S. That is, if we write L(G) = {τ ≥ 0 : Aτ = b} using
the constraint matrix A, then S is the null space of A. This means that for any 0 < τ ∈ L(G) and
z ∈ S, there is some λ > 0 such that τ + λz ∈ L(G). On the other hand, if z ∈ L(G) and z /∈ S,
there is no λ > 0 such that τ + λz ∈ L(G).

Proof. Because τ̂ = CONVEX-GBP(G, θ̂,κ) we know that τ̂ minimizes −τ̃�θ̂ −Hκ(τ̃ ) over all
τ̃ ∈ L(G), and it is easy to see from the final line of CONVEX-GBP that τ̂ > 0. Therefore, we can
apply Lemma 2 below to conclude that there are vectors v⊥,v�

⊥ ∈ S⊥ such that

−∇Hκ(τ̂ ) = u(τ̂ ) + v⊥

θ̂ = u(τ̂ ) + v�
⊥

where u(τ̂ ) is the projection of −∇Hκ(τ̂ ) onto S.

We will now show that the linear parts of the objectives of the two minimization problems in the
lemma statement differ by only a constant. Since the nonlinear part is the same, this will prove that
the objectives as a whole differ by only a constant, so the problems have the same minimizers, as
stated.

Let z = z� + z⊥ where z� ∈ S and z⊥ ∈ S⊥. Then, for any τ ∈ L(G), the linear component of the
first objective is

−τ�(−∇Hκ(τ ) + z) = −τ�(u(τ̂ ) + v⊥ + z� + z⊥) = −τ�(u(τ̂ ) + z�) + c (3)

where c = −τ�(v⊥ + z⊥) is a constant that does not depend on τ , since, for any τ , τ � ∈ L(G) we
have

τ ��(v⊥ + z⊥)− τ�(v⊥ + z⊥) = (τ � − τ )�(v⊥ + z⊥) = 0,

since τ � − τ ∈ S and v⊥ + z⊥ ∈ S⊥.

Similarly, the linear component of the second objective is

−τ�(θ̂ + z) = −τ�(u(τ̂ ) + v�
⊥ + z� + z⊥) = −τ�(u(τ̂ ) + z�) + c� (4)

where c� = −τT (v�
⊥ + z⊥) is a (different) constant independent of τ .

This shows that the objectives differ by a constant, and completes the proof.

Equation (3) and Equation (4) show that the objectives differ by a constant, which completes the
proof.
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Lemma 2. Let G be a region graph, let κ be positive counting numbers, and let τ ∈ L(G) with
τ > 0. Define Θ(τ ) = {θ : τ = argminτ̃∈L(G) −τ̃�θ −Hκ(τ̃ )} to be the set of all θ such that
CONVEX-GBP(G, θ,κ) = τ . Then

Θ(τ ) = u(τ ) + S⊥
where u(τ ) is the projection of −∇Hκ(τ ) onto S.

Proof. This follows fairly standard arguments in convex analysis after noting that the objective of
the optimization problem coincides with the convex conjugate of −Hκ (e.g., see Rockafellar, 20151;
Bertsekas, 20092), but with some specialization to our setting.

Define f(τ ) to be the extended real-valued function that takes value −Hκ(τ ) for τ ∈ L(G) and
+∞ for τ /∈ L(G). Let ∂f(τ ) be the subdifferential of f at τ ∈ L(G).

We will first show that Θ(τ ) = ∂f(τ ).

By the definition of a subgradient, for τ ∈ L(G),

θ ∈ ∂f(τ ) ⇐⇒ f(τ̃ ) ≥ f(τ ) + θ�(τ̃ − τ ) ∀τ̃ ∈ Rd

⇐⇒ f(τ̃ ) ≥ f(τ ) + θ�(τ̃ − τ ) ∀τ̃ ∈ L(G)

⇐⇒ τ�θ − f(τ ) ≥ τ̃�θ − f(τ̃ ) ∀τ̃ ∈ L(G)

⇐⇒ τ = argmax
τ̃∈L(G)

τ̃�θ − f(τ̃ )

⇐⇒ τ = argmin
τ̃∈L(G)

−τ̃�θ −Hκ(τ̃ )

⇐⇒ θ ∈ Θ(τ ).

In the second line, we used the fact that the inequality always holds for τ̃ /∈ L(G) because f(τ̃ ) =
+∞ and the other quantities are finite. In the third line, we used the fact that f(τ̃ ), which coincides
with −Hκ(τ̃ ) on L(G), is strictly convex, so τ is a unique maximizer of τ̃�θ − f(τ̃ ).

