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Abstract

Meta-learning algorithms are widely used for few-shot learning. For example,
image recognition systems that readily adapt to unseen classes after seeing only a
few labeled examples. Despite their success, we show that modern meta-learning
algorithms are extremely sensitive to the data used for adaptation, i.e. support data.
In particular, we demonstrate the existence of (unaltered, in-distribution, natural)
images that, when used for adaptation, yield accuracy as low as 4% or as high
as 95% on standard few-shot image classification benchmarks. We explain our
empirical findings in terms of class margins, which in turn suggests that robust and
safe meta-learning requires larger margins than supervised learning.

1 Introduction

Meta-learning, or learning to learn [29], is the problem of training models that can adapt to new
tasks quickly, using only a handful of examples. The problem is inspired by humans’ ability to learn
new skills or concepts at a rapid pace (e.g. recognizing previously unknown objects after seeing
only a single example [20]). Meta-learning has found applications in many domains, including
safety-critical medical image analysis [23], autonomous driving [35], visual navigation [43] and
legged robots control [40]. In this paper, we investigate the vulnerabilities of modern meta-learning
algorithms in the context of few-shot image classification problem [25], where a meta-learner needs
to solve a classification task on classes unseen during training using a small number (typically 1
or 5) of labeled samples from each of these classes to adapt. Specifically, we demonstrate that the
performance of modern meta-learning algorithms on few-shot image recognition benchmarks varies
drastically depending on the examples provided for adaptation, typically called support data, raising
concerns about its safety in deployment.

Despite the many empirical successes of artificial intelligence, its vulnerabilities are important to
explore and mitigate in our pursuit of safe AI that is suitable for critical applications. Sensitivity to
small (possibly adversarial) perturbations to the inputs [13], backdoor attacks allowing malicious
model manipulations [6], algorithmic biases [2] and poor generalization outside of the training
domain [18] are some of the prominent examples of AI safety failures. Some of these issues have
also been studied in the context of meta-learning, e.g. adversarial robustness [45, 11, 44] and fairness
[37]. Most of the aforementioned AI-safety dangers are associated with adversarial manipulations
of the train or test data, or significant distribution shifts at test time. In meta-learning, prior works
demonstrated that an adversary can create visually imperceptible changes of the test inputs [11] or the
support data [44, 30] causing meta-learning algorithms to fail on various few-shot image recognition
benchmarks. In this work we demonstrate adversary-free and in-distribution failures specific to
meta-learning. Sohn et al. [39] studied a similar problem in the context of semi-supervised learning.

A distinct feature of meta-learning is the adaptation stage where the model is updated using a scarce
amount of labeled examples from a new task. In practice, these examples need to be selected and
presented to a human for labeling. Then a meta-learner adapts and can be used to classify the
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Figure 1: Examples of CIFAR-FS support images (unaltered, i.e. not modified adversarially or in
any other way) from two test tasks that yield vastly different 1-shot post-adaptation performances
of a popular meta-learning algorithm (MetaOptNet-SVM). Accuracy ranges from 6.3% to 94.6%
suggesting extreme sensitivity of the meta-learner to the support data. Images mostly appear rep-
resentative of the corresponding classes and would be hard to recognize as potentially problematic
without significant expertise of the training dataset from the human labeling the support data.

remaining images without a human. Currently, meta-learning algorithms choose support examples
for labeling at random. Dhillon et al. [8] noted that the standard deviation of accuracies computed
with random support examples may be large. We demonstrate that if the support data is not carefully
curated, the performance of the meta-learner can be unreliable. In Figure 1 we present examples of
unaltered support images (i.e. they are not modified adversarially or in any other way) representative
of the corresponding task (in-distribution) that lead to vastly different performance of the meta-learner
after adaptation. Support examples causing poor performance are not prevalent, however, they are also
not data artifacts as there are multiple of them. The existence of such examples might be concerning
when deploying meta-learning in practice, even when adversarial intervention is out of scope.

Our main contributions are as follows:

1. We present a simple algorithm for finding the best and the worst support examples and
empirically demonstrate the sensitivity of popular meta-learning algorithms to support data.

2. We demonstrate that a popular strategy for achieving robustness [22] adapted to our setting
fails to solve the support data sensitivity problem.

3. We explain the existence of the worst case examples from the margin perspective suggesting
that robust meta-learning requires class margins more stringent than classical supervised
learning.

2 Meta-learning approaches

Meta-learning approaches are typically categorized into model-based [34, 26, 33], metric-based
[17, 41, 38] and optimization-based methods [10, 28, 14]. We refer to Hospedales et al. [15] for a
recent survey of the area. In this paper we mostly focus on the optimization-based method popularized
by the Model Agnostic Meta Learning (MAML) [10] bi-level formulation (metric-based prototypical
networks [38] are also considered in the experiments). Let {Tn}ni=1 be a collection of n tasks
Ti = {Ai,Di} each consisting of a support Ai and a query (or validation) Di datasets. MAML
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bi-level optimization problem is as follows [10]:

min
θ

1

n

n∑
i=1

`(θi, θ;Di),

such that θi = arg min
θi

`(θi, θ;Ai), i = 1, . . . , n.

(2.1)

The first line of equation 2.1 is typically minimized using gradient-based optimization of θ and is
called meta-update. The second line is the adaptation step and its implementation differs depending
on whether the fine-tuned θi are treated as parameters of the end-to-end neural network or as the
“head” parameters, i.e. the last linear classification layer. We refer to Goldblum et al. [12] for an
empirical study of the differences between the two adaptation perspectives.

MAML [10] and Reptile [28] are examples of algorithms that fine-tune all network parameters during
the adaptation. Instead of solving the argmin of θi exactly they approximate it with a small number
of gradient steps. For one gradient step approximation equation 2.1 can be written as

min
θ

1

n

n∑
i=1

`(θ − α∂`(θ;Ai)
∂θ

;Di) (2.2)

for some step size α. MAML directly optimizes equation 2.2 differentiating through the inner
gradient step, which requires expensive Hessian computations. Reptile introduces an approximation
by-passing the Hessian computations and often performs better.

