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Abstract

In this work we investigate stochastic non-convex optimization problems where
the objective is an expectation over smooth loss functions, and the goal is to find
an approximate stationary point. The most popular approach to handling such
problems is variance reduction techniques, which are also known to obtain tight
convergence rates, matching the lower bounds in this case. Nevertheless, these
techniques require a careful maintenance of anchor points in conjunction with ap-
propriately selected “mega-batchsizes". This leads to a challenging hyperparameter
tuning problem, that weakens their practicality. Recently, [Cutkosky and Orabona,
2019] have shown that one can employ recursive momentum in order to avoid the
use of anchor points and large batchsizes, and still obtain the optimal rate for this
setting. Yet, their method called STORM crucially relies on the knowledge of
the smoothness, as well a bound on the gradient norms. In this work we propose
STORM+, a new method that is completely parameter-free, does not require large
batch-sizes, and obtains the optimal O(1/T 1/3) rate for finding an approximate
stationary point. Our work builds on the STORM algorithm, in conjunction with a
novel approach to adaptively set the learning rate and momentum parameters.

1 Introduction

Over the past decade non-convex models have become principal tools in ML (Machine Learning),
and in data-science. This predominantly includes deep models, as well as Phase Retrieval [Candes
et al., 2015], non-negative matrix factorization [Hoyer, 2004], and matrix completion problems [Ge
et al., 2016] among others.

The main workhorse for training ML models is SGD (stochastic gradient descent) and its numerous
variants. One parameter that significantly affects the SGD performance is the learning rate, which
often requires a careful and costly hyper-parameter tuning. Adaptive approaches to setting the learning
rate like AdaGrad [Duchi et al., 2011] and Adam [Kingma and Ba, 2014] as well as non-adaptive
heuristics [Loshchilov and Hutter, 2017, He et al., 2019] are very popular in modern ML applications,
yet these methods also require some tuning of hyper-parameters like momentum and the scale of the
learning rate schedule.

A popular SGD heuristic that has proven to be crucial in many applications is the use of momentum,
i.e., the use of a weighted average of past gradients instead of the current gradient [Sutskever et al.,
2013, Kingma and Ba, 2014]. Although adaptive approaches to setting the momentum have been
investigated in the past [Srinivasan et al., 2018, Hameed et al., 2016], principled and theoretically-
grounded approaches to doing so are less investigated. Another aspect that has not been extensively
studied, which we take into account in this work, is the interplay between learning rate and momentum.
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In this work we explore momentum-based adaptive and parameter-free methods for stochastic
non-convex optimization problems. Concretely, we focus on the setting where the objective is an
expectation over smooth losses (see Eq. (4)), and the goal is to find an approximate stationary point.

In the general case of smooth non-convex objectives it is known that one can approach a stationary
point at a rate of O(1/T 1/4), where T is the total number of samples [Ghadimi and Lan, 2013].
While this rate is optimal in the general case, it is known that one can obtain an improved rate of
O(1/T 1/3) if the objective is an expectation over smooth losses [Fang et al., 2018, Zhou et al., 2018,
Cutkosky and Orabona, 2019, Tran-Dinh et al., 2019]. Besides, this rate was recently shown to be
tight [Arjevani et al., 2019].

Nevertheless, most of the methods developed for this setting rely on variance reduction techniques
[Johnson and Zhang, 2013, Zhang et al., 2013, Mahdavi et al., 2013, Wang et al., 2013], which require
careful maintenance of anchor points in conjunction with appropriately selected large batchsizes. This
leads to a challenging hyper-parameter tuning problem, weakening their practicality. One exception
is the recent STORM algorithm of Cutkosky and Orabona [2019].

STORM does not require large batches nor anchor points; instead, it uses a corrected momentum
based gradient update that leads to implicit variance reduction, which in turn facilitates fast conver-
gence. Unfortunately, none of the aforementioned methods (including STORM ) is parameter-free.
Indeed, the knowledge of smoothness parameter together with either the noise variance or a bound on
the norm of the gradients are crucial to establish their guarantees.

In this work, we essentially develop a parameter-free variant of STORM algorithm. We summarize
our contributions as follows,

• We present STORM+ , a parameter-free momentum based method that ensures the optimal
O(1/T 1/3) rate for the expectation over smooth losses setting. Similarly to STORM , our
method does not require large-batches nor anchor points.

• STORM+ implicitly adapts to the variance of the gradients. Concretely, it obtains con-
vergence rate of O(1/

√
T + σ1/3/T 1/3), which recovers the optimal O(1/

√
T ) rate in the

noiseless case. We also improve over STORM by shaving off a (log T )3/4 factor from the
1/
√
T term.

• In STORM+ we demonstrate a novel way to set the learning rate by introducing an adaptive
interplay between learning rate and momentum parameters.

2 Related Work

In the context of stochastic non-convex optimization with general smooth losses, it was shown in
Ghadimi and Lan [2013] that SGD with an appropriately selected learning rate can obtain a rate of
O(1/T 1/4) for finding an approximate stationary point, which is known to match the respective lower
bound [Arjevani et al., 2019]. While the method of Ghadimi and Lan [2013] requires knowledge
of the smoothness and variance parameters, recent works have shown that adaptive methods like
AdaGrad are able to obtain this bound in a parameter free manner, as well as to adapt to the variance
of the problem [Li and Orabona, 2019, Ward et al., 2019, Reddi et al., 2018]. These results, in a
sense, explain the success of adaptive2 methods like AdaGrad [Duchi et al., 2011], Adam [Kingma
and Ba, 2014], and RMSProp [Tieleman and Hinton, 2012] in handling non-convex problems.

The idea of using variance reduction techniques for non-convex problems was first suggested in the
context of finite sum problems by Allen-Zhu and Hazan [2016], Reddi et al. [2016], showing a rate
of O(1/T 1/4). This was later improved by Lei et al. [2017] to a rate of O(1/T 3/10). The first works
that have obtained the optimal O(1/T 1/3) for this setting were Fang et al. [2018], Zhou et al. [2018].
Additionally, Fang et al. [2018] shows that the same convergence behavior applies to the more general
expectation over smooth losses setting (see Eq. (4)) – a setting that captures finite-sum problems as a
private case.

2An adaptive method is a method that updates its learning rate according to the (noisy) gradient feedback
that it receives throughout the training process.
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The STORM algorithm suggested in Cutkosky and Orabona [2019] is the first algorithm to obtain
the optimal O(1/T 1/3) for this setting without the need to maintain anchor points or large batches.
Instead, it relies on a clever correction of the momentum by making only one extra call to the oracle,
which leads to an implicit variance reduction effect. Moreover, STORM adapts to the variance of
the problem by obtaining a rate of O((log T )3/4/

√
T + σ1/3/T 1/3) without any prior knowledge of

variance. However, it needs to know the smoothness parameter and a bound on the gradient norms to
set the step size and momentum parameters. Simultaneously to the work of Cutkosky and Orabona
[2019], another paper [Tran-Dinh et al., 2019] have obtained the same optimal bound by proposing a
similar update rule. Note that Tran-Dinh et al. [2019] does calculate a single anchor point, and it still
requires the knowledge of the smoothness and variance parameters.

3 Setting and Preliminaries

We discuss stochastic non-convex optimization problems where the objective f : Rd 7→ R is of the
following form,

f(x) := Eξ∼D[f(x; ξ)] ,

and D is an unknown distribution from which we may draw i.i.d. samples. Our goal is to find an
approximate stationary point of f , i.e. after T draws from D we should output a point x̄ ∈ Rd such
that E‖∇f(x)‖ ≤ Poly(1/T ).

We focus on first order methods, i.e., methods that may access the gradients of f(·, ξ), and make the
following assumptions regarding the noisy gradients and function values.