Now, we will show that ∂f(τ ) = u(τ ) + S⊥ = {u(τ ) + v : v ∈ S⊥}, which will conclude the
proof.

We use the following characterization of the subdifferential (Rockafellar, 2015, Theorem 23.2):

θ ∈ ∂f(τ ) ⇐⇒ θ�z ≤ f �(τ ; z) ∀z ∈ Rd (5)
where f �(τ ; z) is the directional derivative of f along direction z. Since f is the restriction of the
differentiable function −Hκ to L(G), its directional derivatives coincide with those of −Hκ for
points τ ∈ L(G) with τ > 0 and directions in z ∈ S (so that τ + λz ∈ L(G) for small enough
λ > 0), and are equal to +∞ for points τ ∈ L(G) and directions z /∈ S (so that τ + λz /∈ L(G) for
any λ > 0). That is, for τ ∈ L(G) with τ > 0,

f �(τ ; z) =

�−∇H(τ )�z z ∈ S

+∞ z /∈ S
(6)

Therefore, by Equation (5) and Equation (6), for any τ ∈ L(G) with τ > 0,

θ ∈ ∂f(τ ) ⇐⇒ θ�z ≤ f �(τ ; z) ∀z ∈ Rd

⇐⇒ θ�z ≤ f �(τ ; z) ∀z ∈ S

⇐⇒ θ�z ≤ −∇H(τ )�z ∀z ∈ S

⇐⇒ θ�z = −∇H(τ )�z ∀z ∈ S

⇐⇒ θ = u(τ ) + v v ∈ S⊥,

where u(τ ) is the projection of −∇H(τ ) onto S. In the second line, we used the fact that the
inequality always holds for z /∈ S because f �(τ ; z) = +∞ and the other quantities are finite. In the
fourth line, we observed that z ∈ S iff −z ∈ S (since S is a linear subspace) and

θ�(−z) ≤ −∇H(τ )�(−z) ⇐⇒ θ�z ≥ −∇H(τ )�z,

1Rockafellar, R. T. (2015). Convex analysis. Princeton university press.
2Bertsekas, Dimitri P. Convex optimization theory. Belmont: Athena Scientific, 2009.
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so the third line is equivalent to both inequalities holding for all z ∈ S. The equivalence of the final
line to the penultimate line is a straightforward exercise by breaking both θ and −∇H(τ ) into their
orthogonal components along S and S⊥, respectively, and observing that the component of −∇H(τ )
along S is u(τ ).

B Out-of-Model Inference

We now turn our attention to the problem of out-of-model inference; i.e., estimating τ r where
r �∈ V . There are many approaches for this problem that seem natural on the surface, but upon close
inspection each one has it’s problems. In Section 4, we proposed one approach that had certain
desirable properties, but we considered many alternatives which enumerate below and discuss in
detail.

B.1 Variable Elimination in pθ

In PRIVATE-PGM, out-of-model inference was done by performing variable elimination in the
graphical model pθ . There are two problems with applying that idea here. First, variable elimination
will not in general be tractable for the graphical models we may encounter, since it is an exact
inference method. Second, if we run variable elimination to estimate in-model marginals from θ
produced by PROX-PGM, it will give a different answer than the pseudo-marginals τ produced
by PROX-PGM (even if τ ∈ M(V) is a realizable marginal). In this case, the pseudo-marginals
estimated by PROX-PGM are the ones that should be trusted, and the parameters θ are only useful in
the context of our approximate marginal oracle CONVEX-GBP. In summary, this approach is not
viable, and even if it was, it has undesirable properties.

Before moving on, we make note of an alternate way to perform exact out-of-model inference that
will motivate our first approach to approximate out-of-model inference. They key idea is to add a
new zero log-potentials θr = 0 for the new clique whose marginal we are interested in estimating.
Clearly, the introduction of this zero log-potential does not change the distribution pθ or it’s in-model
marginals µθ . However, when we run an exact MARGINAL-ORACLE with these new parameters, it
will produce all in-model marginals, and the new out-of-model marginal as well.