Another family of meta-learning algorithms considers θ as the neural network feature extractor
parameters shared across tasks and adapts only the linear classifier parametrized with θi, that takes
the features extracted with θ as inputs. The advantage of this perspective is that the adaptation
minimization problem is convex and, for many linear classifiers, can be solved fast and exactly. Let
a(θ,A) denote a procedure that takes data in A, passes it through a feature extractor parametrized
with θ, and returns θi, i.e. optimal parameters of a linear classifier using the obtained features to
predict the corresponding labels. Then equation 2.1 can be written as

min
θ

1

n

n∑
i=1

`(θ, a(θ,Ai);Di). (2.3)

This approach requires a(θ,A) to be differentiable. R2D2 [4] casts classification as a multi-target
ridge-regression problem and utilizes the corresponding closed-form solution as a(θ,A). Lee et al.
[21] propose MetaOptNet, where a(θ,A) is a differentiable quadratic programming solver [1], and
implement it with linear support vector machines (SVM) and ridge-regression. Prototypical networks
[38] is a metric-based approach that can also be viewed from the perspective of equation 2.3. Here
a(θ,A) outputs class centroids in the neural-feature space and the predictions are based on the closest
class centroids. Last-layer adaptation approaches, especially MetaOptNet, outperform full-network
approaches on most benchmarks [21, 12].

Both adaptation perspectives have a weakness underlying our study: their test performance is based
on an optimization problem with large number of parameters and as little as 5 data points (1-shot
5-way setting). To understand the problem, consider the last-layer adaptation approach: even when
the feature extractor produces linearly separable representations, the dimension is large (for example,
Lee et al. [21] utilize a ResNet-12 architecture with 2560-dimensional last layer features that we adopt
in our experiments) making the corresponding linear classifier extremely sensitive to the support data.
In Section 3 we demonstrate the problem empirically and provide theoretical insights in Section 4.

2.1 Meta-learning benchmarks

Before presenting our findings, we discuss the meta-learning benchmarks we consider. Meta-learning
algorithms are often compared in a few-shot image recognition setting. Each task typically has five
unique classes, i.e. 5-way, and one or five examples per class for adaptation, i.e. 1-shot or 5-shot.
Classes that appear at test time are not seen during training. Few-shot learning datasets are typically
the derivatives of the existing supervised learning benchmarks, e.g. CIFAR-100 [19] and ImageNet
[7]. Few-shot problem is setup by disjoint partitioning of the available classes into train, validation
and test. Tasks are obtained by sampling 5 distinct classes from the corresponding pool and assigning
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a subset of examples for adaptation and a different subset for meta-update during training or accuracy
evaluation for reporting the performance.

CIFAR-FS [4] is a dataset of 60000 32×32 RGB images from CIFAR-100 partitioned into 64, 16
and 20 classes for training, validation and testing, respectively. FC-100 [31] is also a derivative of
CIFAR-100 with a different partition aimed to reduce semantic overlap between 60 classes assigned
for training, 20 for validation, and 20 for testing. MiniImageNet [41] is a subsampled, downsized
version of ImageNet. It consists of 60000 84×84 RGB images from 100 classes split into 64 for
training, 16 for validation, and 20 for testing.

3 Finding adaptation vulnerabilities

In this section we study the performance range of meta-learners trained with a variety of algorithms:
MAML [10], Meta-Curvature (MC) [32], Prototypical networks [38], R2D2 [4], and MetaOptNet
with Ridge and SVM heads [21]. At test time a meta-learner receives support data and its performance
is recorded after it adapts. Typical evaluation protocols sample support data randomly and report
average performance across tasks. While this is a useful measure for comparing algorithms, safety-
critical applications demand understanding of potential performance ranges. We demonstrate that
there are support examples the lead to vastly different test performances. To identify the worst and
the best case support examples for a given task we perform an iterative greedy search.

Let X = {xkm}
k∈[K]
m∈[M ] be a set of potential support examples for a given task. K is the number of

classes, M is the number of examples per class (we assume same M for each class for simplicity),
and [M ] = {0, . . . ,M − 1}. Let D be the evaluation set for this task. In a J-shot setting, let
Z = {zkj }

k∈[K]
j∈[J] be a set of indices of the support examples (zkj 6= zkj′ for any k, j 6= j′ and zkj ∈ [M ]

for any k, j). Denote R(Z,X ,D) a function computing accuracy of a meta learner on the query
set D after adapting on A = {xk

zkj
}k∈[K]
j∈[J] . Finding the worst/best case accuracy amounts to finding

indices Z minimizing/maximizing R(Z,X ,D). We solve this greedily by updating a single index zkj
at a time, holding the rest of Z fixed, iterating over [K] and [J ] multiple times. We summarize the
procedure for finding the worst case accuracy in Algorithm 1 (the best case accuracy is analogous).1
Due to the greedy nature, this algorithm finds a local optima, but it is sufficiently effective as we see
in the following section.

Algorithm 1 Finding the worst case support examples
Input: trained meta-learner, potential support examples X to search over, query data D.
repeat

Initialize indices Z = {zkj }
k∈[K]
j∈[J] randomly.

for j ∈ [J ], k ∈ [K] do
zkj ← arg minzkj R(Z,X ,D), zkj ∈ [M ] \ {zkj′}j′ 6=j

end for
until R(Z,X ,D) stops decreasing
Output: support examples indices Z = {zkj }

k∈[K]
j∈[J]

Visualizing the worst case support search In Figure 2 we visualize a single iteration of Algorithm
1 on a 1-shot task from the CIFAR-FS dataset. This is a 5-way task with “snail”, “red pepper”, “bed”,
“plain”, and “telephone” as classes. In round 1, i.e. k = 0, of iteration 1 we start with a random
example per class and evaluate post-adaptation accuracy on the query data D for each potential
support “snail”, i.e. {x0m}m∈[M ]. Here the first line corresponds to “snail” indexed with m = 0, i.e.
x00, and post-adaptation accuracy of 73.5%. We select a “snail” support image corresponding to the
worst accuracy of 53.8% and proceed to round 2, i.e. k = 1, of iteration 1. In round 2 we repeat the
same procedure for the corresponding class “red pepper” (again the first line corresponds to “red
pepper” indexed with m = 0, i.e. x10), holding the support “snail” image selected previously and

1This is a simple approach, however we found it faster and more efficient then a more sophisticated continuous
relaxation using weights of the potential support examples with sparsity constraints.
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Figure 2: Visualization of Algorithm 1 on a random 1-shot task for the MetaOptNet-SVM method
on the CIFAR-FS dataset. We show 1 iteration of the algorithm here, where the algorithm starts by
randomly sampling a support image per class and then iterates over all data samples for all classes.

support images for other classes fixed. The algorithm finds the worst case support “red pepper” image
corresponding to the post-adaptation accuracy of 37%. Then the algorithm proceeds analogously to
rounds 3, 4, and 5 of iteration 1, resulting in a combination of support examples corresponding to 2.9%
post-adaptation accuracy. This is already sufficiently low, however on some tasks and higher-shot
settings it may be beneficial to run additional iterations. On iteration 2, the algorithm will again go
through all the classes starting from the support examples found on iteration 1 instead of random
ones. In our experiments we always run Algorithm 1 for 3 iterations. In Appendix B we empirically
study the convergence of the algorithm justifying this choice.

