
On Large-Cohort Training for Federated Learning

Zachary Charles
Google

zachcharles@google.com

Zachary Garrett
Google

zachgarrett@google.com

Zhouyuan Huo
Google

zhhuo@google.com

Sergei Shmulyian
Google

sshmulyian@google.com

Virginia Smith
Carnegie Mellon University

smithv@cmu.edu

Abstract

Federated learning methods typically learn a model by iteratively sampling updates
from a population of clients. In this work, we explore how the number of clients
sampled at each round (the cohort size) impacts the quality of the learned model
and the training dynamics of federated learning algorithms. Our work poses three
fundamental questions. First, what challenges arise when trying to scale federated
learning to larger cohorts? Second, what parallels exist between cohort sizes in
federated learning, and batch sizes in centralized learning? Last, how can we design
federated learning methods that effectively utilize larger cohort sizes? We give
partial answers to these questions based on extensive empirical evaluation. Our
work highlights a number of challenges stemming from the use of larger cohorts.
While some of these (such as generalization issues and diminishing returns) are
analogs of large-batch training challenges, others (including catastrophic training
failures and fairness concerns) are unique to federated learning.

1 Introduction

Federated learning (FL) [52] considers learning a model from multiple clients without directly
sharing training data, often under the orchestration of a central server. In this work we focus on
cross-device FL, in which the aim is to learn across a large population of edge devices [27, Table 1].
A distinguishing characteristic of cross-device FL is partial participation of the client population:
Due to systems constraints such as network size, the server typically only communicates with a subset
of the clients at a time1. For example, in the popular FedAvg algorithm [52], at each communication
round the server broadcasts its current model to a subset of available clients (referred to as a cohort),
who use the model to initialize local optimization and send their model updates back to the server.

Intuitively, larger cohort sizes have the potential to improve the convergence of FL algorithms. By
sampling more clients per round, we can observe a more representative sample of the underlying
population—possibly reducing the number of communication rounds needed to achieve a given
accuracy. This intuition is reflected in many convergence analyses of FL methods [29, 31, 32, 62, 69],
which generally show that asymptotic convergence rates improve as the cohort size increases.

Larger cohorts can also provide privacy benefits. For example, when using the distributed differential
privacy model [6, 11, 16, 65] in federated learning, noise is typically added to the updates sent from
the clients to the server [54]. This helps preserve privacy but can also mar the utility of the learned
model. By dividing the noise among more clients, larger cohorts may mitigate detrimental effects
of noise. Moreover, since privacy tends to decrease as a function of the number of communication

1In contrast, cross-silo settings often have a small set of clients, most of which participate in each round [27].

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



rounds [1, 17], larger cohorts also have the potential to improve privacy in FL by reducing the number
of rounds needed for convergence.

Motivated by the potential benefits of large-cohort training, we systematically explore the impact of
cohort size in realistic cross-device settings. Our results show that increasing the cohort size may
not lead to significant convergence improvements in practice, despite their theoretical benefit [69].
Moreover, large-cohort training can introduce fundamental optimization and generalization issues.
Our results are reminiscent of work on large-batch training in centralized settings, where larger
batches can stagnate convergence improvements [14, 19, 51, 70, 71], and even lead to generalization
issues with deep neural networks [23, 30, 46–48, 50, 64]. While some of the challenges we identify
with large-cohort training are parallel to issues that arise in large-batch centralized learning, others
are unique to federated learning and have not been previously identified in the literature.

Contributions. In this work, we provide a novel examination of cohort sizes in federated learning.
We give a wide ranging empirical analysis spanning many popular federated algorithms and datasets
(Section 2). Despite the many possible benefits of large-cohort training, we find that challenges exist
in realizing these benefits (Section 3). We show that these issues are caused in part by distinctive
characteristics of federated training dynamics (Section 4). Using these insights, we provide partial
solutions to the challenges we identify (Section 5), focusing on how to adapt techniques from large-
batch training, and the limitations of such approaches. Our solutions are designed to serve as simple
benchmarks for future work. We conclude by discussing limitations and open problems (Section 6).
Throughout, we attempt to uncover interesting theoretical questions, but remain firmly grounded in
the practical realities of federated learning.

1.1 Related Work

Large-batch training. In non-federated settings, mini-batch stochastic gradient descent (SGD) and
its variants are common choices for training machine learning models, particularly deep neural
networks. While larger mini-batch sizes ostensibly allow for improved convergence (in terms of the
number of steps required to reach a desired accuracy), in practice speedups may quickly saturate
when increasing the mini-batch size. This property of diminishing returns has been explored both
empirically [14, 19, 51, 64] and theoretically [48, 70]. Beyond the issue of speedup saturation,
numerous works have also observed a generalization gap when training deep neural networks with
large batches [23, 30, 46, 47, 50, 71]. Our work differs from these areas by specifically exploring
how the cohort size (the number of selected clients) affects federated optimization methods. While
some of the issues with large-batch training appear in large-cohort training, we also identify a number
of new challenges introduced by the federated setting.