B.2 Running CONVEX-GBP on an Expanded Region Graph

Using the idea above, one approach to out-of-model inference is to expand the region graph to include
the region r whose pseudo-marginal we are interested in. This will require adding at least one new
vertex r to the region graph. Edges and additional vertices could be added depending on the structure
of the existing region graph, and the desired local consistency constraints that τ r should obey. With
this new region graph, we can set θr = 0 (and do the same for any additional vertices we added as
well), and run CONVEX-GBP on the new graph. This is an interesting idea, but it leaves open several
questions:

1. What nodes and edges should be included in the augmented region graph?

2. What counting numbers should be assigned to those nodes?

3. What formal guarantees can we make about this approach?

4. Can we analyze the message-passing equations in CONVEX-GBP to perform an equivalent
computation without re-running the algorithm in its entirety?

For question (1) above, a natural choice is to use the same structure as the original region graph.
For example, if the original region graph is a factor graph, then we can simply add one new vertex
corresponding to the new one, and add edges connecting to the singleton cliques. If the original
region graph is saturated, then we can build a new saturated region graph that includes the new clique.

For question (2) above, a natural choice is to use κ�
r = 1 for all regions r (including the new

region), since that is the scheme used to set κ within PROX-PGM. Unfortunately, the new pseudo-
marginals τ � = CONVEX-GBP(θ�,κ�) may not agree with the originally optimized pseudo-marginals
τ = CONVEX-GBP(θ,κ) on the in-model cliques. Specifically, τ r need not equal τ �

r when r ∈ V .
This is clearly undesirable, and would be a consistency violation. A better choice of the counting
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numbers would be κ�
r = κr for r ∈ V and κr� = 0 otherwise. As we show below, this approach has a

compelling theoretical guarantee.
Theorem 3. Let G = (V , E) be a region graph, θ be parameters, κ be positive counting numbers
and let τ = CONVEX-GBP(G, θ,κ). Now let G� = (V �, E �) be a region graph that extends G (i.e,
V ⊆ V � and E ⊆ E �), θ�

r = θr if r ∈ V and θ�
r = 0 if r �∈ V , κ�

r = κr for r ∈ V and κ�
r = ε

otherwise.

τ � = lim
ε→0+

CONVEX-GBP(G�,θ�,κ�)

If S = {τ � ∈ L(G�) | τ �
r = τ r∀r ∈ V} �= ∅, then

τ � = argmax
τ �∈S

�

r∈V�\V
H(τ �

r)

Proof. We begin by restating the free energy minimization problem solved by CONVEX-GBP.

µ� = argmin
τ �∈L(G�)

−θ�τ � −Hκ�(τ �)

= argmin
τ �∈L(G�)

−
��

r∈V
θ�
r τ

� + κrH(τ �
r)
�
−
� �

r∈V�\V
0�τ � + εH(τ �

r)
�

= argmin
τ �∈L(G�)

−
��

r∈V
θ�
r τ

� + κrH(τ �
r)
�
− ε

�

r∈V�\V
H(τ �

r)

Note that as ε → 0, the objective only depends on τ r for r ∈ V (and not r ∈ V � \ V). Thus, τ r only
affect the problem via the constraints they impose on the problem. Since τ is the optimizer of the
relaxed problem when L(G�) is replaced by L(G) (which includes a subset of the constraints), if τ is
feasible in the larger problem (which it is by assumption S �= ∅), it is also optimal in this problem.
Moreover, since we are taking the limit as ε → 0 from the right, there will be an infinitesimally small
entropy penalty, which will force µ�

r to have maximum entropy among marginals that are consistent
with µ, as desired.

Theorem 3 is a compelling reason to use this approach, namely running CONVEX-GBP with zero
counting numbers for the new cliques whose marginals we are estimating. One subtle detail to this
theorem is that it is certainly possible that S = ∅, which means that there aren’t any pseudo-marginals
in the expanded region graph that are consistent with the pseudo-marginals in the original region
graph. In this case, it is not immediately clear how to characterize the behavior of this approach.
Remark 2 (Special Case: Factor Graph). In the special case when both the original and expanded
region graphs are factor graphs, we can guarantee that S �= ∅ and we can efficiently estimate the
new pseudo-marginal without rerunning CONVEX-GBP over the full graph. Since factor graphs only
require each pseudo-marginal to be internally consistent with respect to the one-way marginals, we
can always find higher-order marginals by multiplying the one-way marginals. Clearly, this gives the
maximum entropy estimate for the new pseudo-marginal that is internally consistent with the existing
ones. This is a computationally cheap estimate: it simply requires multiplying one-way marginals
and does not require any iterative message passing scheme.