Table 1: Accuracies for different meta-learning methods on the CIFAR-FS dataset

Worst acc Avg acc Best acc

MAML
1-shot 5.91 ± 1.94% 56.52 ± 10.85% 80.04 ± 6.83%
5-shot 13.88 ± 7.28% 70.45 ± 8.42% 85.15 ± 6.12%
10-shot 26.26 ± 7.85% 70.88 ± 7.82% 85.81 ± 6.47%

MC
1-shot 4.73 ± 1.51% 47.76 ± 11.28% 69.81 ± 8.37%
5-shot 9.29 ± 6.13% 70.23 ± 8.82% 85.22 ± 6.53%
10-shot 16.95 ± 10.78% 70.62 ± 7.89% 87.81 ± 6.91%

ProtoNets
1-shot 5.06 ± 2.37% 63.80 ± 0.71% 84.88 ± 6.29%
5-shot 18.28 ± 9.85% 80.06 ± 0.46% 90.41 ± 4.72%
10-shot 27.32 ± 11.17% 82.95 ± 0.44% 91.44 ± 4.35%

R2D2
1-shot 6.14 ± 2.89% 68.86 ± 0.68% 86.63 ± 5.97%
5-shot 14.73 ± 8.21% 82.29 ± 0.44% 92.34 ± 4.21%
10-shot 29.30 ± 12.16% 85.74 ± 0.42% 93.41 ± 3.81%

MetaOptNet-Ridge
1-shot 5.17 ± 2.97% 71.21 ± 0.67% 87.40 ± 5.95%
5-shot 16.81 ± 11.57% 84.18 ± 0.45% 93.15 ± 4.43%
10-shot 32.10 ± 16.26% 86.82 ± 0.42% 93.89 ± 3.59%

MetaOptNet-SVM
1-shot 5.27 ± 2.82% 70.79 ± 0.69% 87.65 ± 5.76%
5-shot 14.92 ± 8.60% 83.98 ± 0.44% 93.36 ± 4.60%
10-shot 22.24 ± 10.13% 87.11 ± 0.40% 93.56 ± 3.98%

3.1 Performance range results

We summarize the worst, average and best accuracies of six meta-learning algorithms on three
benchmark datasets (see Section 2.1 for data descriptions) in 1-shot, 5-shot, and 10-shot setting
in Tables 1, 2, and 3. All meta-learners are trained using code from the authors or more modern
meta-learning libraries [3] (see Appendix A for implementation and additional experimental details).
For evaluation we randomly partition each class in each task into 400 potential support examples
composing X and 200 query examples composing D (all datasets have 600 examples per class). To
compute average accuracy we randomly sample corresponding number of support examples per class;
for the best and the worst case accuracies we use Algorithm 1 to search over support examples in X .
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Table 2: Accuracies for different meta-learning methods on the FC100 dataset

Worst acc Avg acc Best acc

MAML
1-shot 7.32 ± 1.49% 31.89 ± 6.75% 50.13 ± 6.75%
5-shot 7.51 ± 3.59% 43.58 ± 7.61% 61.64 ± 8.50%

10-shot 10.51 ± 2.86% 44.30 ± 6.89% 64.98 ± 7.27%

MC
1-shot 6.53 ± 1.56% 36.56 ± 8.05% 56.75 ± 5.57%
5-shot 5.17 ± 1.34% 47.12 ± 7.02% 66.33 ± 5.11%

10-shot 8.35 ± 3.85% 49.12 ± 6.67% 65.27 ± 5.58%

ProtoNets
1-shot 5.25 ± 1.69% 37.21 ± 0.50% 59.75 ± 6.39%
5-shot 5.57 ± 2.99% 50.49 ± 0.48% 70.31 ± 6.41%

10-shot 9.93 ± 4.39% 56.15 ± 0.47% 72.94 ± 6.23%

R2D2
1-shot 6.13 ± 1.63% 37.91 ± 0.48% 59.67 ± 6.17%
5-shot 6.72 ± 2.85% 54.35 ± 0.49% 74.34 ± 6.59%

10-shot 12.00 ± 7.07% 61.72 ± 0.47% 77.94 ± 3.56%

MetaOptNet-Ridge
1-shot 5.44 ± 1.57% 39.13 ± 0.51% 61.28 ± 6.18%
5-shot 5.97 ± 3.29% 53.20 ± 0.47% 72.65 ± 6.43%

10-shot 11.56 ± 2.78% 59.52 ± 0.48% 75.30 ± 1.56%

MetaOptNet-SVM 1-shot 5.29 ± 1.57% 38.19 ± 0.48% 60.14 ± 6.12%
5-shot 5.75 ± 2.83% 54.45 ± 0.49% 74.01 ± 6.64%

10-shot 9.54 ± 3.86% 60.52 ± 0.48% 77.03 ± 6.27%

Table 3: Accuracies for different meta-learning methods on the miniImageNet dataset

Worst acc Avg acc Best acc

MAML
1-shot 6.08 ± 1.77% 47.13 ± 8.78% 71.39 ± 6.74%
5-shot 10.15 ± 8.40% 57.69 ± 7.92% 79.60 ± 5.43%

10-shot 20.88 ± 7.22% 59.52 ± 8.34% 79.94 ± 3.41%

MC 1-shot 4.46 ± 2.05% 45.03 ± 8.79% 65.98 ± 6.23%
5-shot 5.79 ± 3.45% 60.47 ± 7.57% 75.09 ± 4.72%

10-shot 9.67 ± 3.84% 60.54 ± 7.45% 73.23 ± 6.24%

ProtoNets
1-shot 4.69 ± 2.16% 53.42 ± 0.59% 76.46 ± 5.64%
5-shot 9.53 ± 4.91% 70.60 ± 0.43% 85.33 ± 3.60%