Bounded values: There exists B > 0 such that,

max
x,y∈Rd

|f(x)− f(y)| ≤ B. (1)

Bounded gradients: There exists G > 0 such that,

‖∇f(x; ξ)‖2 ≤ G2 ; ∀x ∈ Rd, ξ ∈ support{D}. (2)

Bounded variance: There exists σ > 0 such that,

E‖∇f(x; ξ)−∇f(x)‖2 ≤ σ2 ; ∀x ∈ Rd. (3)

Expectation over smooth losses: There exists L > 0 such that,

‖∇f(x; ξ)−∇f(y; ξ)‖ ≤ L‖x− y‖ ; ∀x, y ∈ Rd, ξ ∈ support{D} . (4)

The last assumption also implies that the expected loss f(·) is L smooth. A property of smooth
functions that we will exploit throughout the paper is the following,

f(y) ≤ f(x) +∇f(x)>(y − x) + (L/2)‖y − x‖2 ; ∀x, y ∈ Rd (5)

In the rest of this manuscript,∇f(x; ξ) relates to gradients with respect to x, i.e.,∇ := ∇x. We use
‖ · ‖ to denote the Euclidean norm, and x∗ denotes a global minima of f(·), i.e., x∗ = minx∈Rd f(x).

4 Method

In this section we present STORM+ (STochastic Recursive Momentum +): a parameter-free
stochastic optimization method that finds approximate stationary points at an optimal rate. We
describe our method in Alg. 1 and Eq. (8), and state its guarantees in Theorem 1.

The original STORM algorithm: The original STORM template of Cutkosky and Orabona
[2019] relies on an SGD-style update with a corrected momentum. Concretely, the idea is to maintain
a gradient estimate dt which is a corrected weighted average of past stochastic gradients, and then
update the iterates similarly to SGD,

xt+1 = xt − ηtdt . (6)

Standard momentum is a weighted average of past gradients,

dt = at∇f(xt, ξt) + (1− at)dt−1 ; where at ∈ [0, 1] .
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Under this construction, dt is generally a biased estimate of ∇f(xt). In STORM it is suggested to
add a correction term ,(1 − at)(∇f(xt, ξt) − ∇f(xt−1, ξt)), which leads to the following update
rule (again, at ∈ [0, 1]),

dt = ∇f(xt, ξt) + (1− at)(dt−1 −∇f(xt−1, ξt)) , (Corrected Momentum)

The correction term plays a crucial role here: it exploits the smoothness of f(·, ξ) in a way that
leads to a variance reduction effect. To see this effect one can inspect the error of the momentum dt
compared to the exact gradient at xt,

εt := dt −∇f(xt) .

The STORM update rule induces the following error dynamics,

εt = (1− at)εt−1 + at(∇f(xt, ξt)−∇f(xt)) + (1− at)Zt

where Zt := (∇f(xt, ξt) − ∇f(xt−1, ξt)) − (∇f(xt) − ∇f(xt−1)). Due to the smoothness of
the objective we have ‖Zt‖ ≤ O(‖xt − xt−1‖) = O(ηt−1‖dt−1‖). Intuitively, as we approach a
stationary point (and use a small enough learning rate) then ηt−1‖dt−1‖ decreases which in turn
reduces the magnitude of Zt’s. Moreover, the second term in the above dynamics, at(∇f(xt, ξt)−
∇f(xt)), can be controlled by choosing a small enough momentum at. Thus, carefully controlling
the learning rate and momentum parameters leads to a variance reduction effect which facilitates fast
convergence.

The original STORM paper [Cutkosky and Orabona, 2019] makes the following choices,

ηt = θ/

(
w +

t∑
i=1

‖gi‖2
)1/3

& at = cL2η2t−1 , (7)

where we denote gt := ∇f(xt, ξt). The above choice of learning rate is inspired by AdaGrad Duchi
et al. [2011], which also sets the learning rate inversely proportional to the cumulative square norms
of past gradients. Note that θ and w are constants that depend on the smoothness of the objective L,
as well as on the bound on the gradients G, and c is an absolute constant independent of the problem’s
characteristics. These choices of the constants and especially the choice of at ∝ L2η2t−1 is crucial
for the analysis of the original STORM . In fact, the convergence proof for STORM breaks down
unless we encode this prior knowledge into ηt and at. Next, we describe our parameter-free version.

Our STORM+ algorithm: STORM+ relies on the original STORM template described in Equa-
tions (6) and (Corrected Momentum), with the following parameter-free choices of learning rate and
momentum parameter,

ηt = 1/

(
t∑
i=1

‖di‖2/ai+1

)1/3

& at = 1/

(
1 +

t−1∑
i=1

‖gi‖2
)2/3

, (8)

where again we denote gt := ∇f(xt, ξt). Note that in contrast to the original STORM our adaptive
learning rate builds on history of estimates {d1, . . . , dt} as well as on the momentum parameters
{a1, . . . , at+1}. Our momentum term is similar to the adaptive choice of STORM , yet it does not
require a bound on the gradients nor on the smoothness parameter, which was crucial for the original
analysis. Finally, note that the above choice ensures at ∈ [0, 1].

For completeness we present our method in Alg. 1, where it can be seen that STORM+ is a combi-
nation of the original STORM template (Equations (6) and (Corrected Momentum)) together with
the specific choices of ηt and at appearing in Eq. (8). Note that the solution that STORM+ outputs
is a point chosen uniformly at random among all iterates, which is quite standard in (stochastic)
non-convex optimization.

Notation: In Alg. 1 and throughout the rest of the paper we will employ the following notation,

gt := ∇f(xt, ξt) ; g̃t := ∇f(xt, ξt+1) ; ḡt := ∇f(xt) .

Now, we are at a position to present our main theorem regarding STORM+ (Alg. 1):
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Algorithm 1 STORM+

Input: #iterations T , x1 ∈ Rd
1: Sample ξ1 and set d1 = g1 = ∇f(x1, ξ1)
2: for t = 1, ..., T do

3: at+1 ← 1/
(

1 +
∑t
i=1 ‖gi‖2

)2/3
& ηt ← 1/

(∑t
i=1 ‖di‖2/ai+1

)1/3
4: xt+1 ← xt − ηtdt
5: Sample ξt+1 and set gt+1 := ∇f(xt+1; ξt+1), and g̃t := ∇f(xt; ξt+1)
6: dt+1 ← gt+1 + (1− at+1)(dt − g̃t)
7: end for
8: Choose x̄T uniformly at random from {x1, . . . , xT }
9: return x̄T

Theorem 1. Under the assumption in Eq. (1), (2), (3) and (4) in Section 3, STORM+ ensures,

E‖∇f(x̄T )‖ ≤ O
(
M√
T

+
κσ1/3

T 1/3

)
,

where κ = O(B3/4 + L3/2); M = O(1 + L9/4 +B9/8 +G5 + (LG4)3/2), and the expectation is
with respect to the randomization of the samples as well as the algorithm’s.

Theorem 1 demonstrates that in the stochastic case STORM+ achieves the optimal O(1/T 1/3) rate
for our setting. Moreover, it can be seen that STORM+ implicitly adapts to the variance of the noise;
in the noiseless case where σ = 0, STORM+ recovers the optimal O(1/

√
T ) rate. We note that

scaling the learning rate by some (absolute) constant factor may enable us to obtain better dependence
on L and B.

5 Analysis

In this section we provide the convergence analysis of the STORM+ algorithm. We begin with the
analysis in the offline case where σ = 0, and establish a convergence rate of O(1/

√
T ) in Section 5.1

for completeness. In Section 5.2, we introduce a simplified version of STORM+ , with a non-
adaptive momentum parameter of the form at+1 := 1/t2/3. Due to simplicity and space limitations,
it is inconvenient to share the full proof of STORM+ , and this simplified version enables us to
illustrate the main steps of the original proof. We show that this version achieves a convergence rate
of O(1/T 1/3) in the stochastic case (though it does not adapt to the variance). Finally, in Section 5.1
we provide a proof sketch for STORM+ in Alg. 1 that establishes the result in Theorem 1.

5.1 Offline Case

Here we analyze STORM+ in the case where σ = 0, and demonstrate a rate of O(1/
√
T ) for

finding an approximate stationary point.

Theorem 2. Let f satisfy Eq. (1), (4) and x̄T be generated after running Alg. 1 for T iterations
under deterministic oracle. Then it holds that,

E‖∇f(x̄T )‖ ≤ O(
√

1 + L3 +B9/4/
√
T ) .

where we take expectation due to randomness governing the generation of x̄T (see line 8 in Alg. 1).