Optimization for federated learning. Significant attention has been paid towards developing feder-
ated optimization techniques. Such work has focused on various aspects, including communication-
efficiency [5, 34, 37, 52], data and systems heterogeneity [25, 28, 29, 39–42, 67], and fairness [26, 43].
We provide a description of some relevant methods in Section 2, and defer readers to recent surveys
such as [27] and [41] for additional background. One area pertinent to our work is that of variance
reduction for federated learning, which can mitigate negative effects of data heterogeneity [28, 29, 73].
However, such methods often require clients to maintain state across rounds [29, 73], which may be
infeasible in cross-device settings [27]. Moreover, such methods may not perform well in settings
with limited client participation [62]. Many convergence analyses of federated optimization methods
show that larger cohort sizes can lead to improved convergence rates, even without explicit variance
reduction [31, 32, 69]. These analyses typically focus on asymptotic convergence, and require
assumptions on learning rates and heterogeneity that may not hold in practice [9, 27]. In this work,
we attempt to see whether increasing the cohort size leads to improved convergence in practical,
communication-limited settings.

Client sampling. A number of works have explored how to select cohorts of a fixed size in cross-
device FL [10, 12, 18, 59, 63]. Such methods can yield faster convergence than random sampling by
carefully selecting the clients that participate at each round, based on quantities such as the client loss.
However, such approaches typically require the server to be able to choose which clients participate
in a cohort. In practice, cohort selection in cross-device federated learning is often governed by client
availability, and is not controlled by the server [7, 61]. In this work we instead focus on the impact of
size of the cohort, assuming the cohort is sampled at random.

2



2 Preliminaries

Federated optimization methods often aim to minimize a weighted average of client loss functions:

min
x
f(x) :=

K∑
k=1

pkfk(x), (1)

where K is total number of clients, the pk are client weights satisfying pk ≥ 0, and fk is the loss
function of client k. For practical reasons, pk is often set to the number of examples in client k’s
local dataset [42, 52].

To solve (1), each client in a sampled cohort could send∇fk(x) to the server, and the server could then
apply (mini-batch) SGD. This approach is referred to as FedSGD [52]. This requires communication
for every model update, which may not be desirable in communication-limited settings. To address
this, McMahan et al. [52] propose FedAvg, in which clients perform multiple epochs of local training,
potentially reducing the number of communication rounds needed for convergence.

We focus on a more general framework, FedOpt, introduced by Reddi et al. [62] that uses both client
and server optimization. At each round, the server sends its model x to a cohort of clients C of size
M . Each client ck ∈ C performs E epochs of training using mini-batch SGD with client learning rate
ηc, producing a local model xk. Each client k ∈ C then communicates their client update ∆k to the
server, where ∆k := xk − x is the difference between the client’s local model and the server model.
The server computes a weighted average ∆ of the client updates, and updates its own model via

x′ = SERVEROPT(x, ηs,∆) , (2)

where SERVEROPT(x, ηs, g) is some first-order optimizer, ηs is the server learning rate, and g is
a gradient estimate. For example, if SERVEROPT is SGD, then SERVEROPT(x, ηs, g) = x − ηsg.
The ∆ in (2) is referred to as a pseudo-gradient [62]. While ∆ may not be an unbiased estimate of
∇f , it can serve a somewhat comparable role (though as we show in Section 4, there are important
distinctions). Full pseudo-code of FedOpt is given in Algorithm 1.

Algorithm 1 FedOpt framework

Input: M , T E, x1, ηc, ηs, SERVEROPT, {pk}Kk=1
for t = 1, · · · , T do

The server selects a cohort Ct of M clients uniformly at random, without replacement.
The server sends xt to all clients in Ct.
Each client k ∈ Ct performs E epochs of mini-batch SGD on fk with step-size ηc.
After training, each k ∈ Ct has a local model xtk and sends ∆t

k = xt − xtk to the server.
The server computes a pseudo-gradient ∆t and updates its model via

∆t =

∑
k∈Ct

pk∆t
k∑

k∈Ct
pk

, xt+1 = SERVEROPT(xt, ηs,∆
t).

Algorithm 1 generalizes a number of federated learning algorithms, including FedAvg [52],
FedAvgM [25], FedAdagrad [62], and FedAdam [62]. These are the cases where SERVEROPT
is SGD, SGD with momentum, Adagrad [15, 53], and Adam [33], respectively. FedSGD is realized
when SERVEROPT is SGD, ηc = 1, E = 1, and each client performs full-batch gradient descent.

2.1 Experimental Setup

We aim to understand how the cohort size M impacts the performance of Algorithm 1. In order to
study this, we perform a wide-ranging empirical evaluation using various special cases of Algorithm 1
across multiple datasets, models, and tasks. We discuss the key facets of our experiments below.

Datasets, models, and tasks. We use four datasets: CIFAR-100 [35], EMNIST [13], Shakespeare [8],
and Stack Overflow [3]. For CIFAR-100, we use the client partitioning proposed by Reddi et al. [62].
The other three datasets have natural client partitions that we use. For EMNIST, the handwritten
characters are partitioned by their author. For Shakespeare, speaking lines in Shakespeare plays are

3



Table 1: Dataset statistics.