10-shot 15.39 ± 5.17% 75.91 ± 0.38% 87.31 ± 3.24%

R2D2
1-shot 6.10 ± 3.27% 56.09 ± 0.58% 78.17 ± 5.33%
5-shot 12.03 ± 5.51% 72.04 ± 0.43% 86.64 ± 3.34%

10-shot 15.78 ± 6.10% 77.32 ± 0.36% 86.70 ± 1.99%

MetaOptNet-Ridge 1-shot 5.19 ± 3.21% 57.94 ± 0.62% 79.15 ± 5.05%
5-shot 9.83 ± 4.05% 74.80 ± 0.43% 84.81 ± 4.12%

10-shot 19.16 ± 10.07$ 80.31 ± 0.36% 89.72 ± 2.99%

MetaOptNet-SVM 1-shot 4.82 ± 3.03% 59.03 ± 0.62% 80.38 ± 5.40%
5-shot 9.52 ± 4.88% 75.54 ± 0.40% 85.41 ± 3.86%

10-shot 15.93 ± 7.64% 80.16 ± 0.37% 90.63 ± 2.71%

Our key finding is the large range of performances of all meta-learning algorithms considered in 1-,
5-, and 10-shot settings. Prototypical networks have slightly better worst-case 5-shot accuracy on
CIFAR-FS, but it has large variance and is likely due to our algorithm finding poor local optima on
one of the tasks. We also see no differences between meta-learners adapting end-to-end, i.e. MAML
and MC, and those adapting only the last linear classification layer, i.e. R2D2 and MetaOptNet.
Goldblum et al. [12] showed that the last-layer adaptation methods produce good quality linear-
separable embeddings. One could expect such methods to be less sensitive to support data, however,
as we discuss in Section 4, linear separability is not sufficient in the few-shot learning setting. 10-shot
worst-case accuracies are not as poor (despite mostly remaining worse than random guessing), but
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we expect that with more support data available, the gap would narrow.2 Finally, we note that the
best-case accuracy is significantly better, especially in the 1-shot setting.

3.2 Worst case support examples are not artifacts

We have demonstrated that it is possible to find support examples yielding poor post-adaptation
performance of a variety of meta-learners. It is also important to understand the nature of these
worst-case examples: are they data artifacts, i.e. outliers or miss-labeled examples, or realistic images
that could cause failures in practice? We argue that the latter is the case.

1. In Figure 1 we presented several examples of the worst-case support images on CIFAR-FS:
they are correctly labeled and appear representative of the respective classes. Inspecting
the images on the left closer we note that it is often not easy to notice visually that such
support examples could result in a poor performance without significant expert knowledge
of the dataset. Only the cellphone image labelled “telephone” and grey-scale image labeled
“plain” seem potentially problematic. On the other hand, “snail” and “bed” images all appear
normal. On the right figure, majority of the images also appear reasonable.

2. 10-shot setting should be a lot more resilient to outliers, however Algorithm 1 continues to
be successful in 10-shot setting, finding ten different examples per class leading to accuracy
slightly better than a random predictor as shown in Tables 1, 2, and 3.

3. In Figure 3 we present histograms of accuracies visualizing the first iteration over classes
of Algorithm 1 in 1-shot learning on CIFAR-FS. The right most histogram corresponds to
post-adaptation accuracies for different choices of support image for class 0 and random
choices for classes 1-4. The subsequent histogram is for different choices of support images
for class 1, where image for class 0 is chosen with Algorithm 1 and classes 2-4 are random,
and analogously for the remaining three histograms. We see that the lower accuracy tails of
the first two histograms contain multiple worst-case support examples in the corresponding
classes. By the third histogram, the range of accuracies is below 50% for all possible support
examples in the corresponding classes.

4. In Figure 4 we present histogram of accuracies of 3991 unique combinations from CIFAR-
FS of 1-shot support examples evaluated by Algorithm 1 throughout 3 iterations. There are
3335 distinct sets of 5 examples each with less than 50% post-adaptation accuracy.

We present analogous analysis for other meta-learners and datasets in Appendix C, where we also
conclude that worst-case adaptation examples are realistic and can cause malfunctions in practice.

3.3 Improving support data robustness with adversarial training

The issue of robustness has been studied in many contexts in machine learning, and adversarial
vulnerability of deep learning based models has been explored extensively in the recent literature
[13, 5, 22]. While the support data sensitivity of meta learners presented in this work is a new type of
non-robustness, it is possible to approach the problem borrowing ideas from adversarial training [22].
The high-level idea of adversarial training is to use a mechanism exposing non-robustness to guide
the data used for model updates. For example, if a model is sensitive to perturbations in the inputs,
for an incoming batch of data we find the worst-case (by maximizing the loss) perturbations to the
inputs and use the perturbed inputs to updated model parameters. To converge, adversarial training
needs to find model parameters such that the mechanism exposing non-robustness can no-longer
damage the performance. Adversarial training has theoretical guarantees for convex models [42] and
has been shown empirically to be successful in defending against adversarial attacks on deep learning
models [22].

We use adversarial training scheme in an attempt to achieve robustness to support data in meta
learning. Specifically, we use Algorithm 1 to find worst-case adaptation examples during training
instead of using random ones as in standard training. The result is quite intriguing: Tables 4 and 5
summarize performance of adversarially (in a sense of support data) trained meta-learners on train
and test tasks. In most cases, adversarial training converged, i.e. we are no longer able to find
detrimental worst-case support examples with Algorithm 1 on the training tasks, however we observe

2With enough support data, last-layer methods should succeed as their embeddings are linearly separable.
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Figure 3: Histogram of test accuracies on the
first iteration of Algorithm 1 as it progresses
through classes evaluating 1-shot combinations
of images for adaptation on a CIFAR-FS test task
with MetaOptNet-SVM meta-learner.
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Figure 4: Histogram of test accuracies computed
during 3 iterations of Algorithm 1 evaluating
different unique 1-shot combinations of images
for adaptation on a CIFAR-FS test task with
MetaOptNet-SVM meta-learner.

no improvements of the worst-case accuracy on the test tasks. Our experiment demonstrates that
support data sensitivity in meta-learning is not easily addressed with existing methods and requires
exploring new solution paths.