Proof. In the case where σ = 0 one can directly show by induction that dt = ḡt := ∇f(xt). So the
update rule becomes xt+1 = xt − ηtḡt. Now, using the smoothness of the objective implies,

∆t+1 −∆t = f(xt+1)− f(xt) ≤ −ηt‖ḡt‖2 + Lη2t ‖ḡt‖2/2 ,

5



here we denoted ∆t := f(xt)− f(x∗), where x∗ ∈ arg min f(x). Dividing by ηt, re-arranging and
summing gives,

T∑
t=1

‖ḡt‖2 ≤
∆1

η1
− ∆T+1

ηT
+

T∑
t=2

(
1

ηt
− 1

ηt−1

)
∆t +

L

2

T∑
t=1

ηt‖ḡt‖2

≤ B

η1
+B

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+
L

2

T∑
t=1

‖ḡt‖2(∑t
i=1 ‖ḡi‖2

)1/3
≤ B

ηT
+ L

(
t∑
i=1

‖ḡi‖2
)2/3

≤ B

(
T∑
t=1

‖ḡt‖2/at+1

)1/3

+ L

(
T∑
t=1

‖ḡt‖2
)2/3

≤ B

(
1 +

T∑
t=1

‖ḡt‖2
)2/9( T∑

t=1

‖ḡt‖2
)1/3

+ L

(
T∑
t=1

‖ḡt‖2
)2/3

(9)

where the second inequality uses ηt =
(∑t

i=1 ‖ḡi‖2/ai+1

)−1/3
≤
(∑t

i=1 ‖ḡi‖2
)−1/3

which

holds since dt = ḡt and at ≤ 1. We also use that ∆t ∈ [0, B] together with η−1t − η−1t−1 ≥ 0.
The third inequality uses Lemma 3 below; and the last inequality uses 1/at+1 ≤ (1/aT+1) =(

1 +
∑T
t=1 ‖ḡt‖2

)2/3
, which holds since at is monotonically non-increasing.

By treating the inequality in Eq. (9) as a polynomial of x =
∑T
t=1 ‖ḡt‖2, one can derive the following

bound,
∑T
t=1 ‖ḡt‖2 ≤ O(1 + L3 +B9/4) . Using the definition of x̄T as well as Jensen’s inequality

implies,

E‖∇f(x̄T )‖ := E‖ḡ(x̄T )‖ ≤
√

E‖ḡ(x̄T )‖2 =

√√√√ T∑
t=1

‖ḡt‖2/T ≤ O(
√

1 + L3 +B9/4/
√
T ) .

which establishes the bound. In the proof we have used the technical lemma below,

Lemma 3. Let b1 > 0, b2, ..., bn ≥ 0 be a sequence of real numbers, p ∈ (0, 1) be a real number.

n∑
i=1

bi(∑i
j=1 bj

)p ≤ 1

1− p

(
n∑
i=1

bi

)1−p

5.2 Stochastic Case Analysis of Simplified STORM+

Here we analyze a simplified version of STORM+ in the stochatic setting. While this version does
not adapt to the noise variance, it exhibits the optimal rate of O(1/T 1/3) in the stochastic case,
and its analysis illustrates some of the main ideas that we employ in the proof of the fully adaptive
STORM+ (which is more involved).

The version that we analyze here differs from STORM+ in the choice of the momentum parameters.
Here we choose a1 = 1 and at+1 = 1/t2/3 ;∀t ≥ 1, in contrast to the adaptive choice that we make

in Alg. 1. Note that we keep the same expression for the step size, ηt = 1/
(∑t

i=1 ‖di‖2/ai+1

)1/3
.

Theorem 4. Under Assumptions in Eq. (1), (2), (3) and (4), simplified STORM+ ensures,

E‖∇f(x̄T )‖ = O(
√
L3 + σ2 +B3/2/T 1/3) ,

Proof. The proof is composed of two parts. In the first we bound the cumulative expectation of
errors E

∑T
t=1 ‖εt‖2, where εt is the difference between the corrected momentum dt and the exact

gradient ḡt, i.e. εt = dt − ḡt. Thus, in the first part we relate the above sum to the sum of exact
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gradients E
∑T
t=1 ‖ḡt‖2. Then, in the second part we divide into two sub-cases the first where

E
∑T
t=1 ‖εt‖2 ≤ (1/2)E

∑T
t=1 ‖ḡt‖2 and its complement. In one of these sub-cases we also use the

smoothness of the objective together with the update rule, similarly to what we do in Eq. (9).

First Part: Bounding E
∑T
t=1 ‖εt‖2. The update rule for dt induces the following error dynamics,

εt = (1− at)εt−1 + at(gt − ḡt) + (1− at)Zt (10)

where Zt := (gt − g̃t−1) − (ḡt − ḡt−1). Letting Ht be the history to time t, i.e., Ht :=
{x1, ξ1, ξ2, ξ3 . . . , ξt} and recalling that both at and xt depend on history up to t − 1, i.e.,
Ht−1, immediately implies that E[at(gt − ḡt)|Ht−1] = E[(1 − at)Zt|Ht−1] = 0, as well as
E[(1− at)εt−1|Ht−1] = (1− at)εt−1.

Thus, taking the square of the above equation and then taking the expectation gives,

E ‖εt‖2 ≤ (1− at)2E ‖εt−1‖2 + ‖(1− at)Zt + at(gt − ḡt)‖2

≤ (1− at)2E ‖εt−1‖2 + 2(1− at)2 ‖Zt‖2 + 2a2tE‖gt − ḡt‖2

≤ (1− at)E ‖εt−1‖2 + 8L2Eη2t−1 ‖dt−1‖
2

+ 2a2tσ
2 , (11)

where the second line uses ‖b+ c‖2 ≤ 2‖b‖2 + 2‖c‖2, and the last line uses E‖gt − ḡt‖2 ≤ σ2 and
(1− at) ∈ [0, 1], as well as the smoothness assumption that implies ‖Zt‖ ≤ ‖gt − g̃t−1‖+ ‖ḡt −
ḡt−1‖ ≤ 2L‖xt − xt−1‖ = 2Lηt−1‖dt−1‖.
Dividing Eq. (11) by at and re-arranging implies,

E ‖εt−1‖2 ≤
1

at
(E ‖εt−1‖2 − E ‖εt‖2) + 8L2E[η2t−1 ‖dt−1‖

2
/at] + 2atσ

2 .

Summing the above, and using ε0 := 0 gives,

E
T∑
t=1

‖εt−1‖2 ≤ −
E ‖εT ‖2

aT︸ ︷︷ ︸
(A)

+

T−1∑
t=1

(
1

at+1
− 1

at
)E ‖εt‖2︸ ︷︷ ︸

(B)

+8L2 E[

T∑
t=1

η2t−1 ‖dt−1‖
2
/at]︸ ︷︷ ︸

(C)

+2σ2
T∑
t=1

at︸ ︷︷ ︸
(D)

(12)

Next we bound all the term on the RHS of the above equation:

Bounding (A): Since aT ≤ 1 we can bound −E ‖εT ‖2/aT ≤ −E ‖εT ‖2

Bounding (B): Note that G(z) = z2/3 is a concave function in R+. Thus applying the gradient
inequality implies that ∀z1, z2 ≥ 0 we have (z1 + z2)2/3 − z2/31 ≤ 2

3z
−1/3
1 z2. Hence, for all t ≥ 2,

1/at+1 − 1/at = t2/3 − (t− 1)2/3 ≤ 2(t− 1)−1/3/3 ≤ 2/3 .

Moreover, 1/a2 − 1/a1 = 0. These imply that (B) ≤ (2/3)E
∑T
t=1 ‖εt‖

2.

Bounding (C): By definition of ηt we have,

(C) = E
T∑
t=1

‖dt−1‖2 /at(∑t−1
i=1 ‖di‖2/ai+1

)2/3 ≤ 3E

(
T−1∑
t=1

‖dt‖2/at+1

)1/3

≤ 3T 2/9

(
E

T∑
t=1

‖dt‖2
)1/3

.

where the first inequality uses Lemma 3, and the second inequality uses 1/at ≤ 1/aT+1 ≤ T 2/3 as
well as Jensen’s inequality with respect to the concave function U(z) = z1/3, defined over R+.

Bounding (D): Lemma 3 immediately implies that (D) = 1 +
∑T−1
t=1 1/t2/3 ≤ 1 + 3T 1/3 ≤ 4T 1/3.