For more complex region graphs, things do not work out so nicely. Since we are mainly interested in
saturated region graphs in this work, this nice result for factor graphs is not particularly useful for
our purposes. In practice, there is a problem with running CONVEX-GBP with a zero or near-zero
counting numbers. We observed empirically that using small counting numbers severely deteriorates
the convergence rate of CONVEX-GBP, and for that reason, this is not an ideal approach.

B.3 Minimizing Constraint Violation and Maximizing Entropy

While the method described above has some drawbacks in practice, the principles underlying the
approach are still sound: namely, we should find the maximum entropy distribution for the new
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marginal that is consistent with the existing marginals (for some natural notion of consistency).
However, for complex region graphs, it is certainly possible that no such marginals exist. In that case,
a natural alternative would be to find a pseudo-marginal that minimizes the constraint violation, and
among all minimizers, has maximum entropy. This is the approach that we evaluated empirically, and
described in Section 4.

It requires solving a quadratic minimization problem over the probability simplex. This problem
can be readily solved with iterative proximal algorithms like entropic mirror descent [39]. Entropic
mirror descent guarantees the solution found will have maximum entropy among all minimizers of
the objective. Thus, when S �= ∅, this method gives the same answer as Theorem 3. However, it is
more general, and also does something principled when S = ∅. Additionally, this method does not
require any information about attributes not in r, and even though it is an iterative algorithm, each
iteration runs much faster than an iteration of CONVEX-GBP.

B.4 Running PROX-PGM over expanded local polytope.

While the idea above is more principled than the alternatives that preceded it, it is still not ideal
because it does not guarantee perfect consistency between the in-model pseudo-marginals and the
out-of-model pseudo marginals. When perfect consistency is not achievable, it settles for minimizing
the constraint violation.

We can overcome this limitation by running PROX-PGM on an over-saturated region graph. That
is the region graph will contain vertices for every region necessary to define the loss function, and
every region whose pseudo-marginal we are interested in estimated. The additional regions do not
affect the loss function (the log-potentials will always remain 0), but it does impact the constraints.
In particular, upon convergence, the estimated pseudo-marginals will all be locally consistent. This
comes at a cost, however. Since the region graph contains more vertices and edges, each iteration of
PROX-PGM requires more time, and the algorithm as a whole is slower. Whether it makes sense to
use this strategy depends on how important perfect consistency is, as well as how many new marginals
must be answered. In our empirical evaluation of this approach, we found that it did produce better
estimates than the previous idea, but also took considerably longer.

B.5 Incorporating Global Information

As we saw empirically in Section 5, our approach to out-of-model inference did not perform particu-
larly well compared to the exact method used in PRIVATE-PGM. We conducted more experiments to
verify this in Appendix C.2. In this subsection, we explore in greater detail why it did not perform
well in all cases.

Consider a simple graphical model with cliques C = {{A,B}, {B,C}}, and suppose that A is highly
correlated with B and B is highly correlated with C. Then clearly, A and C should also be highly
correlated. When performing exact inference in this model, we preserve this correlation between A
and C. However, when we only require local consistency for the new clique, we will assume that A
and C are independent, and lose the correlation between A and C.

Note that all methods described thus far suffer from this problem, not just the one method we
evaluated in this paper. To correctly preserve the correlation between A and C, we would have
to first estimate the {A,B,C} marginal then derive the {A,C} marginal from it. This could be
accomplished by adding an {A,B,C} region to the region graph and using any of the methods
described above. In this toy problem, it is easy enough to do and feasible, but for larger region graphs,
it is not immediately obvious how to generalize the idea.

Since exact marginal inference is not feasible for the graphs we are interested in, it is clear that
we must make some approximation. It is not clear what the nature of the approximation should be,
however. We showed that only using local information in the approximation has problems in some
cases, and utilizing some global information may give better results in some cases. We leave this as
an interesting open problem.
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C Additional Experiments

C.1 Synthetic Data used in Experiments

Given a domain size (n1, . . . , nd) and a number of records m, we generate synthetic data to use in
experiments as follows:

1. Compute a random spanning tree of the complete graph with nodes 1, . . . , d. The edges in this
tree will correspond to the cliques in our model.

2. For each edge r in the tree, set θr ∼ N(0,σ2)nr . Here σ is a “temperature” parameter that
determines the strength of the parameters.