Table 4: Accuracies for different meta-learning methods trained in the standard manner and adversar-
ially on the CIFAR-FS dataset

Method Dataset Training Worst acc Avg acc Best acc

R2D2
Train Standard 13.83 ± 9.35 % 87.68 ± 0.56% 96.91 ± 3.15%

Adversarial 46.34 ± 14.93% 88.19 ± 0.59% 97.94 ± 2.89%

Test Standard 6.14 ± 2.89% 68.86 ± 0.68% 86.63 ± 5.97%
Adversarial 6.76 ± 2.69% 68.62 ± 0.66% 87.46 ± 5.86%

MetaOptNet-Ridge
Train Standard 77.75 ± 17.80% 99.23 ± 0.15% 99.81 ± 0.99%

Adversarial 90.08 ± 14.22% 98.87 ± 0.21% 99.84 ± 0.66%

Test Standard 5.17 ± 2.96% 71.21 ± 0.67% 87.41 ± 5.95%
Adversarial 5.38 ± 2.79% 71.81 ± 0.67% 88.42 ± 5.60%

MetaOptNet-SVM
Train Standard 9.74 ± 9.00% 91.93 ± 0.47% 97.58 ± 2.51%

Adversarial 93.47 ± 11.84% 99.08 ± 0.19% 99.81 ± 0.89%

Test Standard 5.27 ± 2.82% 70.79 ± 0.69% 87.66 ± 5.76%
Adversarial 4.97 ± 2.58% 71.11 ± 0.70% 87.84 ± 5.93%

4 Meta-learning margin analysis

Meta-learners, specifically those only adapting the last layer linear classifier, produce embeddings
that appear (approximately) linearly separable even when projected into two dimensions as shown in
Figure 5 (we used Multidimensional Scaling [24] to preserve the relative cluster sizes and distances
between clusters). In the supervised learning context this would be considered an easy problem
for, e.g., linear SVM as in the MetaOptNet-SVM meta-learner. The problem, however, is that
in the supervised learning context we typically have sufficient data, while in the few-shot setting
meta-learners are restricted to as little as a single example per class in a high-dimensional space.

Lets take another look at Figure 5. These are Multidimensional Scaling [24] projections of the em-
beddings obtained with the MetaOptNet trained on CIFAR-FS. Embeddings in (a) and (c) correspond
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Table 5: Accuracies for different meta-learning methods trained in the standard manner and adversar-
ially on the FC100 dataset

Method Dataset Training Worst acc Avg acc Best acc

R2D2
Train Standard 8.95 ± 6.62% 84.24 ± 0.60% 95.48 ± 3.45%

Adversarial 45.01 ± 12.55% 87.50 ± 0.57% 97.11 ± 2.97%

Test Standard 6.13 ± 1.63% 37.91 ± 0.48% 59.67 ± 6.17%
Adversarial 6.44 ± 1.68% 38.70 ± 0.46% 60.87 ± 6.30%

MetaOptNet-Ridge
Train Standard 14.27 ± 11.32 % 92.54 ± 0.45% 97.62 ± 2.51%

Adversarial 79.67 ± 14.69% 96.83 ± 0.38% 98.76 ± 2.26%

Test Standard 5.44 ± 1.57% 39.13 ± 0.51% 61.29 ± 6.18%
Adversarial 5.47 ± 1.89% 36.87 ± 0.48% 59.07 ± 6.63%

MetaOptNet-SVM
Train Standard 18.05 ± 12.64% 94.13 ± 0.38% 98.28 ± 2.09%

Adversarial 90.37 ± 12.18% 97.12 ± 0.39% 99.06 ± 1.98%

Test Standard 5.29 ± 1.57% 38.19 ± 0.48% 60.14 ± 6.11%
Adversarial 6.08 ± 1.78% 35.92 ± 0.45% 60.30 ± 6.26%

Worst case examples

(a) Train task embeddings
(standard training)

Worst case examples

(b) Test task embeddings
(standard training)

Worst case examples

(c) Train task embeddings
(adversarial training)

Worst case examples

(d) Test task embeddings
(adversarial training)

Figure 5: Projected embeddings of MetaOptNet-SVM for a train and a test task query data from
CIFAR-FS. We compare standard and adversarial training discussed in Section 3.3. Points are colored
with their labels. Highlighted points are the worst-case support examples selected with Algorithm 1.

to a query data from a train task for standard and adversarially trained models, and embeddings in
(b) and (d) to a query data from a test task for the corresponding models. All embeddings appear
well-clustered, however embeddings in (c) have the largest separation and the smallest within-class
variance. This wouldn’t make a significant difference in supervised learning with enough data, but
makes a big difference for meta-learning: when using Algorithm 1 to find the worst-case support
examples (highlighted in the figures), the corresponding accuracies are 1.8% for (a), 2.90% for (b),
99.4% for (c), and 5.70% for (d). We see that although all embeddings are well-separated3, only (c) is
robust to support data selection. We present the projected embeddings for a variety of meta-learners
on the FC100 dataset in Appendix D. As we discuss next, robust meta-learning, in addition to vanilla
linear-separability, requires features with bigger class separation and lower intra-class variances.

In the following theorem, we show that as long as the class embeddings are sufficiently separated,
the probability of any two points sampled from the classes leading to a max-margin classifier with
large misclassification rate is exponentially small. We note the high degree of separation (linear
in embedding dimension) necessary to guarantee robustness to the choice of support data. This
suggests unless the class embeddings are well-separated, the resulting meta-learning algorithm will
be sensitive to the choice of support data.
Theorem 4.1. Consider a (binary) Gaussian discriminant analysis model:

X | Y = 1 ∼ N(µ, σ2Id),

X | Y = 0 ∼ N(−µ, σ2Id).

3For comparison, the accuracies of the corresponding supervised learning problems (i.e. linear classifiers
trained using embeddings of all 400 per class potential support examples X , rather than a single example per
class) are 99.6% for (a) and 94.3% for (b).
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As long as µ = (d+
√

2dt+ 2t)σ for some t > 0, then the max-margin classifier between two points
sampled independently from each cluster has misclassification rate at most Φ(−d−

√
2dt− 2t) with

probability at least (1− e−t)2.

Proof. Consider a (binary) Gaussian discriminant analysis model:

X | Y = 1 ∼ N(µ, σ2Id),

X | Y = 0 ∼ N(−µ, σ2Id).