DATASET TRAIN CLIENTS TRAIN EXAMPLES TEST CLIENTS TEST EXAMPLES

CIFAR-100 500 50,000 100 10,000
EMNIST 3,400 671,585 3,400 77,483
SHAKESPEARE 715 16,068 715 2,356
STACK OVERFLOW 342,477 135,818,730 204,088 16,586,035

partitioned by their speaker. For Stack Overflow, posts on the forum are partitioned by their author.
The number of clients and examples in the training and test sets are given in Table 1.

For CIFAR-100, we train a ResNet-18, replacing batch normalization layers with group normalization
(as proposed and empirically validated in federated settings by Hsieh et al. [24]). For EMNIST,
we train a convolutional network with two convolutional layers, max-pooling, dropout, and two
dense layers. For Shakespeare, we train an RNN with two LSTM layers to perform next-character-
prediction. For Stack Overflow, we perform next-word-prediction using an RNN with a single LSTM
layer. For full details on the models and datasets, see Appendix A.1.

Algorithms. We implement many special cases of Algorithm 1, including FedSGD, FedAvg,
FedAvgM, FedAdagrad, and FedAdam. We also develop two novel methods: FedLARS and FedLamb,
which are the special cases of Algorithm 1 where SERVEROPT is LARS [71] and Lamb [72],
respectively. See Section 5 for the motivation and full details of these algorithms.

Implementation and tuning. Unless otherwise specified, in Algorithm 1 clients perform E = 1
epochs of training with mini-batch SGD. Their batch size is fixed per-task. We set pk to be the number
of examples in client k’s dataset. We tune learning rates for all algorithms and models using a held-out
validation set: We perform T = 1500 rounds of training with M = 50, E = 1 for each algorithm
and model, varying ηc, ηs over {10i | − 3 ≤ i ≤ 1} and select the values that maximize the average
validation performance over 5 random trials. All other hyperparameters (such as momentum) are
fixed. For more details, see Appendix A. We provide open-source implementations of all simulations
in TensorFlow Federated [4]2. All experiments were conducted using clusters of multi-core CPUs,
though our results are independent of wall-clock time and amount of compute resources.

Presentation of results. We apply the algorithms above to the tasks listed above with varying cohort
sizes. For brevity, we present only a fraction of our results, selecting representative experiments
to illustrate large-cohort training phenomena. The full set of experimental results can be found in
Appendix B. We run 5 random trials for each experiment, varying the model initialization and which
clients are sampled per round. In all subsequent figures, dark lines indicate the mean across the 5
trials, and shaded regions indicate one standard deviation above and below the mean.

3 Large-Cohort Training Challenges

In this section we explore challenges that exist when using large cohorts in federated learning. While
some of these challenges mirror issues in large-batch training, others are unique to federated settings.
While we provide concrete recommendations for mitigating some of these challenges, our discussion
is generally centered around introducing and exploring these challenges in the context of federated
learning.

3.1 Catastrophic Training Failures

We first discuss a practical issue unique to large-cohort training. Due to data heterogeneity, the server
model x may be misaligned with some client’s loss fk, in which case ∇fk(x) can blow up and lead
to optimization problems. This issue is exacerbated by large cohorts, as we are more likely to sample
misaligned clients. To demonstrate this, we applied FedAvg with varying cohort sizes M , using
learning rates tuned for M = 10. For each M , we performed 5 random trials and recorded whether a
catastrophic training failure occurred, in which the training accuracy decreased by a factor of at least
1/2 in a single round.

2https://github.com/google-research/federated/tree/f4e26c1b9b47ac320e520a8b9943ea2c5324b8c2/
large_cohort

4

https://github.com/google-research/federated/tree/f4e26c1b9b47ac320e520a8b9943ea2c5324b8c2/large_cohort
https://github.com/google-research/federated/tree/f4e26c1b9b47ac320e520a8b9943ea2c5324b8c2/large_cohort


0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

n 
Ac

cu
ra

cy

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0

10

20

30

40

50

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

n 
Ac

cu
ra

cy

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0

10

20

30

40

50

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAvg

Figure 1: Applying FedAvg to EMNIST with cohort size 200. We plot the train accuracy and norm
of the pseudo-gradient for a trial that ran successfully (left), and one that experienced a catastrophic
training failure (right). The trials differed only in which clients were randomly sampled each round.

On EMNIST, the failure rate increased from 0% for M = 10 to 80% for M = 800. When failures
occurred, we consistently saw a spike in the norm of the pseudo-gradient ∆ (see Figure 1). These
trends occurred on all datasets. In order to prevent this spike, we apply clipping to the client updates.
We use the adaptive clipping method of [2]. While this technique was originally designed for training
with differential privacy, we found that it greatly improved the stability of large-cohort training.
Applying FedAvg to EMNIST with adaptive clipping, no catastrophic training failures occurred
for any cohort size. We use adaptive clipping in all subsequent experiments. For more details, see
Appendix A.3.

3.2 Diminishing Returns

In this section, we show that increasing M in Algorithm 1 can lead to improved convergence, but
that such improvements diminish with M . To demonstrate this, we plot the test accuracy of FedAvg
and FedSGD across multiple tasks, for varying cohort sizes M . Results for CIFAR-100 and Stack
Overflow are given in Figure 2, though we observe similar trends for all tasks (Appendix B.1).