3. Sample m records from the graphical model pθ .

C.2 MWEM Experiments

In Figure 3b of Section 5 we observed that integrating APPGM into MWEM can enable the
mechanism to run for more rounds, but the approximation resulted in much worse error for the same
number of rounds. When run to completion, MWEM+APPGM did achieve lower error than the
minimum error achieved by MWEM+PRIVATE-PGM, but it required running for 3× as many rounds
and thus spending 3× as much privacy budget. In the figure below, we include additional lines for
different privacy levels � = 0.05, 0.1, 0.2 per round. As shown in the figure, it would be better to
run MWEM + Exact for 35 round at � = 0.1 than it would be to run MWEM + Region Graph for 70
rounds at � = 0.05.
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��
�

��
�

��
�
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�������� �����

�������� �����

�������� �����

As hinted at in the main text, the main reason Region Graph performs poorly here is because it only
incorporates local information when conducting out-of-model inference, which is problematic for
this dataset. To demonstrate that this is really the problem, we repeat the experiment with � = ∞.
That is, in each round of MWEM, we exactly select the worse approximated clique, and measure
the corresponding marginal with no noise. Since no noise is added, the measured marginals solve
Problem 2 and there is no need to run PROX-PGM. Thus, the only difference between Exact and
Region Graph is in the handling of out-of-model marginals. We run the experiment for five datasets
and plot the results below. The additional error for Region Graph is particularly large for the fire
and msnbc dataset but not as much for adult, loans, and titanic. msnbc is a click stream dataset
and is thus naturally modeled as a Markov chain. Once the 2-way marginals corresponding to the
edges in this Markov chain are measured, MWEM + Exact achieves very low error. MWEM + Exact
preserves the long range dependencies between the first and last node in the chain, whereas MWEM
+ Region Graph only preserves the local dependencies, which explains the difference in this case.
Some datasets (like adult, loans, and titanic) do not have strong dependency chains as msnbc does,
and in these cases there is a smaller difference in error for out-of-model marginals.
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C.3 FEM Experiments

As hinted at in Section 5, our method can be integrated into FEM as well [33]. The integration is
similar to how PRIVATE-PGM is used to improve DualQuery [16, 43]. Like MWEM, FEM runs for
a specified number of rounds, and maintains an estimate of the data distribution (in tabular format)
throughout the execution. In each round, FEM selects a query from the workload that is poorly
approximated under the current estimate of the data distribution using the exponential mechanism.
This is the only way in which FEM interacts with the sensitive data (Unlike MWEM, it does not
measure this query with Laplace noise). It then adds records to the estimated dataset that could
explain the previous measurement, in the hopes of reducing the error on that query.

To integrate into FEM, we first note that the mechanism only depends on the data through the answers
to the workload. If the workload consists of marginal queries, then our methods apply. We derive
an expression for the (negative) log-likelihood of the observations, which are the samples from the
exponential mechanism in each round, and use this as our objective function for Problem 2. After
solving Problem 2 with PROX-PGM, we can use the estimated pseudo-marginals to answer the
workload in place of the synthetic dataset generated by FEM.

In this experiment, we use the adult dataset, as that was one of the main datasets considered in FEM.
We note that FEM has a number of hyper-parameters, and it is not obvious how to select them, and
selecting them incorrectly can result in very poor performance. However, in the authors open source
implementation, they provided a set of tuned hyper-parameters a particular dataset/workload pair:
the adult dataset and the workload of 64 random 3-way marginals. For a fair comparison, this is the
experimental setting we consider.

We run FEM and FEM + Region Graph and note that FEM + Exact failed to run here, because the
underlying junction tree necessary to perform exact marginal inference is too large. We report the
L∞ workload error (which is what FEM is designed to minimize), as well as the L1 workload error
(which better captures the overall error. The results are shown below. In general, FEM + Region
Graph achieves slightly lower error than regular FEM in both L∞ and L1 error. There is one outlier
for L∞ error when � = 1 that skews the results, and there was negligible improvement at � = 0.25
and � = 0.5 as well. There was consistent improvement in L1 error for every value of �, although the
magnitude of the improvement is somewhat small.
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C.4 Comparison with PriView and Relaxed Projection

As discussed in Section 7, PriView proposed a method for resolving inconsistencies in noisy marginals
that can be seen as a less general competitor to us. We compare against that competitor here. We
use the implementation of this method available from team DPSyn in the 2018 NIST synthetic data
competition [44]. In addition, we compare against a variant of the Relaxed Projection algorithm from
[14]. We describe the modifications made to this algorithm in the next section.