Define the core of the clusters as the sets

C1 , {x ∈ Rd | ‖x− µ‖2 ≤ rσ},
C0 , {x ∈ Rd | ‖x+ µ‖2 ≤ rσ}.

It is a tedious geometric exercise to show that as long as µ > 2rσ, then the midpoint of any pair of
points (x1, x0) ∈ C1 × C0 falls outside C1 ∪ C0. Further, the hyperplane

H , {x ∈ Rd | (x1 − x0)Tx = 1
2 (‖x1‖22 − ‖x0‖22)}

bisects C0 and C1 for any choice of x1, x0. This implies the risk of any max-margin classifier
constructed from x1 and x0 has misclassification error rate at most 2Φ(−r), where Φ is the N(0, 1)
CDF. We note that the probability of a pair of independently sampled points x1 ∼ N(µ, σ2Id) and
x0 ∼ N(−µ, σ2Id) falling in C1 and C0 respectively is Fχ2

d
(r), where Fχ2

d
is the CDF of a χ2

d random
scalar. By picking r = d+

√
2dt+ 2t for some t > 0, the probability of x1 ∈ C1 and x0 ∈ C0 is at

least (1− e−t)2.

5 Conclusion

We studied the problem of support data sensitivity in meta-learning: the performance of existing
algorithms is extremely sensitive to the examples used for adaptation. Our findings suggest that
when deploying meta-learning, especially in safety-critical applications such as autonomous driving
or medical imaging, practitioners should carefully check the support examples they label for the
meta-learner. However, even when the data is interpretable for a human, e.g. images, recognizing
potentially detrimental examples could be hard as we have seen in our experiments.

In our experiments, we considered popular few-shot image classification benchmarks. We note that
meta-learning has also been applied to data in other modalities such as language understanding [9]
and speech recognition [16]. We expect our conclusions and Algorithm 1 for finding the worst-case
support data to apply in other meta-learning applications, however, an empirical study is needed to
verify this.

Going forward, our results suggest that robustness in meta-learning could be achieved by explicitly
encouraging separation and tighter intra-class embeddings (at least in the context of last-layer
adaptation meta-learners). Unfortunately, the adversarial training approach, while successful in
promoting robustness in many applications, fails to achieve robustness of meta-learners to support
data. In our experiments, adversarial training achieved well-separated and tight intra-class embeddings
resulting in robustness on the train tasks (i.e., tasks composed of classes seen during training), but
failed to improve on the test tasks. Our findings demonstrate that new approaches are needed to
achieve robustness in meta-learning.

Finally, we note that our results provide a new perspective on a different meta-learning phenomenon
studied in prior work. Setlur et al. [36] and Ni et al. [27] studied the importance of the support
data during training. Setlur et al. [36] quantified the impact of the support data diversity, while Ni
et al. [27] considered the effectiveness of the support data augmentation, and both concluded that
meta-learning is insensitive to the support data quality and diversity. In our experiments with a
variation of adversarial training in Section 3.3, where support data during training is selected based
on Algorithm 1 to find worst-case support examples, we achieved significant improvements in terms
of the worst-case accuracies on the train tasks. Thus, the conclusion is different from [36, 27], i.e. the
support data used during training has an impact on the resulting meta-learner from the perspective of
sensitivity studied in our work.

10



Acknowledgments and Disclosure of Funding

This note is based upon work supported by the National Science Foundation (NSF) under grants
no. 1916271, 2027737, and 2113373. Any opinions, findings, and conclusions or recommendations
expressed in this note are those of the authors and do not necessarily reflect the views of the NSF.

References
[1] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural

networks. In International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[2] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias.
www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, May 2016.

[3] Sébastien MR Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for meta-learning research. arXiv preprint arXiv:2008.12284,
2020.

[4] Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. In International Conference on Learning Representations,
2019.

[5] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[8] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

[9] Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos. Investigating meta-learning algorithms for
low-resource natural language understanding tasks. arXiv preprint arXiv:1908.10423, 2019.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[11] Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning: A
meta-learning approach. arXiv preprint arXiv:1910.00982, 2019.

[12] Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, and Tom
Goldstein. Unraveling meta-learning: Understanding feature representations for few-shot tasks.
In International Conference on Machine Learning, pages 3607–3616. PMLR, 2020.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[14] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-
learning. arXiv preprint arXiv:1910.01727, 2019.

[15] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

[16] Jui-Yang Hsu, Yuan-Jui Chen, and Hung-yi Lee. Meta learning for end-to-end low-resource
speech recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7844–7848. IEEE, 2020.

[17] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

[18] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery, et al.
Wilds: A benchmark of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421, 2020.

11



[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[20] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

[21] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10657–10665, 2019.

[22] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[23] Gabriel Maicas, Andrew P Bradley, Jacinto C Nascimento, Ian Reid, and Gustavo Carneiro.
Training medical image analysis systems like radiologists. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 546–554. Springer, 2018.

[24] Al Mead. Review of the development of multidimensional scaling methods. Journal of the
Royal Statistical Society: Series D (The Statistician), 41(1):27–39, 1992.

[25] Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learning from one example through
shared densities on transforms. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pages 464–471. IEEE, 2000.

[26] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[27] Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. Data augmentation
for meta-learning. In International Conference on Machine Learning, pages 8152–8161. PMLR,
2021.

[28] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[29] Joseph D Novak, D Bob Gowin, and Gowin D Bob. Learning how to learn. cambridge
University press, 1984.

[30] Elre Talea Oldewage, John F Bronskill, and Richard E Turner. Attacking few-shot classifiers
with adversarial support sets. 2020.

[31] Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. TADAM: task dependent adaptive
metric for improved few-shot learning. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 719–729, 2018.

[32] Eunbyung Park and Junier B Oliva. Meta-curvature. In Advances in Neural Information
Processing Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/
2019/file/57c0531e13f40b91b3b0f1a30b529a1d-Paper.pdf.

[33] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by
predicting parameters from activations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7229–7238, 2018.

[34] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.
[35] Ahmad El Sallab, Mahmoud Saeed, Omar Abdel Tawab, and Mohammed Abdou. Meta learning

framework for automated driving. arXiv preprint arXiv:1706.04038, 2017.
[36] Amrith Setlur, Oscar Li, and Virginia Smith. Is support set diversity necessary for meta-learning?

arXiv preprint arXiv:2011.14048, 2020.
[37] Dylan Slack, Sorelle A Friedler, and Emile Givental. Fairness warnings and fair-maml: learning

fairly with minimal data. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pages 200–209, 2020.