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedSGD
M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.000
0.025
0.050
0.075
0.100
0.125

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedSGD

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 2: Test accuracy of FedAvg (top) and FedSGD (bottom), for various cohort sizes M , over the
course of 1500 communication rounds.

We see that convergence benefits do not scale linearly with cohort size. While increasing M from 1 to
10 can significantly improve convergence, there is generally a threshold after which point increasing
M incurs little to no change in convergence. This threshold is typically between M = 10 and
M = 50. Interestingly, this seems to be true for both tasks, even though M = 50 represents 10% of
the training clients for CIFAR-10, but only approximately 0.015% of the training clients for Stack
Overflow. We see comparable results for EMNIST and Shakespeare, as well as for other optimizers,
including FedAdam and FedAdagrad. See Appendix B.1 for the full results. In short, we see that
increasing M alone can lead to diminishing returns, or even no returns in terms of convergence. This
mirrors issues of diminishing returns in large-batch training [14, 19, 51, 64].

3.3 Generalization Failures

Large-batch centralized optimization methods have repeatedly been shown to converge to models
with worse generalization ability than models found by small-batch methods [23, 30, 46, 47, 50, 71].
Given the parallels between batch size in centralized learning and cohort size in FL, this raises
obvious questions about whether similar issues occur in FL. In order to test this, we applied FedAvg,
FedAdam, and FedAdagrad with different cohort sizes to various models. In Figure 3 we plot the
train and test accuracy of our models after T = 1500 communication rounds of FedAvg, FedAdam,
and FedAdagrad.

We find that generalization issues do occur in FL. For example, consider FedAdam on the CIFAR-100
task. While it attains roughly the same training accuracy for M ∈ {50, 100, 200, 400}, we see that

5



0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
Ac

cu
ra

cy

CIFAR-100
FedAvg
FedAdam
FedAdagrad

0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdam
FedAdagrad

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.550

0.575

0.600

0.625

Tr
ai

n 
Ac

cu
ra

cy

Shakespeare

FedAvg
FedAdam
FedAdagrad

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.53
0.54
0.55
0.56
0.57
0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
FedAdam
FedAdagrad

Figure 3: The train accuracy and test accuracy of FedAvg, FedAdam, and FedAdagrad on CIFAR-100
(left) and Shakespeare (right) after training for 1500 communication rounds, for varying cohort sizes.
The x-axis denotes the percentage of training clients in each cohort.

the larger cohorts uniformly lead to worse generalization. This resembles the findings of Keskar
et al. [30], who show that generalization issues of large-batch training can occur even though the
methods reach similar training losses. However, generalization issues do not occur uniformly. It
is often optimizer-dependent (as in CIFAR-100) and does not occur on the EMNIST and Stack
Overflow datasets (see Appendix B.2). Notably, CIFAR-100 and Shakespeare have many fewer
clients overall. Thus, large-cohort training may reduce generalization, especially when the cohort
size is large compared to the total number of clients.

3.4 Fairness Concerns

One critical issue in FL is fairness across clients, as minimizing (1) may disadvantage some clients [43,
56]. Intuitively, large-cohort training methods may be better suited for ensuring fairness, since a
greater fraction of the population is allowed to contribute to the model at each round. As a coarse
measure of fairness, we compute percentiles of accuracy of our trained models across test clients.
Under many notions of fairness, this would lead to higher accuracy values for smaller percentiles.
The percentiles for FedAdam on each task are given in Figure 4.

1 5 10 50 100 200 400
Cohort Size

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam

1 5 10 50 100 200 400 800
Cohort Size

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

EMNIST, FedAdam

1 5 10 50 100 200 400
Cohort Size

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam

1 5 10 50 100 200 400 800
Cohort Size

0.1

0.2

0.3
Te

st
 A

cc
ur

ac
y

Stack Overflow, FedAdam

Figure 4: Accuracy of FedAdam after training for 1500 communication rounds using varying cohort
sizes and tasks. The box plots show the 5th, 25th, 50th, 75th, and 95th percentiles of accuracy across
test clients.

We find that the cohort size seems to affect all percentiles in the same manner. For example, on
CIFAR-100, M = 50 performs better for smaller percentiles and larger percentiles than larger M .
This mirrors the CIFAR-100 generalization failures from Section 3.3. By contrast, for Stack Overflow
we see increases in all percentiles as we increase M . While the accuracy gains are only slight, they
are consistent across percentiles. This suggests a connection between the fairness of a federated
training algorithm and the fraction of test clients participating at every round. Notably, increasing M
seems to have little effect on the spread between percentiles (such as the difference between the 75th
and 25th percentiles) beyond a certain point. See Appendix B.4 for more results.

3.5 Decreased Data Efficiency

Despite issues such as diminishing returns and generalization failures, federated optimization methods
can see some benefit from larger cohorts. Large-cohort training, especially with adaptive optimizers,
often leads to faster convergence to given accuracy thresholds. For example, in Figure 5, we see that
the number of rounds FedAdam requires to reach certain accuracy thresholds generally decreases with
the cohort size.

