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A Setting

Figure 1 demonstrates our setting for auditing black-box prediction models as described in Section 3.
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B Probabilistic Audit

Figure 2 demonstrates examples of how the posterior distributions of model instability with respect
to different simple imputations can be used to derive a probabilistic data minimization guarantee.
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(a) Data minimization is satisfied.
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(b) Data minimization is not satisfied.
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(c) An example of a situation where a decision cannot
be made based on the posterior distributions.

Figure 2: Example posterior distributions of model instability with respect to different imputations,
and a probabilistic data minimization audit at level 0.4 with 90% confidence.
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C Pseudocodes for Exploration Strategies

Algorithm 1: Thompson Sampling (TS)
Input: Success and failure counters

1 for fj ∈ F do
2 for b in Xj do
3 θbj ∼ Beta(x;Sb

j + a, F b
j + c)

4 j∗, b∗ = argminj,b θ
b
j

5 return (fj∗ , b
∗)

Algorithm 2: Top-Two Thompson Sampling (TTTS)
Input: Success and failure counters

1 for fj ∈ F do
2 for b in Xj do
3 θbj ∼ Beta(x;Sb

j + a, F b
j + c)

4 j∗, b∗ = argminj,b θ
b
j

5 K ∼ Bernoulli(1/2)
6 if K=1 then
7 return (fj∗ , b

∗)

8 else
9 repeat

10 for fj ∈ F do
11 for b in Xj do
12 θbj ∼ Beta(x;Sb

j + a, F b
j + c)

13 j̃, b̃ = argminj,b θ
b
j

14 until (j̃, b̃) 6= (j∗, b∗);
15 return (fj̃ , b̃)

Algorithm 3: Greedy
Input: Success and failure counters, β∗

1 for fj ∈ F do
2 for b in Xj do
3 pbj = FBeta(β

∗;Sb
j + a, F b

j + c)

4 j∗, b∗ = argmaxj,b p
b
j

5 return (fj∗ , b
∗)

Algorithm 4: Probability Matching (PM)
Input: Success and failure counters, β∗

1 for fj ∈ F do
2 for b in Xj do
3 pbj = FBeta(β

∗;Sb
j + a, F b

j + c)

4 Randomly choose an arm (fj , b) with probability
pbj∑

(fj,b)

pbj

5 return (fj , b)
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