[38] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning.
arXiv preprint arXiv:1703.05175, 2017.

[39] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. arXiv preprint arXiv:2001.07685, 2020.

12

https://proceedings.neurips.cc/paper/2019/file/57c0531e13f40b91b3b0f1a30b529a1d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/57c0531e13f40b91b3b0f1a30b529a1d-Paper.pdf


[40] Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea
Finn, and Jie Tan. Rapidly adaptable legged robots via evolutionary meta-learning. arXiv
preprint arXiv:2003.01239, 2020.

[41] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. arXiv preprint arXiv:1606.04080, 2016.

[42] Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of
Mathematics, pages 265–280, 1945.

[43] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi.
Learning to learn how to learn: Self-adaptive visual navigation using meta-learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6750–6759, 2019.

[44] Han Xu, Yaxin Li, Xiaorui Liu, Hui Liu, and Jiliang Tang. Yet meta learning can adapt fast, it
can also break easily. arXiv preprint arXiv:2009.01672, 2020.

[45] Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning. arXiv
preprint arXiv:1806.03316, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See 3 for limitations on finding
adaptation vulnerabilities and 3.3 for adversarial training limitations

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Material for
reproducbility of experiments is currently included in the supplement, and will later be
released online

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See sections 3.1 and 3.3

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] All experiments are run multiple times with different
seeds and standard deviations are reported for each experiment

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We use machines on internal cluster
with a single V-100 GPU to run all our experiments

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] External existing assets used in this

work are either MIT or Apache licensed
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Additional code for methods proposed in this work are included in the supplemental
material

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

13



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Standardized image classification datasets are
used with no known personally identifiable information available

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14



A Experiment details

Network architectures: For MAML and Meta-Curvature experiments, we use a 4-layer CNN
network, where each convolutional block in the network is a sequential composition of a [2 × 2
max-pooling layer, batch normalization, and a 3 × 3 convolution layer]. The final classification layer
of the network is fully-connected layer mapping the input features to 5-way output.

For ProtoNet and R2D2 experiments, we use the same architectures as are used in the original papers.
The ProtoNet feature extractor is a combination of four convolutional blocks. Each block consists of a
64-filter 3 × 3 convolution, batch normalization layer, a ReLU nonlinearity, and a 2 × 2 max-pooling
layer. The R2D2 feature extractor is a combination of 4 convolutional layers with [96, 192, 384, 512]
filters. Each convolutional layer consists of a 3 × 3 convolution, batch normalization, 2 × 2 max
pooling, and a leaky ReLU with a factor of 0.1

For MetaOptNet experiments, we use the same implementation and setting as described in the original
paper. MetaOptNet networks consist of a ResNet-12 network as feature extractors, and either a
support vector machine or ridge regression based head for classification.

Meta-learning setup: MetaOptNet networks utilize SGD with Nesterov momentum of 0.9 and
a weight decay of 5 × 10−4 for optimization. The learning rate for this set of experiments was
initially set to 1.0 and then modified to 0.06 for epochs 20 to 40, 0.012 for epochs 40 to 50, and 0.024
thereafter. MAML and Meta-Curvature networks are trained using Adam optimizer with an initial
learning rate of 3× 10−4 and 0.01 respectively.

All networks are trained for 60000 iterations – 60 epochs of 1000 episodes each, with the batch sizes
for MAML experiments set to 32 tasks in each batch, batch size for Meta-Curvature set to 16 tasks in
each batch, and for MetaOptNet experiments it’s set to 8 tasks in each batch.

During the meta-training phase, we apply the random crop, color jitter, and random horizontal flip
transformations for MetaOptNet networks. Additionally, we match the meta-training shot with the
meta-testing shot for all networks. While meta-training, we compute the accuracy on a 5-shot 5-way
validation dataset, and select the model with the best accuracy on this validation dataset for sensitivity
analysis.

During evaluation, i.e. results in Tables 1, 2, and 3, to compute best and worst accuracies we
randomly partition each class in each task into 400 potential adaptation examples composing X
and 200 evaluation examples composing D (all datasets have 600 examples per class). We use
the corresponding algorithm to find the adaptation examples in X and report mean and standard
deviations of evaluation data D post-adaptation accuracies over 500 random tasks for 1-shot setting,
and 100 random tasks for 5-shot and 10-shot settings. To compute average accuracies we follow the
setup of previous meta-learning papers, i.e. sample corresponding number of adaptation examples
randomly and choose a random subset of 50 examples per class for evaluation, and report mean and
standard deviation of accuracies over 1000 random tasks.

Adversarial training setup: To adversarially train the models as described in Section 3.3, we
initialize with models trained in the standard fashion. We then train these models in an adversarial
manner for 60 epochs of 1000 episodes each. We use the same hyperparameters and experimental
setup as we did for the standard training, except that we reduce the learning rate by a factor of 10.
Thus, the learning rate is initially set to 0.1 for the first 20 epochs, then modified to 0.006 for epochs
20 to 40, 0.0012 for epochs 40 to 50, and 0.0024 thereafter. To find the adversarial examples, we
find the worst-case examples using algorithm 1 run for 3 iterations. We then use these worst-case
examples as the query data to update the model parameters.

Algorithm runtimes: We run all our experiments on a 12 CPU core, 32 GB RAM, and 1 V100
GPU machine. The run times for a single iteration (in our experiments we ran 3 iterations to find the
worst/best case examples) for MetaOptNet-SVM method on CIFAR-FS are approximately 3 minutes
for 1-shot setting, approximately 18 minutes for 5-shot setting, and approximately 43 minutes for
10-shot setting. The corresponding run times for a single iteration for R2D2 method on FC100
are approximately 1 minute for 1-shot setting, approximately 6 minutes for 5-shot setting, and
approximately 20 minutes for 10-shot setting.
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B Convergence of the algorithm to find adaptation vulnerabilities

To find the worst-case support examples (Section 3) and to find the adversarial examples for adversarial
training (Section 3.3), we use Algorithm 1 with 3 rounds of attack or iterations. In this section, we
show the convergence of Algorithm 1 and the rationale behind choosing 3 iterations. We execute
algorithm 1 to find the worst-case 5-way 10-shot support examples on CIFAR-FS and FC100 datasets
for R2D2, ResNet-Ridge, and the ResNet-SVM algorithms. We track the worst-case accuracy as it
updates through 10 iterations, and show the mean worst-case accuracy through the iterations averaged
over 5 different randomly-sampled tasks in figure 6. We see that while the worst-case accuracy drops
significantly in the first few iterations, it stabilizes after 3 iterations and does not show significant
change after the 3 iterations for all datasets and algorithms. Additionally, running for longer iterations
can reduce accuracy slightly more for the 10-shot setting as compared to the 1-shot and 5-shot
settings; however, the 10-shot setting is more robust to this algorithm than the 5-shot setting and thus
the drop in accuracy in later iterations is understandable.
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(a) Worst-case accuracy over 10 iterations of
algorithm 1 for different algorithms and on
the CIFAR-FS dataset.
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(b) Worst-case accuracy over 10 iterations of
Algorithm 1 for different algorithms and on
the FC100 dataset.