While it is tempting to say that large-cohort methods are “faster”, this ignores the practical costs of
large-cohort training. Completing a single communication round often requires more resources with
larger cohorts. To showcase this, we also plot the accuracy of FedAdam with respect to the number of

6



0 500 1000 1500
Communication Rounds

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam

M = 10
M = 50
M = 100
M = 200
M = 400

104 105 106 107

Total Number of Examples

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam
M = 10
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.175

0.200

0.225

0.250

0.275

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 10
M = 50
M = 100
M = 200
M = 400
M = 800

105 106 107 108

Total Number of Examples

0.10

0.15

0.20

0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 10
M = 50
M = 100
M = 200
M = 400
M = 800

Figure 5: Test accuracy of FedAdam on Shakespeare (left) and Stack Overflow (right) with various
cohort sizes. We plot versus the number of communication rounds and the number of examples
processed in total.

examples seen in Figure 5. This measures the data-efficiency of large-cohort training, and shows that
large cohort-training requires significantly more examples per unit-accuracy.

While data-inefficiency also occurs in large-batch training [51], it is especially important in federated
learning. Large-cohort training faces greater limitations on parallelizability due to data-sharing
constraints. Worse, in realistic cross-device settings client compute times can scale super-linearly
with their amount of data, so clients with more data are more likely to become stragglers [7].
This straggler effect means that data-inefficient algorithms may require longer training times. To
demonstrate this, we show in Appendix B.5 that under the probabilistic straggler runtime model from
[38], large-cohort training can require significantly more compute time to converge.

4 Diagnosing Large-Cohort Challenges

We now examine the challenges in Section 3, and provide partial explanations for their occurrence.
One of the key differences between FedAvg and FedSGD is what the pseudo-gradient ∆ in (1)
represents. In FedSGD, ∆ is a stochastic gradient estimate (i.e., E[∆] = ∇f , where the expectation
is over all randomness in a given communication round). For special cases of Algorithm 1 where
clients perform multiple local training steps, ∆ is not an unbiased estimator of∇f [9, 49, 60]. While
increasing the cohort size should reduce the variance of ∆ as an estimator of E[∆], it is unclear what
this quantity represents.

To better understand ∆, we plot its norm on Stack Overflow in Figures 6a and 6b. For FedSGD, ‖∆‖
decreases slightly with M , but has high variance. By contrast, for FedAvg larger cohorts lead to
smaller norms with little overlap. The decrease in norm obeys an inverse square root rule: Let ∆1,∆2

be pseudo-gradients at some round for cohort sizesM1,M2. For FedAvg, ‖∆1‖/‖∆2‖ ≈
√
M2/M1.

We use this rule to predict pseudo-gradient norms for FedAvg in Figure 6c. After a small number
of rounds, we obtain a remarkably good approximation. To explain this, we plot the average cosine
similarity between client updates ∆t

k at each round in Figure 6d, with M = 50. For FedAvg, the
client updates are on average almost orthogonal. This explains Figure 6b, as ∆ is an average of nearly
orthogonal vectors. As we show in Appendix B.6, similar results hold for other tasks and optimizers.

0 500 1000 1500
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedSGD
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

(a)

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

(b)

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, Predicted Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

(c)

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Stack Overflow
FedAvg
FedSGD

(d)

Figure 6: The pseudo-gradient norm of FedSGD (a) and FedAvg (b) on Stack Overflow with varying
cohort sizes M . We also plot the predicted norm for FedAvg using an inverse square root scaling rule
relative to M = 50 (c) and the average cosine similarity of client updates for M = 50 (d).

Implications for large-cohort training. This near-orthogonality of client updates is key to under-
standing the challenges in Section 3. The diminishing returns in Section 3.2 occur in part because
increasing M leads to smaller updates. This also sheds light on Section 3.5: In large-cohort training,
we take an average of many nearly-orthogonal vectors, so each client’s examples contribute little.
The decreasing pseudo-gradient norms in Figure 6c also highlights an advantage of methods such as

7



FedAdam and FedAdagrad: Adaptive server optimizers employ a form of normalization that makes
them somewhat scale-invariant, compensating for this norm reduction.

5 Designing Better Methods

We now explore an initial set of approaches aimed at improving large-cohort training, drawing
inspiration where possible from large-batch training. Our solutions are designed to provide simple
baselines for improving large-cohort training. In particular, our methods and experiments are intended
to serve as a useful reference for future work in the area, not to fully solve the challenges of large-
cohort training.

5.1 Learning Rate Scaling

One common technique for large-batch training is to scale the learning rate according to the batch
size. Two popular scaling methods are square root scaling [36] and linear scaling [20]. While such
techniques have had clear empirical benefit in centralized training, there are many different ways
that they could be adapted to federated learning. For example, in Algorithm 1, the client and server
optimization both use learning rates that could be scaled.

We consider the following scaling method for large-cohort training: We fix the client learning rate,
and scale the server learning rate with the cohort size. Such scaling may improve convergence by
compensating for the pseudo-gradient norm reduction in Figure 6. We use square root and linear
scaling rules: Given a learning rate ηs tuned for M , for M ′ ≥M we use a learning rate η′s where

η′s =

√
M ′
√
M

ηs (square root scaling) OR η′s =
M ′

M
ηs (linear scaling). (3)

We also use a version of the warmup strategy from [20]. For the first W communication rounds, we
linearly increase the server learning rate from ηs to η′s. In our experiments, we set W = 100 and use
a reference server learning rate ηs tuned for M = 50.