Plugging these bounds into Eq. (12) and re-arranging yields,

E
T∑
t=1

‖εt‖2 ≤ 72L2T 2/9

(
E

T∑
t=1

‖dt‖2
)1/3

+ 24σ2T 1/3 . (13)
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Second Part: Bounding E
∑T
t=1 ‖ḡt‖2. Here we use the bound of Eq. (13) in order to bound the

sum of square gradients. Let us divide into two sub-cases.

Case 1 : Assume that E
∑T
t=1 ‖εt‖

2 ≥ 1
2E
∑T
t=1 ‖ḡt‖2. Combining the condition of Case 1 with

‖dt‖2 ≤ 2‖ḡt‖2 + 2‖εt‖2 (due to dt = ḡt + εt), implies that E
∑T
t=1 ‖dt‖2 ≤ 6E

∑T
t=1 ‖εt‖

2.
Plugging this inside Eq. (13) yields,

E
T∑
t=1

‖εt‖2 ≤ 72L2T 2/9

(
6E

T∑
t=1

‖εt‖2
)1/3

+ 24σ2T 1/3 .

The above immediately implies that E
∑T
t=1 ‖εt‖

2 ≤ O((L3 + σ2)T 1/3), and due to the condition
of Case 1 we therefore have, E

∑T
t=1 ‖ḡt‖

2 ≤ O((L3 + σ2)T 1/3). This concludes the first case.

Case 2 : Assume that E
∑T
t=1 ‖εt‖

2 ≤ 1
2E
∑T
t=1 ‖ḡt‖2. Combining the condition of Case 2 with

‖dt‖2 ≤ 2‖ḡt‖2 + 2‖εt‖2 (due to dt = ḡt + εt), implies that E
∑T
t=1 ‖dt‖2 ≤ 3E

∑T
t=1 ‖ḡt‖

2.

Now using the update rule xt+1 = xt − ηtdt together with smoothness of f(·), one can show in a
similar manner to our derivation of Eq. (9) the following bound (we defer this to the appendix),

T∑
t=1

‖ḡt‖2 ≤
T∑
t=1

‖εt‖2 + 2BT 2/9

(
T∑
t=1

‖dt‖2
)1/3

+
3

2
L

(
T∑
t=1

‖dt‖2
)2/3

(14)

Taking the expectation of the above equation and plugging in E
∑T
t=1 ‖dt‖2 ≤ 3E

∑T
t=1 ‖ḡt‖

2 as
well as E

∑T
t=1 ‖εt‖

2 ≤ 1
2E
∑T
t=1 ‖ḡt‖2 gives,

E
T∑
t=1

‖ḡt‖2 ≤
1

2
E

T∑
t=1

‖ḡt‖2 + 2BT 2/9

(
3E

T∑
t=1

‖ḡt‖2
)1/3

+
3

2
L

(
3E

T∑
t=1

‖ḡt‖2
)2/3

(15)

where we also used Jensen’s inequality with respect to he concave functions z1/3 and z2/3 defined
over R+. The above immediately implies, E

∑T
t=1 ‖ḡt‖

2 ≤ O(L3 +B3/2T 1/3). This concludes the
second case.

Summary. We have shown that E
∑T
t=1 ‖ḡt‖

2 ≤ O((L3 + σ2 +B3/2)T 1/3), combining this with
the definition of x̄T and using Jensen’s inequality similarly to what we did in the offline analysis
provides,

E‖∇f(x̄T )‖ = O(
√
L3 + σ2 +B3/2/T 1/3) ,

which concludes the proof.

5.3 Stochastic Case Analysis of STORM+

Finally, we provide a sketch of the proof for the STORM+ algorithm appearing in Alg. 1. In a high
level, the analysis follows similar lines to that of of simplified STORM+ ’s appearing in Section 5.2.

There are two extra challenges compared to the analysis of simplified STORM+ :

1. Now at is a random variable that depends on the noisy samples.
2. The differences 1/at+1 − 1/at are not necessarily smaller than 1.

Recall that in the analysis appearing in Section 5.2 we used 1/at+1− 1/at ≤ 2/3, which was crucial
to bounding term (B).

Among the tools that we use to address the first challenge is a version of Young’s inequality, that
we mention in the appendix. To cope with the second challenge, when we bound the expectation of∑T

t=1 ‖εt‖2, it is split into two,

T∑
t=1

‖εt‖2 =

τ∗∑
t=1

‖εt‖2 +

T∑
t=τ∗+1

‖εt‖2

8



where τ∗ is a time-step after which we can ensure that 1/at+1 − 1/at ≤ 2/3. Next we proceed with
the proof sketch.

Proof Sketch of Theorem 1. The proof is composed of three parts: (a) In the first part we bound
the cumulative expectation of errors E

∑τ∗

t=1 ‖εt‖2, where εt := dt − ḡt, and τ∗ is a stopping time
after which we can ensure that 1/at+1 − 1/at ≤ 2/3. (b) In the second part we use our bound
on E

∑τ∗

t=1 ‖εt‖2 in order to bound the total sum of square errors, E
∑T
t=1 ‖εt‖2. (c) Then, in the

last part we divide into two sub-cases the first where E
∑T
t=1 ‖εt‖2 ≤ (1/2)E

∑T
t=1 ‖ḡt‖2 and its

complement. In one of these sub-cases we also use the smoothness of the objective together with the
update rule, similarly to what we do in Eq. (9).

First Part: Bounding E
∑τ∗

t=1 ‖εt‖2. Recall the error dynamics of STORM+ appearing in
Eq. (10). Taking the square and summing up to some τ∗ ∈ [T ] enables to bound,

τ∗∑
t=1

‖εt‖2 ≤
τ∗∑
t=1

(1− at)‖εt−1‖2 + 2

τ∗∑
t=1

‖Zt‖2 + 2

τ∗∑
t=1

a2t‖gt − ḡt‖2 +

τ∗∑
t=1

Mt ,

where Mt = 2〈(1− at)εt−1, at(gt− ḡt) + (1− at)Zt〉 is a martingale difference sequence such that
E[Mt|Ht−1] = 0, where Ht is the history to time t, i.e., Ht := {x1, ξ1, ξ2, ξ3 . . . , ξt}. Also, recall
that Zt := (gt − g̃t−1)− (ḡt − ḡt−1).

Now let us define β := min{1, 1/G4}, and τ∗ = max{t ∈ [T ] : at ≥ β}. Recalling that at+1 is
measurable with respect toHt implies that τ∗ ∈ [T ] is a stopping time.

Re-arranging the above and using the definition of τ∗ implies,

β

τ∗∑
t=1

‖εt‖2 ≤ ‖ετ∗‖2 +

τ∗−1∑
t=1

at+1‖εt‖2 ≤ 2

T∑
t=1

‖Zt‖2︸ ︷︷ ︸
(i)

+2

T∑
t=1

a2t‖gt − ḡt‖2︸ ︷︷ ︸
(ii)

+

τ∗∑
t=1

Mt︸ ︷︷ ︸
(iii)

where we used τ∗ ≤ T , as well as β ≤ 1. Next we bound the expected value of the above terms.

Bounding (i). As in the previous section, the smoothness property implies that ‖Zt‖2 ≤
4L2η2t−1‖dt−1‖2. Using the expression for ηt−1 together with Lemma 3 enables to show,

(i) ≤ 4L2
T∑
t=1

‖dt−1‖2

(
∑t−1
i=1 ‖di‖2)2/3

≤ 12L2(

T∑
t=1

‖dt‖2)1/3 .

Bounding (ii). One can directly show that E[a2t‖gt − ḡt‖2] ≤ E[a2t‖gt‖2]. Using this together with
the expression for at, it is possible to show that,

E(ii) ≤ E
T∑
t=1

‖gt‖2

(1 +
∑t−1
i=1 ‖gi‖2)4/3

≤ C1 .

where C1 is a constant, and the second inequality is due to a lemma that we describe in the appendix.

Bounding (iii). Since τ∗ ∈ [T ] is a bounded stopping time, and Mt is a martingale differ-
ence sequence, then Doob’s optional stopping theorem Levin and Peres [2017] implies E(iii) =

E
∑τ∗

t=1Mt = 0.