Figure 6: Convergence plots for Algorithm 1 for different meta-learning algorithms on the CIFAR-FS
and FC100 datasets.

C Performance range results

1. In Figure 7 we present several examples of the worst-case support images on the FC100 and
the miniImageNet datasets for the MetaOptNet-SVM method. Additionally, in Figure 8 we
present several examples of the worst-case support images on the CIFAR-FS, FC100, and
the miniImageNet datasets for the ProtoNets method. All the support images are correctly
labeled and appear representative of the respective classes. Closely inspecting the images,
we note that it is often not easy to notice visually that such support examples could result
in a poor performance without significant expert knowledge of the dataset. Barring a very
small portion of the images (e.g., gray-scale “Girl” image and a truck-size “Nematode”),
images appear reasonable and adequately representative of their respective classes.

2. In Figure 9 we present histograms of accuracies visualizing the first iteration over classes of
Algorithm 1 in 1-shot learning on miniImageNet dataset for MAML, R2D2, MetaOptNet-
Ridge, and the MetaOptNet-SVM algorithms. The rightmost histogram (in each sub-figure)
corresponds to post-adaptation accuracies for different choices of support image for class
0 and random choices for classes 1-4. The subsequent histogram (in each sub-figure) is
for different choices of support images for class 1, where image for class 0 is chosen with
Algorithm 1 and classes 2-4 are random, and analogously for the remaining three histograms.
We see that the lower accuracy tails of the first two histograms contain multiple worst-
case support examples in the corresponding classes. By the third histogram, the range of
accuracies is well below the average accuracies for each of the algorithms for all possible
support examples in the corresponding classes.
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(a) Examples of FC100 adaptation images from
a random 1-shot test task and the corresponding
post-adaptation accuracies of MetaOptNet-SVM.
Accuracy ranges from 4.0% to 60.8% illustrating
the sensitivity of the meta-learner to the adaptation
data.

(b) Examples of MiniImageNet adaptation images
from a random 1-shot test task and the correspond-
ing post-adaptation accuracies of MetaOptNet-
SVM. Accuracy ranges from 5.8% to 75.9% il-
lustrating the sensitivity of the meta-learner to the
adaptation data.

Figure 7: Examples of unaltered support images from the FC100 and miniImageNet datasets for a
random 1-shot task, depicting the post-adaptation performance of a popular meta-learning algorithm
(MetaOptNet-SVM).

(a) Examples of CIFAR-FS adapta-
tion images from a random 1-shot
test task and the corresponding post-
adaptation accuracies of ProtoNet.

(b) Examples of FC100 adaptation
images from a random 1-shot test
task and the corresponding post-
adaptation accuracies of ProtoNet.

(c) Examples of MiniImageNet adap-
tation images from a random 1-shot
test task and the corresponding post-
adaptation accuracies of ProtoNet.

Figure 8: Examples of unaltered support images from the CIFAR-FS, FC100, and miniImageNet
datasets for a random 1-shot task, depicting the post-adaptation performance of a popular meta-
learning algorithm (ProtoNets).

3. In Figure 10 we present histogram of accuracies of unique combinations from the miniIma-
geNet dataset of 1-shot support examples evaluated by Algorithm 1 throughout 3 iterations.

(a) For the MAML algorithm, out of the 4390 distinct sets represented in the histogram,
3054 distinct sets of 5 examples each have less than 30% post-adaptation accuracy.

(b) For the R2D2 algorithm, out of the 5986 distinct sets represented in the histogram,
5274 distinct sets of 5 examples each have less than 40% post-adaptation accuracy.

(c) For the MetaOptNet-Ridge algorithm, out of the 3592 distinct sets represented in the
histogram, 2795 distinct sets of 5 examples each have less than 40% post-adaptation
accuracy.
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(b) R2D2
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(c) MetaOptNet-Ridge
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(d) MetaOptNet-SVM

Figure 9: Histogram of accuracies visualizing progression of the first iteration of Algorithm 1 in
1-shot learning over the miniImageNet dataset for different meta-learning algorithms.
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(d) MetaOptNet-SVM

Figure 10: Histogram of accuracies of unique combinations from the miniImageNet dataset of 1-shot
support examples evaluated by Algorithm 1 for 3 iterations,

(d) For the MetaOptNet-SVM algorithm, out of the 5188 distinct sets represented in the
histogram, 4403 distinct sets of 5 examples each have less than 40% post-adaptation
accuracy.

D Improving support data robustness with adversarial training

In Table 6, we show the projected embeddings for the R2D2, MetaOptNet-Ridge, and the MetaOptNet-
SVM algorithms on the training and the test dataset, when trained in a standard manner vs when
trained adversarially. As we note in Section 3.3 and as results depict in Tables 4 and 5, the adversarial
training converges and the worst-case accuracy improves drastically on the training tasks while no
improvement is observed on the test tasks.
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Table 6: Projected embeddings of R2D2, MetaOptNet-Ridge, and MetaOptNet-SVM methods for a
train and a test task query data from the FC100 dataset. We compare standard training and adversarial
training discussed in Section 3.3. Points are colored with their labels. Highlighted points are the
worst-case support examples selected with Algorithm 1.

Training (↓) Dataset (↓) R2D2 MetaOptNet-Ridge MetaOptNet-SVM

Standard Train

Worst case examples Worst case examples Worst case examples

Test

Worst case examples Worst case examples Worst case examples

Adversarial Train

Worst case examples Worst case examples Worst case examples

Test

Worst case examples Worst case examples Worst case examples
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