Our experiments show that server learning rate scaling rules have mixed efficacy in large-cohort
training. Linear scaling is often too aggressive for federated learning, and caused catastrophic training
failures beyond M = 100 even when using adaptive clipping (see Appendix B.7). By contrast, square
root scaling did not cause catastrophic training failures. Its performance (Figure 7) varied widely
across tasks. For example, it significantly improved train accuracy on Shakespeare, but reduced test
accuracy. While it led to small accuracy improvements on Stack Overflow for some cohort sies, it
degraded accuracy for the largest cohort sizes. In sum, we find that applying learning rate scaling at
the server may not directly improve large-cohort training.

50 100 200 400
Cohort Size

0.61

0.62

0.63

0.64

0.65

Tr
ai

n 
Ac

cu
ra

cy

Shakespeare, FedAvg
No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

n 
Ac

cu
ra

cy

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.555

0.560

0.565

0.570

0.575

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

Figure 7: The train and test accuracy of FedAvg using square root scaling with warmup, versus no
scaling. Results are given for Shakespeare (left) and Stack Overflow (right).

5.2 Layer-wise Adaptivity

Another popular technique for large-batch training is layer-wise adaptivity. Methods such as
LARS [71] and Lamb [72] use layer-wise adaptive learning rates, which may allow the meth-
ods to train faster than SGD with linear scaling and warmup in large-batch settings [71, 72]. We
propose two new federated versions of these optimizers, FedLARS and FedLamb. These are special
cases of Algorithm 1, where the server uses LARS and Lamb, respectively. Given the difficulties of
learning rate scaling above, FedLARS and FedLamb may perform better in large-cohort settings.

8



0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.02 0.20 1.40 5.80 23.50
Participation Rate (%)

0.750
0.775
0.800
0.825
0.850
0.875

Te
st

 A
cc

ur
ac

y

EMNIST

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.50

0.52

0.54

0.56

0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.002 0.020 0.100 0.500 2.000
Participation Rate (%) 1e 1

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

Figure 8: The test accuracy of various methods, including FedLARS and FedLamb, after training for
1500 rounds, for varying cohort sizes and on varying tasks. The x-axis denotes percentage of training
clients in each cohort.

In Figure 8 we present the test accuracy of various methods, including FedLARS and FedLamb, for
varying cohort sizes. In most cases, we see that FedLamb performs comparably to FedAdam for large
cohort sizes, but with slightly worse performance in intermediate stages. One notable exception is
Stack Overflow, in which FedLamb performs well even for M = 1. As in Section 3.3, FedLamb sees
an eventual drop in test accuracy for M > 100. FedLARS has decidedly mixed performance. While
it performs well on CIFAR-10, it does not do well on EMNIST or Shakespeare. While federated
layer-wise adaptive algorithms can be better than coordinate-wise adaptive algorithms on certain
datasets in some large-cohort settings, our results do not indicate that they are universally better.

5.3 Dynamic Cohort Sizes

As we saw in Section 3.5, large-cohort training can reduce data efficiency. Part of this stems from the
fact that larger cohorts may help very little for smaller accuracy thresholds (see Figure 5). In order to
improve data efficiency, we may be able to use smaller cohorts in earlier optimization stages, and
increase the cohort size over time. This technique is parallel to “dynamic batch size” techniques used
in large-batch training [66]. In order to test the efficacy of such techniques in large-cohort training,
we start with an initial cohort size of M = 50 and double the size every 300 rounds up to M = 800
(or the maximum population size if smaller). This results in doubling the cohort size a maximum of 4
times over the 1500 rounds of training we perform. We plot the results for FedAvg and FedAdam on
CIFAR-100 and Stack Overflow in Figure 9. See Appendix B.8 for results on all tasks.

105 106 107

Total Number of Examples
0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg
M = 50
M = 400
Dynamic

105 106 107

Total Number of Examples
0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg
M = 50
M = 800
Dynamic

105 106 107 108

Total Number of Examples
0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam
M = 50
M = 800
Dynamic

Figure 9: Test accuracy of FedAvg and FedAdam on Shakespeare (left) and Stack Overflow (right),
with respect to the total number of examples processed, using fixed and dynamic cohort sizes.

This dynamic strategy attains data efficiency closer to a fixed cohort size of M = 50, while still
obtaining a final accuracy closer to having used a large fixed cohort size. While our initial findings are
promising, we note two important limitations. First, the accuracy of the dynamic strategy is bounded
by the minimum and maximum cohort size used; It never attains a better accuracy than M = 800.
Second, the doubling strategy still faces the generalization issues discussed in Section 3.3.

5.4 Normalized FedAvg

While the methods above show promise in resolving some of the issues of large-cohort training, they
also introduce extra hyperparameters (such as what type of learning rate scaling to use, or how often
to double the cohort size). Hyperparameter tuning can be difficult in federated learning, especially
cross-device federated learning [27]. Even adaptive methods like FedAdam introduce a number of
new hyperparameters that can be challenging to contend with. We are therefore motivated to design a
large-cohort training method that does not introduce any new hyperparameters.