Conclusion. The above together with Jensen’s inequality for U(z) = z1/3 defined over R+, yields,

E
τ∗∑
t=1

‖εt‖2 ≤ 2C1/β + 24(L2/β)(E
T∑
t=1

‖dt‖2)1/3 . (16)
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Second Part: Bounding E
∑T
t=1 ‖εt‖2. Recall the error dynamics of STORM+ appearing in

Eq. (10). Dividing by
√
at, taking the square and summing up to some T enables to bound,

1

at
‖εt‖2 ≤ (

1

at
− 1)‖εt−1‖2 + 2

‖Zt‖2

at
+ 2at‖gt − ḡt‖2 + Yt

where Yt = 2〈 1−at√
at
εt−1,

√
at(gt − ḡt) + 1−at√

at
Zt〉 is a martingale difference sequence such

E[Yt|Ht−1] = 0. Re-arranging the above and summing one can show,

T∑
t=1

‖εt−1‖2 ≤ −
1

aT
‖εT ‖2︸ ︷︷ ︸

(A)

+

T∑
t=1

(
1

at+1
− 1

at
)‖εt‖2︸ ︷︷ ︸

(B)

+2

T∑
t=1

‖Zt‖2

at︸ ︷︷ ︸
(C)

+2

T∑
t=1

at‖gt − ḡt‖2︸ ︷︷ ︸
(D)

+

T∑
t=1

Yt︸ ︷︷ ︸
(E)

Now, due to the martingale property E(E) = 0. Next, we focus on bounding term (B),
Bounding (B). Using the definition of τ∗ one can show that 1/at+1 ≤ 1/β̃ ;∀t ≤ τ∗, where
1/β̃ := (1/β3/2 +G2)2/3. Moreover, we can show,

1/at+1 − 1/at ≤ 2/3 ; ∀t ≥ τ∗ + 1

This enables to decompose and bound (B) according to τ∗,

T∑
t=1

(
1

at+1
− 1

at
)‖εt‖2 =

τ∗∑
t=1

(
1

at+1
− 1

at
)‖εt‖2 +

T∑
t=τ∗+1

(
1

at+1
− 1

at
)‖εt‖2

≤ 1

β̃

τ∗∑
t=1

‖εt‖2 +
2

3

T∑
t=τ∗+1

‖εt‖2 ≤
1

β̃

τ∗∑
t=1

‖εt‖2 +
2

3

T∑
t=1

‖εt‖2 . (17)

This enables to use Eq. (16) to bound the expected value of term (B).

From here the analysis of the other terms and bounding E
∑T
t=1 ‖εt−1‖2 is done similarly to our

analysis of simplified STORM+ .

Third Part: Bounding E
∑T
t=1 ‖ḡt‖2. In this part we divide into two sub-cases depending whether

E
∑T
t=1 ‖εt‖

2 ≥ (1/2)E
∑T
t=1 ‖ḡt‖2 or not. And continue similarly to our analysis of simplified

STORM+ . The rest of the details appear in the appendix.

6 Conclusion

We have presented a novel parameter-free and adaptive algorithm for non-convex optimization that
obtains the optimal rate in the setting of expectation over smooth losses while adapting to variance in
gradient estimates. Our approach suggests a new way to set the learning rate and momentum jointly
and adaptively throughout the learning process, which might open up new avenues to both practical
and theoretical developments in this direction.
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A Appendix

A.1 Proofs for Section 5.2

A.1.1 Proof of Equation (14)

We will use the following lemma that we prove in Section A.1.3,

Lemma 5. For both STORM+ and simplified STORM+ the following holds,

T∑
t=1

‖ḡt‖2 ≤
T∑
t=1

‖εt‖2 + 2Ba
−1/3
T+1 (

T∑
t=1

‖dt‖2)1/3 +
3

2
L(

T∑
t=1

‖dt‖2)2/3

Eq. (14) directly follows from this lemma by taking aT+1 = 1/T 2/3.

A.1.2 Proof of Lemma 3

We will prove the lemma by induction on n. The proof relies on the arguments in [McMahan and
Streeter, 2010] and generalizes it for any p ∈ (0, 1).

Proof. For the base case of n = 1, we can easily show that the hypothesis holds.

b1
bp1

= b1−p1 ≤ 1

1− p
b1−p1

Now, assuming that the hypothesis holds for some arbitrary number n− 1 > 1, we want to show that
it holds for n, too. Let us define Z =

∑n
t=1 bt and x = bn. Then, using the inductive hypothesis for

n− 1,

n∑
t=1

bn(∑t
i=1 bi

)p ≤ 1

1− p

(
n−1∑
t=1

bt

)1−p

+
bn

(
∑n
t=1 bt)

p

=
1

1− p
(Z − x)1−p +

x

Zp

Let us denote h(x) = 1
1−p (Z − x)1−p + x

Zp is concave in x. What we need to show is that, for any
choice of allowable x, h(x) ≤ 1

1−pZ
1−p. Specifically, we want to prove that

max
0≤x<Z

h(x) ≤ 1

1− p
Z1−p

First, observe that h(x) is a concave function, hence at the maximum the derivative evaluates to zero.
Our aim is to find such x. Taking derivative wrt x,

dh(x)

dx
=

1

Zp
− 1

(Z − x)p
,

which evaluates to zero when x = 0. Hence,

max
0≤x<Z

h(x) = h(0) =
1

1− p
Z1−p =

1

1− p

(
n∑
t=1

bt

)1−p

which implies that the hypothesis is true:

n∑
t=1

bt(∑t
i=1 bi

)p ≤ 1

1− p

(
n∑
t=1

bt

)1−p

.
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A.1.3 Proof of Lemma 5

Using smoothness together with the update rule implies,

∆t+1 −∆t = f(xt+1)− f(xt) ≤ −ηtḡ>t dt +
Lη2t

2
‖dt‖2

= −ηt‖ḡt‖2 − ηtḡ>t εt +
Lη2t

2
‖dt‖2

≤ −ηt‖ḡt‖2 +
ηt
2
‖ḡt‖2 +

ηt
2
‖εt‖2 +

Lη2t
2
‖dt‖2 ,

where we defined ∆t := f(xt)− f(x∗). The second line above uses dt = ḡt + εt, and the third line
uses z>y ≤ 1

2 (‖z‖2 + ‖y‖2).

Re-arranging the above we get,

‖ḡt‖2 ≤ ‖εt‖2 +
2

ηt
(∆t −∆t+1) + Lηt‖dt‖2

Summing over t gives,

T∑
t=1

‖ḡt‖2 ≤
T∑
t=1

‖εt‖2 −
2

ηT
∆T+1 + 2

T∑
t=1

(
1

ηt
− 1

ηt−1
)∆t + L

T∑
t=1

ηt‖dt‖2

≤
T∑
t=1

‖εt‖2 + 2B

T∑
t=1

(
1

ηt
− 1

ηt−1
) + L

T∑
t=1

‖dt‖2

(
∑t
i=1 ‖dt‖2)1/3

≤
T∑
t=1

‖εt‖2 + 2B
1

ηT
+

3

2
L(

T∑
t=1

‖dt‖2)2/3

≤
T∑
t=1

‖εt‖2 + 2B(

T∑
t=1

‖dt‖2/at+1)1/3 +
3

2
L(

T∑
t=1

‖dt‖2)2/3

≤
T∑
t=1

‖εt‖2 + 2B(1/aT+1)1/3(

T∑
t=1

‖dt‖2)1/3 +
3

2
L(

T∑
t=1

‖dt‖2)2/3 (18)

The second line uses ∆t ∈ [0, B], the third line uses Lemma 3, and the last line uses the fact that at
is monotonically decreasing.
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A.2 Full Analysis of STORM+ (Algorithm 1)

The proof is composed of three parts: (a) In the first part we bound the cumulative expectation of
errors E

∑τ∗

t=1 ‖εt‖2, where εt := dt − ḡt, and τ∗ is a stopping time after which we can ensure that
1/at+1 − 1/at ≤ 2/3. (b) In the second part we use our bound on E

∑τ∗

t=1 ‖εt‖2 in order to bound
the total sum of square errors, E

∑T
t=1 ‖εt‖2. (c) Then, in the last part we divide into two sub-cases

the first where E
∑T
t=1 ‖εt‖2 ≤ (1/2)E

∑T
t=1 ‖ḡt‖2 and its complement. In one of these sub-cases

we also use the smoothness of the objective together with the update rule, similarly to what we do in
Eq. (9).