To compare these methods with our proposed method, we consider the adult dataset and measure 32
random 2-way marginals using the Gaussian mechanism with privacy parameters � ∈ [0.01, 100] and
δ = 10−6. In this particular case, PRIVATE-PGM can also run, so we include that as a competitor as
well. We report the L1 error of the estimated marginals, averaged over all measured marginals and
5 trials for each method in the table below. All four methods for resolving inconsistencies provide
significantly better error than the original noisy marginals.

Ignoring Relaxed Projection, PROX-PGM (Exact) is the best method in every setting except � = 100.0.
The second best method is PROX-PGM (Region Graph) in every setting except � = 0.01 and
� = 100.0. At the smallest value of �, our method is likely overfitting to the noise, and the estimated
pseudo-marginals are likely far from the set of realizable marginals. At the largest value of �, both
variants of PROX-PGM simply didn’t run for enough iterations (10000 was used in this experiment).
Due to the small amount of noise, the true solution to Problem 2 likely does not contain any negatives,
and the PriView approach solves the relaxed problem without the non-negativity constraints in closed
form. PROX-PGM should eventually converge to the same solution but it would require more than
10000 iterations.

Relaxed Projection (RP) performs slightly better than even PROX-PGM (Exact) for � ≤ 0.1, an
interesting and surprising observation. We conjecture that this is because RP essentially restricts the
search space to distributions which are a mixture of products (as described in the next section). This
can be seen as a form of regularization, which can help in the high-privacy / high-noise regime. For
� > 0.1, RP is worse than both PROX-PGM (Exact) and PROX-PGM (Region Graph). Moreover, it
is the only method whose error does not tend towards 0 as � gets larger. We suspect this is due to
the non-convexity in the problem formulation for RP: it is finding a local minimum to the problem
that does not have 0 error. Alternatively, it could be possible that the restircted search space does not
include a distribution with near-zero error, although we believe this is a less likely explanation.

� PROX-PGM PROX-PGM PriView Relaxed Noisy
(Exact) (Region Graph) Consistency Projection Marginals

0.0100 0.4375 ± 0.0245 0.5630 ± 0.0344 0.5229 ± 0.0202 0.4189 ± 0.0275 28.050 ± 0.1249
0.0316 0.2848 ± 0.0081 0.3277 ± 0.0100 0.3525 ± 0.0078 0.2567 ± 0.0045 8.8782 ± 0.0254
0.1000 0.1724 ± 0.0032 0.1788 ± 0.0025 0.1965 ± 0.0051 0.1620 ± 0.0036 2.8091 ± 0.0101
0.3162 0.0908 ± 0.0009 0.0931 ± 0.0018 0.1007 ± 0.0016 0.1031 ± 0.0025 0.8919 ± 0.0030
1.0000 0.0433 ± 0.0008 0.0447 ± 0.0006 0.0510 ± 0.0003 0.0746 ± 0.0009 0.2853 ± 0.0007
3.1622 0.0187 ± 0.0001 0.0198 ± 0.0002 0.0229 ± 0.0003 0.0617 ± 0.0007 0.0934 ± 0.0003
10.000 0.0074 ± 0.0001 0.0087 ± 0.0001 0.0095 ± 0.0001 0.0582 ± 0.0011 0.0324 ± 0.0001
31.622 0.0037 ± 0.0000 0.0045 ± 0.0000 0.0040 ± 0.0000 0.0579 ± 0.0017 0.0125 ± 0.0000
100.00 0.0027 ± 0.0000 0.0032 ± 0.0000 0.0018 ± 0.0000 0.0574 ± 0.0012 0.0054 ± 0.0000
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C.5 Implementation Details for Relaxed Projection

The authors of the Relaxed Projection method released their code on GitHub. They provided code to
run their end-to-end MWEM-style algorithm, but did not expose the subroutine for performing the
relaxed projection in a way that can easily be tested in isolation. For that reason, we compare against
a faithful reimplementation of their approach. This reimplementation is available in the open source
PRIVATE-PGM repository.

One way to view RP is as optimizing over the set of distributions which are mixtures of products.
That is, each row of the relaxed tabualr format can be viewed as a product distribution (if the values
for each feature are non-negative and sum to one). For multiple rows, this translates to a format
that has capacity to represent a mixture of product distributions. While the authors do not propose
restricting the feature values to satisfy the aforementioned constraints, in our reimplemenation, we
apply softmax transformations to the table to ensure this invariant holds. This is related to RAPsoftmax

as described by Liu et al. [15], although the interpretation as a mixture of products was not mentioned
in that work. For the experiment above, we consider distributions with 100 mixture components.

21