Recall that in Section 4, we showed that for FedAvg, the client updates (∆t
k in Algorithm 1 and

Algorithm 2) are nearly orthogonal in expectation. By averaging nearly orthogonal updates in large-

9



cohort training, we get a server pseudo-gradient ∆t that is close to zero. To compensate, we propose a
variant of FedAvg where rather than applying SGD to the server pseudo-gradient (as in Algorithm 1),
we apply SGD to the normalized server pseudo-gradient. That is, the server updates its model via

x′ = x− ηs∆/‖∆‖2.

This method, which we refer to as normalized FedAvg, is a federated analog of normalized SGD
methods used for centralized learning [57]. It introduces no new hyperparameters with respect to
Algorithm 1. To test it, we present its training and test accuracy versus cohort size in Figure 10.
Notably, we re-use the same learning rates tuned for (unnormalized) FedAvg. For full results, see
Appendix B.9.

1 10 100
Cohort Size

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.78

0.80

0.82

0.84

0.86
Te

st
 A

cc
ur

ac
y

EMNIST

FedAvg
Normalized FedAvg

1 10 100
Cohort Size

0.52

0.54

0.56

0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.18

0.20

0.22

0.24

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
Normalized FedAvg

Figure 10: The test accuracy of FedAvg and the normalized variant of FedAvg, after training for
1500 communication rounds. Results are given for various cohort sizes and tasks.

We find that for most cohort sizes and on most tasks, normalized FedAvg achieves better training
accuracy for larger cohorts. Thus, this helps mitigate the diminishing returns issue in Section 3.2. We
note two important exceptions: for EMNIST, the normalized FedAvg is slightly worse for all cohort
sizes. For Stack Overflow, it obtains worse training accuracy for the largest cohort size. However, we
see significant improvements on CIFAR-100 and all but the largest cohort sizes for Stack Overflow.
We believe that the method therefore exhibits promising results, and may be improved in future work.

5.5 Hyperparameter tuning and other results.

The methods discussed above, including learning rate scaling and layer-wise adaptivity, can require
significant tuning to perform well [58]. To date, little work has been paid to how to tune hyperpa-
rameters in federated learning. Such work may be vital to obtain optimal performance, especially
given our observations in Section 4 and the client-server structure of federated algorithms, which
gives rise to many more hyperparameters. In Algorithm 1, tuning could involve the client optimizer,
the client batch size, the server optimizer, and the cohort size. In fact, the client batch size is a key
hyperparameter. Recall that clients perform E epochs of mini-batch SGD on their local datasets.
Fixing E, the batch size dictates the number of local training steps they perform. As we show in
Appendix B.10, this number of local steps is critical for achieving maximal performance, and may be
necessary to tune according to the cohort size.

6 Limitations and Future Work

In this work we explore the benefits and limitations of large-cohort training in federated learning. As
discussed in Sections 3.5 and 5, focusing on the number of communication rounds often obscures
the data efficiency of a method. This in turn impacts many metrics important to society, such as
total energy consumption or total carbon emissions. While we show that large-cohort training can
negatively impact such metrics by reducing data-efficiency (see Section 3.5 and Appendix B.5), a
more specialized focus on these issues is warranted. Similarly, we believe that an analysis of fairness
in large-cohort settings going beyond Section 3.3 would be beneficial.

Future work also involves connecting large-cohort training to other important aspects of federated
learning, and continuing to explore connections with growing lines of work in large-batch training.
In particular, we wish to see whether noising strategies, especially differential privacy mechanisms,
can help overcome the generalization issues of large-cohort training. Personalization may also help
mitigate issues of generalization and fairness. Finally, although not a focus of our work, we note that
some of the findings above may extend to cross-silo settings, especially if communication restrictions
require subsampling clients.

10



References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, page 308–318, 2016.

[2] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy. Differentially
private learning with adaptive clipping. arXiv preprint arXiv:1905.03871, 2019.

[3] The TensorFlow Federated Authors. TensorFlow Federated Stack Overflow dataset, 2019. URL
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/
datasets/stackoverflow/load_data.

[4] The TFF Authors. TensorFlow Federated, 2019. URL https://www.tensorflow.org/
federated.

[5] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Dis-
tributed SGD with quantization, sparsification and local computations. In Advances in Neural
Information Processing Systems, 2019.

[6] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. PROCHLO:
Strong privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 441–459, 2017.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon
Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated
learning at scale: System design. In Proceedings of Machine Learning and Systems. Proceed-
ings of MLSys, 2019.

[8] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H Brendan McMahan, Virginia Smith, and
Ameet Talwalkar. LEAF: A benchmark for federated settings. arXiv preprint arXiv:1812.01097,
2018.

[9] Zachary Charles and Jakub Konečný. Convergence and accuracy trade-offs in federated learn-
ing and meta-learning. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, 2021.

[10] Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated
learning. arXiv preprint arXiv:2010.13723, 2020.

[11] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 375–403, 2019.

[12] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence
analysis and power-of-choice selection strategies. arXiv preprint arXiv:2010.01243, 2020.

[13] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending
MNIST to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large scale
distributed deep networks. In Advances in Neural Information Processing Systems, 2012.