The different parts of the proof are divided between Section A.2.1, A.2.2 , and A.2.3.

A.2.1 First Part: Bounding E
∑τ∗

t=1 ‖εt‖2.

The update rule for dt induces the following error dynamics,

εt = (1− at)εt−1 + at(gt − ḡt) + (1− at)Zt (19)

where Zt := (gt − g̃t−1)− (ḡt − ḡt−1).

Taking the square and summing up to some τ∗ ∈ [T ] enables to bound,
τ∗∑
t=1

‖εt‖2 ≤
τ∗∑
t=1

(1− at)2‖εt−1‖2 +

τ∗∑
t=1

‖(1− at)Zt + at(gt − ḡt)‖2 +

τ∗∑
t=1

Mt

≤
τ∗∑
t=1

(1− at)‖εt−1‖2 + 2

τ∗∑
t=1

‖Zt‖2 + 2

τ∗∑
t=1

a2t‖gt − ḡt‖2 +

τ∗∑
t=1

Mt ,

where we used ‖b + c‖2 ≤ 2‖b‖2 + 2‖b‖2, as well as (1 − at) ≤ 1. We have defined {Mt :=
2(1 − at)ε

>
t−1 ((1− at)Zt + at(gt − ḡt))}t∈[T ], and it is immediate to verify that {Mt}t∈[T ] is

a martingale difference sequence such E[Mt|Ht−1] = 0, where Ht is the history to time t, i.e.,
Ht := {x1, ξ1, ξ2, ξ3 . . . , ξt}.
Now let us define β := min{1, 1/G4}, and τ∗ = max{t ∈ [T ] : at ≥ β}. Recalling that at+1 is
measurable with respect toHt implies that τ∗ ∈ [T ] is a stopping time.

Re-arranging the above and using the definition of τ∗ implies,

β

τ∗∑
t=1

‖εt‖2 ≤ ‖ετ∗‖2 +

τ∗−1∑
t=1

at+1‖εt‖2 ≤ 2

T∑
t=1

‖Zt‖2︸ ︷︷ ︸
(i)

+2

T∑
t=1

a2t‖gt − ḡt‖2︸ ︷︷ ︸
(ii)

+

τ∗∑
t=1

Mt︸ ︷︷ ︸
(iii)

(20)

where we used τ∗ ≤ T , as well as β ≤ 1. Next we bound the expected value of the above terms.
Bounding (i). Using smoothness property implies that ‖Zt‖ ≤ 2L‖xt − xt−1‖ = 2Lηt−1‖dt−1‖.
Using the expression for ηt−1 together with Lemma 3 enables to show,

(i) ≤ 4L2
T∑
t=1

‖dt−1‖2

(
∑t−1
i=1 ‖di‖2)2/3

≤ 12L2(

T∑
t=1

‖dt‖2)1/3 .

where the first inequality uses ηt = 1/
(∑t

i=1 ‖di‖2/ai+1

)1/3
≤ 1/

(∑t
i=1 ‖di‖2

)1/3
.

Bounding (ii). Since E[gt|Ht−1] = ḡt and at is measurable with respect toHt−1 it follows that

E[a2t‖gt − ḡt‖2] ≤ E[a2t (‖gt‖2 − ‖ḡt‖2)] ≤ E[a2t‖gt‖2]

Using this together with the expression for at, it is possible to show that,

E(ii) ≤ E
T∑
t=1

‖gt‖2

(1 +
∑t−1
i=1 ‖gi‖2)4/3

≤ C1 .

where C1 := 12 + 2G2, and the last inequality is due to the following lemma (recall G is a bound on
the gradient norms),
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Lemma 6. For any non-negative real numbers a1, . . . , an ∈ [0, amax],
n∑
i=1

ai

(1 +
∑i−1
j=1 aj)

4/3
≤ 12 + 2amax .

We prove this lemma in Appendix A.3.1.

Bounding (iii). Since τ∗ ∈ [T ] is a bounded stopping time, and Mt is a martingale differ-
ence sequence, then Doob’s optional stopping theorem Levin and Peres [2017] implies E(iii) =

E
∑τ∗

t=1Mt = 0.

Conclusion. Combining the above bounds inside Eq. (20) together with Jensen’s inequality for
U(z) = z1/3 defined over R+, yields,

E
τ∗∑
t=1

‖εt‖2 ≤ 2C1/β + 24(L2/β)(E
T∑
t=1

‖dt‖2)1/3 . (21)

A.2.2 Second Part: Bounding E
∑T
t=1 ‖εt‖2.

Recall the error dynamics of STORM+ appearing in Eq. (19). Dividing by
√
at, and taking the

square gives,

1

at
‖εt‖2 = (

1

at
− 2 + at)‖εt−1‖2 + ‖(1− at)

Zt√
at

+
√
at(gt − ḡt)‖2 + Yt

≤ (
1

at
− 1)‖εt−1‖2 + 2

‖Zt‖2

at
+ 2at‖gt − ḡt‖2 + Yt ,

where we used at ∈ [0, 1], and (1−at) ∈ [0, 1], as well as ‖b+c‖2 ≤ 2‖b‖2+2‖c‖2. We also defined
Yt := 2( 1√

at
−√at)ε>t−1

(
(1− at) Zt√

at
+
√
at(gt − ḡt)

)
. Note that E[Yt|Ht−1] = 0; therefore Yt

is a martingale difference sequence.

Re-arranging the above and summing gives,
T∑
t=1

‖εt−1‖2 ≤ −
1

aT
‖εT ‖2︸ ︷︷ ︸

(A)

+

T∑
t=1

(
1

at+1
− 1

at
)‖εt‖2︸ ︷︷ ︸

(B)

+2

T∑
t=1

‖Zt‖2

at︸ ︷︷ ︸
(C)

+2

T∑
t=1

at‖gt − ḡt‖2︸ ︷︷ ︸
(D)

+

T∑
t=1

Yt︸ ︷︷ ︸
(E)

.

(22)

Next, we bound the expected value if each of the above terms.

Bounding (A): Since aT ≤ 1 we can bound −E ‖εT ‖2/aT ≤ −E ‖εT ‖2

Bounding (B). We will use the following lemma which we prove in Section A.3.3,
Lemma 7. The following holds,

1/at+1 ≤ 1/β̃ ;∀t ≤ τ∗

where 1/β̃ := (1/β3/2 +G2)2/3 .

Moreover,
1/at+1 − 1/at ≤ 2/3 ; ∀t ≥ τ∗ + 1

Lemma 7 enables to decompose and bound (B) as follows,

T∑
t=1

(
1

at+1
− 1

at
)‖εt‖2 =

τ∗∑
t=1

(
1

at+1
− 1

at
)‖εt‖2 +

T∑
t=τ∗+1

(
1

at+1
− 1

at
)‖εt‖2

≤ 1

β̃

τ∗∑
t=1

‖εt‖2 +
2

3

T∑
t=τ∗+1

‖εt‖2 ≤
1

β̃

τ∗∑
t=1

‖εt‖2 +
2

3

T∑
t=1

‖εt‖2 . (23)
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Thus,

E(B) ≤ E
1

β̃

τ∗∑
t=1

‖εt‖2 +
2

3
E

T∑
t=1

‖εt‖2

≤ 2C1

ββ̃
+ 24

L2

ββ̃
(E

T∑
t=1

‖dt‖2)1/3 +
2

3
E

T∑
t=1

‖εt‖2 (24)

where we have used Eq. (21).

Bounding (C). Recalling that ‖Zt‖ ≤ 2L‖xt − xt−1‖ = 2Lηt−1‖dt−1‖, and using the expression
for ηt−1 together with Lemma 3 enables to show,

Thus,

T∑
t=1

‖Zt‖2

at
≤ 4L2

T∑
t=1

η2t−1‖dt−1‖2/at

= 4L2
T∑
t=1

‖dt−1‖2/at(∑t−1
i=1 ‖di‖2/ai+1

)2/3
≤ 12L2

(
T−1∑
t=1

‖dt‖2/at+1

)1/3

≤ 12L2 1

a
1/3
T

(
T−1∑
t=1

‖dt‖2
)1/3

≤ 12L2

(
1 +

T∑
t=1

‖gt‖2
)2/9( T∑

t=1

‖dt‖2
)1/3

, (25)

where we used the fact that at is non-increasing.

Now, let us recall Young’s inequality which states that for any a, b > 0, and p, q > 1 : 1
p + 1

q = 1

we have ab ≤ ap/p+ bq/q. This implies that for any a, b, ρ > 0 and p = 3
2 , q = 3, we have,

a2/9b1/3 = (aρ9/2)2/9(b/ρ3)1/3 ≤ (aρ9/2)2p/9

p
+

(b/ρ3)q/3

q
=

2

3
a1/3ρ3/2 +

b

3ρ3
(26)

Thus, taking ρ = (512L2)1/3, a = 1 +
∑T
t=1 ‖gt‖2, b =

∑T
t=1 ‖dt‖2, and using Young’s inequality

inside Eq. (25) implies,

T∑
t=1

‖Zt‖2

at
≤ 512L3

(
1 +

T∑
t=1

‖gt‖2
)1/3

+
1

128

T∑
t=1

‖dt‖2 (27)

Bounding Term (D): Note that at is measurable with respect to Ht−1, and E[gt|Ht−1] = ḡt,
therefore using smoothing gives,

E[at‖gt − ḡt‖2] = E[at(‖gt‖2 − ‖ḡt‖2)] ≤ E[at‖gt‖2]
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Thus,

E[(D)] := E
T∑
t=1

at‖gt − ḡt‖2

≤ E
T∑
t=1

at‖gt‖2

= E
T∑
t=1

‖gt‖2

(1 +
∑t−1
i=1 ‖gi‖2)2/3

≤ G2 + 6E

(
1 +

T∑
t=1

‖gt‖2
)1/3

,

where the last line is due to the following lemma which is a modified and time-shifted version of
Lemma 3. We defer its proof to Appendix A.3.4.
Lemma 8. Let b1, ..., bn ∈ (0, b] be a sequence of non-negative real numbers for some positive real
number b, b0 > 0 and p ∈ (0, 1) a rational number. Then,

n∑
i=1

bi(
b0 +

∑i−1
j=1 bj

)p ≤ b

(b0)p
+

2

1− p

(
b0 +

n∑
i=1

bi

)1−p

Bounding Term (E): Since {Yt}t∈[T ] is a martingale difference sequence we have,

E(E) = E
T∑
t=1

Yt = 0 .

To Summarize: Combining the above bounds inside Eq. (22) we conclude that,

1

3
E

T∑
t=1

‖εt‖2 ≤
24L2

ββ̃
E(

T∑
t=1

‖dt‖2)1/3 +
2C1

ββ̃
+ 2G2

+ (1024L3 + 12)E

(
1 +

T∑
t=1

‖gt‖2
)1/3

+
1

64
E

T∑
t=1

‖dt‖2

≤ 24L2

ββ̃
(E

T∑
t=1

‖dt‖2)1/3 +
2C1

ββ̃
+ 2G2

+ (1024L3 + 12)

(
1 + E

T∑
t=1

‖gt‖2
)1/3

+
1

64
E

T∑
t=1

‖dt‖2 (28)

where we have used Jensen’s inequality for the concave function G(z) = z1/3 ; z ≥ 0.

A.2.3 Final Part of the Proof

We divide the final part of the proof into two subcases:

Case 1: Assume E
∑T
t=1 ‖εt‖2 ≥ (1/2)E

∑T
t=1 ‖ḡt‖2. Using the condition of this subcase implies

E
∑
t

‖dt‖2 ≤ 2E
T∑
t=1

‖ḡt‖2 + 2E
T∑
t=1

‖εt‖2 ≤ 6E
T∑
t=1

‖εt‖2

Plugging this into Eq. (28) gives,

1

3
E

T∑
t=1

‖εt‖2 ≤
24L2

ββ̃
(6E

T∑
t=1

‖εt‖2)1/3 +
2C1

ββ̃
+ 2G2

+ (1024L3 + 12)

(
1 + σ2T + E

T∑
t=1

‖ḡt‖2
)1/3

+
6

64
E

T∑
t=1

‖εt‖2

18



where the first line uses E‖gt‖2 = E‖ḡt‖2 + E‖gt − ḡt‖2 ≤ E‖ḡt‖2 + σ2.

Re-arranging and using E
∑T
t=1 ‖ḡt‖2 ≤ 2E

∑T
t=1 ‖εt‖2 gives,

1

5
E

T∑
t=1

‖εt‖2 ≤
24L2

ββ̃
(6E

T∑
t=1

‖εt‖2)1/3 +
2C1

ββ̃
+ 2G2

+ (1024L3 + 12)

(
1 + σ2T + 2E

T∑
t=1

‖εt‖2
)1/3

And the above implies,

E
T∑
t=1

‖ḡt‖2 ≤ 2E
T∑
t=1

‖εt‖2 ≤ O

(
1 +

C1

ββ̃
+

(
L2

ββ̃

)3/2

+G2 + L3 + L9/2 + L3σ2/3T 1/3

)
(29)

Case 2: Assume E
∑T
t=1 ‖εt‖2 ≤ (1/2)E

∑T
t=1 ‖ḡt‖2. Using Lemma 5 we get,

T∑
t=1

‖ḡt‖2 ≤
T∑
t=1

‖εt‖2 + 2B(1 +

T∑
t=1

‖gt‖2)2/9(

T∑
t=1

‖dt‖2)1/3 +
3

2
L(

T∑
t=1

‖dt‖2)2/3

≤
T∑
t=1

‖εt‖2 +
3

2
L(

T∑
t=1

‖dt‖2)2/3 + 20B3/2(1 +

T∑
t=1

‖gt‖2)1/3 +
1

64

T∑
t=1

‖dt‖2 (30)

where the second line uses a version of Young’s inequality appearing in Eq. (26) together with taking
ρ := (128B/3)1/3, a := 1 +

∑T
t=1 ‖gt‖2, and b :=

∑T
t=1 ‖dt‖2.

Using the condition of this subcase implies

E
∑
t

‖dt‖2 ≤ 2E
T∑
t=1

‖ḡt‖2 + 2E
T∑
t=1

‖εt‖2 ≤ 3E
T∑
t=1

‖ḡt‖2

Taking expectation of Eq. (30), and using the above together with the condition gives,

E
T∑
t=1

‖ḡt‖2 ≤ E
T∑
t=1

‖εt‖2 +
3

2
L(E

T∑
t=1

‖dt‖2)2/3 + 20B3/2(1 + E
T∑
t=1

‖gt‖2)1/3 +
1

64
E

T∑
t=1

‖dt‖2

≤
(

1

2
+

3

64

)
E

T∑
t=1

‖ḡt‖2 +
3

2
L(3E

T∑
t=1

‖ḡt‖2)2/3 + 20B3/2(1 + σ2T + E
T∑
t=1

‖ḡt‖2)1/3

where we have used Jensen’s inequality for the functions z1/3, z2/3 defined over R+, We also uses
E‖gt‖2 = E‖ḡt‖2 + E‖gt − ḡt‖2 ≤ E‖ḡt‖2 + σ2.

Re-arranging the above we conclude that,

E
T∑
t=1

‖ḡt‖2 ≤ 6L(3E
T∑
t=1

‖ḡt‖2)2/3 + 80B3/2(1 + σ2T + E
T∑
t=1

‖ḡt‖2)1/3

This immediately implies that,

E
T∑
t=1

‖ḡt‖2 ≤ O(1 + L3 +B9/4 +B3/2σ2/3T 1/3) (31)

Concluding From Equations (29), (32) it follows that,

E
T∑
t=1

‖ḡt‖2 ≤ O(M2 + κ2σ2/3T 1/3) (32)
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where κ2 := B3/2 + L3, and M2 := 1 + L9/2 +B9/4 +G10 + (L2G8)3/2.

Using the definition if x̄T together with Jensen’s inequality gives,

E‖∇f(x̄T )‖ = O

(
M√
T

+
κσ1/3

T 1/3

)
.

which concludes the proof.
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A.3 Additional Proofs

A.3.1 Proof of Lemma 6

Proof of Lemma 6. Lets define,

N0 = min

i ∈ [n] :

i−1∑
j=1

aj ≥ amax

 .