[15] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[16] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang Song, Kunal
Talwar, and Abhradeep Thakurta. Encode, shuffle, analyze privacy revisited: Formalizations
and empirical evaluation. arXiv preprint arXiv:2001.03618, 2020.

11

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated


[17] Antonious M Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of federated learning: Privacy, communication and accuracy trade-offs. arXiv
preprint arXiv:2008.07180, 2020.

[18] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj Kumar. Active
federated learning. arXiv preprint arXiv:1909.12641, 2019.

[19] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

[20] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[23] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In Advances in Neural Information
Processing Systems, 2017.

[24] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire
of decentralized machine learning. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

[25] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[26] Zeou Hu, Kiarash Shaloudegi, Guojun Zhang, and Yaoliang Yu. FedMGDA+: Federated
learning meets multi-objective optimization. arXiv preprint arXiv:2006.11489, 2020.

[27] Peter Kairouz, H. Brendan McMahan, and contributors. Advances and open problems in
federated learning. Foundations and Trends R© in Machine Learning, 14(1), 2021. ISSN
1935-8237.

[28] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[29] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning.
In Proceedings of the 37th International Conference on Machine Learning, 2020.

[30] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
In International Conference on Learning Representations, 2017.

[31] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local GD on
heterogeneous data. arXiv preprint arXiv:1909.04715, 2019.

[32] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local SGD on
identical and heterogeneous data. In Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, 2020.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[34] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

12



[35] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[36] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

[37] Yassine Laguel, Krishna Pillutla, Jerôme Malick, and Zaid Harchaoui. A superquantile ap-
proach to federated learning with heterogeneous devices. In 2021 55th Annual Conference on
Information Sciences and Systems (CISS), 2021.

[38] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and Kannan
Ramchandran. Speeding up distributed machine learning using codes. IEEE Transactions on
Information Theory, 64(3):1514–1529, 2017.

[39] Daliang Li and Junpu Wang. FedMD: Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581, 2019.

[40] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smithy. FedDANE: A federated newton-type method. In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, pages 1227–1231. IEEE, 2019.

[41] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[42] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In Proceedings of Machine Learning
and Systems 2020, pages 429–450, 2020.

[43] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in
federated learning. In International Conference on Learning Representations, 2020.

[44] Wei Li and Andrew McCallum. Pachinko allocation: DAG-structured mixture models of topic
correlations. In Proceedings of the 23rd International Conference on Machine Learning, 2006.

[45] Guanfeng Liang and Ulaş C Kozat. Tofec: Achieving optimal throughput-delay trade-off of
cloud storage using erasure codes. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, 2014.

[46] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches,
use local SGD. In International Conference on Learning Representations, 2019.

[47] Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Extrapolation for large-batch
training in deep learning. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

[48] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding
the effectiveness of SGD in modern over-parametrized learning. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

[49] Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik.
From local SGD to local fixed-point methods for federated learning. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

[50] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks.
arXiv preprint arXiv:1804.07612, 2018.

[51] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[52] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, volume 54, 2017.

[53] H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online convex
optimization. In COLT The 23rd Conference on Learning Theory, 2010.

13



[54] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. In International Conference on Learning Representations,
2018.

[55] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Eleventh Annual Conference of the International
Speech Communication Association, 2010.

[56] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
Proceedings of the 36th International Conference on Machine Learning, 2019.

[57] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd
International Conference on Artificial Intelligence and Statistics, 2019.

[58] Zachary Nado, Justin M Gilmer, Christopher J Shallue, Rohan Anil, and George E Dahl. A
large batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes.
arXiv preprint arXiv:2102.06356, 2021.

[59] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In IEEE International Conference on Communications (ICC), 2019.

[60] Reese Pathak and Martin J Wainwright. FedSplit: An algorithmic framework for fast federated
optimization. In Advances in Neural Information Processing Systems, pages 7057–7066, 2020.

[61] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evaluation
and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

[62] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

[63] Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client
sampling. arXiv preprint arXiv:2007.15197, 2020.

[64] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal
of Machine Learning Research, 20:1–49, 2019.

[65] Elaine Shi, TH Hubert Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. Privacy-
preserving aggregation of time-series data. In Proc. NDSS, volume 2, pages 1–17, 2011.

[66] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2018.

[67] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khaz-
aeni. Federated learning with matched averaging. In International Conference on Learning
Representations, 2020.

[68] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

[69] Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker partici-
pation in non-IID federated learning. In International Conference on Learning Representations,
2021.

[70] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
2018.

[71] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

14



[72] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020.

[73] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A feder-
ated learning framework with optimal rates and adaptivity to non-IID data. arXiv preprint
arXiv:2005.11418, 2020.

15


	Introduction
	Related Work

	Preliminaries
	Experimental Setup

	Large-Cohort Training Challenges
	Catastrophic Training Failures
	Diminishing Returns
	Generalization Failures
	Fairness Concerns
	Decreased Data Efficiency

	Diagnosing Large-Cohort Challenges
	Designing Better Methods
	Learning Rate Scaling
	Layer-wise Adaptivity
	Dynamic Cohort Sizes
	Normalized FedAvg
	Hyperparameter tuning and other results.

	Limitations and Future Work