Thus, we can decompose the sum as follows,

n∑
i=1

ai

(1 +
∑i−1
j=1 aj)

4/3
=

N0−1∑
i=1

ai

(1 +
∑i−1
j=1 aj)

4/3
+

n∑
i=N0

ai

(1 +
∑i−1
j=1 aj)

4/3

≤
N0−1∑
i=1

ai +

n∑
i=N0

ai

(1 +
∑N0−1
j=1 aj +

∑i−1
j=N0

ai)4/3

≤ 2amax +

n∑
i=N0

ai

(1 + amax +
∑i−1
j=N0

ai)4/3

≤ 2amax +

n∑
i=N0

ai

(1 + ai +
∑i−1
j=N0

ai)4/3

≤ 2amax + 12

where the second and third lines use the definition of N0 and definition of amax, the fourth line uses
ai ≤ amax, and the last line uses the following helper lemma that we prove in Section A.3.2.

Lemma 9. For any non-negative real numbers a1, . . . , an ∈ [0, amax],

n∑
i=1

ai

(1 +
∑i
j=1 aj)

4/3
≤ 12 .

A.3.2 Proof of Lemma 9

Proof of Lemma 9. Define,

N0 = max

i ∈ [n] :

i∑
j=1

aj ≤ 2

 .

as well as for any k ≥ 1

Nk = max

i ∈ [n] : 2k <

i∑
j=1

aj ≤ 2k+1

 .
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Now lets split the sum according to the Nk’s
n∑
i=1

ai

(1 +
∑i
j=1 aj)

4/3
=

N0∑
i=1

ai

(1 +
∑i
j=1 aj)

4/3
+

∞∑
k=1

Nk∑
i=Nk−1+1

ai

(1 +
∑i
j=1 aj)

4/3

≤
N0∑
i=1

ai +

∞∑
k=1

1

(2k)4/3

Nk∑
i=1

ai

≤ 2 +

∞∑
k=1

2k+1

(2k)4/3

= 2 +

∞∑
k=1

2k+1

(2k)4/3

= 2 + 2

∞∑
k=1

(
1

21/3

)k
≤ 2 + 2 · 1

1− 2−1/3

≤ 12 .

A.3.3 Proof of Lemma 7

Proof. The lemma has two parts.

Proof of first part. Recalling that τ∗ = max{t ∈ [T ] : at ≥ β} for β = min{1, 1/G4} implies
that 1/at ≤ 1/β ;∀t ≤ τ∗. Moreover, using the definition of at and boundedness of gradients we
obtain,

(1/aτ∗+1)
3/2

= (1/aτ∗)
3/2

+ ‖gτ∗‖2 ≤ 1

β3/2
+G2

Defining 1
β̃

:=
(

1
β3/2 +G2

)2/3
implies that,

1/at ≤ 1/β̃ ; ∀t ≤ τ∗ + 1 .

Proof of second part. First note that the function H(y) := y2/3 is concave over R+. Applying the
gradient inequality for concave functions imply that,

∀y1, y2 ≥ 0 ;H(y2)−H(y1) ≤ ∇H(y1)>(y2 − y1) =
2

3

1

y
1/3
1

· (y2 − y1) .

Therefore, for any t ≥ τ∗ + 1

1

at+1
− 1

at
= (1 +

t−1∑
i=1

‖gi‖2 + ‖gt‖2)2/3 − (1 +

t−1∑
i=1

‖gi‖2)2/3

≤ 2

3

‖gt‖2

(1 +
∑t−1
i=1 ‖gi‖2)1/3

=
2

3

√
at‖gt‖2

≤ 2

3

√
βG2

≤ 2

3
.

where the fourth line uses the definition of τ∗, and the last line uses the definition of β.
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A.3.4 Proof of Lemma 8

Proof. Let b1, ..., bn ∈ (0, b] be a sequence of non-negative real numbers for some positive real
number b, b0 > 0 and p ∈ (0, 1) a rational number. Then,

n∑
i=1

bi(
b0 +

∑i−1
j=1 bj

)p ≤ b

(b0)p
+

2

1− p

(
b0 +

n∑
i=1

bi

)1−p

The proof of this lemma relies on the arguments of Lemma A.1 from [Bach and Levy, 2019] and
makes use of Lemma 3 we proved earlier. We consider two cases for the proof depending on whether
b0 ≤ b or b0 ≥ b.
Case 1 : b0 ≥ b.

n∑
i=1

bi(
b0 +

∑i−1
j=1 bj

)p ≤ n∑
i=1

bi(
b+

∑i−1
j=1 bj

)p
≤

n∑
i=1

bi(∑i
j=1 bj

)p
≤ 1

1− p

(
n∑
i=1

bi

)1−p

≤ b

(b0)p
+

2

1− p

(
b0 +

n∑
i=1

bi

)1−p

Case 2 : b0 ≤ b.
Let us denote a time variable

T0 = min

i ∈ [n] :

i−1∑
j=1

bj ≥ b


Then, we could separate the summation as

n∑
i=1

bn

(b0 +
∑i−1
j=1 bj)

p
=

T0−1∑
i=1

bn

(b0 +
∑i−1
j=1 bj)

p
+

n∑
i=T0

bn

(b0 +
∑i−1
j=1 bj)

p

≤ 1

(b0)p

T0−1∑
i=1

bn +

n∑
i=T0

bn

( 1
2

∑i−1
j=1 bj + 1

2

∑i−1
j=1 bj)

p

≤ b

(b0)p
+

n∑
i=T0

bn

( 1
2b+ 1

2

∑i−1
j=1 bj)

p
(Use definition of T0)

≤ b

(b0)p
+ 2

n∑
i=T0

bn

(
∑i
j=1 bj)

p
(Use bi ≤ b)

≤ b

(b0)p
+

2

1− p

(
n∑

i=T0

bi

)1−p

(Use Lemma 3)

≤ b

(b0)p
+

2

1− p

(
b0 +

n∑
i=1

bi

)1−p
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A.4 Numerical Results

In this section we provide numerical performance of STORM+ for a multi-class classification
task. Specifically, we train ResNet34 architecture on CIFAR10 dataset using SGD with momentum,
STORM and STORM+ , as well as AdaGrad and Adam. We implemented the whole setup in
pytorch Paszke et al. [2019] retrieving the model and the dataset from torchvision package. We
executed the experiments on NVIDIA DGX infrastructure. Specifically, our code ran on NVIDIA
A100-SXM4-40GB graphics card. We use mini-batches of 100 samples both for training and testing,
whiling using the default train/test data split provided in the package.

To be fair to all methods, we fixed all the parameters to their default value except for the learning rate.
Then, we executed an initial learning rate sweep over the same logarithmic range for all the algorithms.
All methods use a constant learning rate schedule without any heuristic strategies. All methods are
run with the best performing initial learning rate after tuning and the results for a single run are
presented in Figure 1. In the plots, epoch refers to the number of passes over dataset, not number
of gradient calls. Per iteration cost of STORM and STORM+ are twice that of other methods with
respect to forward/backward passes.
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(d) Test accuracy

Figure 1: Comparison of SGD and adaptive methods, Resnet34 on CIFAR10

The results do not exhibit a noticeable practical advantage for STORM+ , however, they verify that
it achieves comparable performance with respect to other adaptive methods. The performance of
STORM and STORM+ are quite close to each other under all 4 metrics. In the training phase,
STORM and STORM+ seem to outperform other methods by a small margin, both in training
accuracy and training loss. Adam and SGD seem to achieve a relatively small training accuracy and
relatively large training loss compared to other methods. In the test phase, we observe a different
picture where Adam generalizes slightly better than other methods, followed by STORM and
STORM+ as we could see in Figure 1d.
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In terms of ease of tuning, provably, STORM+ does not require the knowledge of any problem
parameters to operate and only initial step-size tuning suffices, while STORM additionally needs
to tune the initial momentum parameter as, in theory, it requires the knowledge of smoothness and
bound on the gradients. Adam would need tuning for its moving average parameters β1 and β2, while
SGD has a momentum parameter which is subject to a search over admissible values. Similar to
STORM+ , AdaGrad does not require tuning beyond initial learning rate.
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