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Abstract

Graph Neural Networks (GNNs) are a powerful class of architectures for solving
learning problems on graphs. While many variants of GNNs have been proposed
in the literature and have achieved strong empirical performance, their theoretical
properties are less well understood. In this work we study the convergence prop-
erties of the gradient descent algorithm when used to train GNNs. In particular,
we consider the realizable setting where the data is generated from a network with
unknown weights and our goal is to study conditions under which gradient descent
on a GNN architecture can recover near optimal solutions. While such analysis
has been performed in recent years for other architectures such as fully connected
feed-forward networks, the message passing nature of the updates in a GNN poses
a new challenge in understanding the nature of the gradient descent updates. We
take a step towards overcoming this by proving that for the case of deep linear
GNNs gradient descent provably recovers solutions up to error ε in O(log(1/ε))
iterations, under natural assumptions on the data distribution. Furthermore, for the
case of one-round GNNs with ReLU activations, we show that gradient descent
provably recovers solutions up to error ε in O( 1

ε2 log( 1
ε )) iterations.

1 Introduction

In the last decade, deep neural networks have been successfully used for a variety of machine learning
tasks. In particular, optimization of various deep neural network architectures using gradient descent
has been empirically (and in some cases, theoretically) shown to work surprisingly well, with an
ability to obtain small training error on a variety of problems and datasets. In this paper, we focus on
a particular class of neural network architectures known as Graph Neural Networks (GNNs).

Graph Neural Networks (GNNs) have become a popular choice for machine learning tasks with graph
structured data [Hamilton et al., 2017, Kipf and Welling, 2016, Veličković et al., 2017]. Computation
in GNNs is performed by each node sending and receiving messages along the edges of the graph,
and aggregating messages from its neighbors to update its embedding vector. After a few rounds
of message passing, the computed node embeddings from all the nodes are aggregated to compute
the final output [Gilmer et al., 2017]. This leads to a simple and elegant architecture for a variety of
graph-related problems in practice.

While theoretically understanding the optimization, learning, and generalization properties of deep
neural networks is a challenging task in itself, our current understanding of GNNs lags significantly
behind their more popular counterparts such as fully connected feed-forward networks and convo-
lutional neural networks (CNNs). In the context of GNNs recent theoretical works have focused
on questions such as as the representation power of various GNN architectures [Xu et al., 2019b,a,
Loukas, 2020a,b] and establishing generalization bounds [Garg et al., 2020]. However, the optimiza-
tion properties of GNN architectures are less explored. These involve identifying conditions under
which algorithms like gradient descent can be shown to be provably effective in optimizing GNNs.
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Such analysis has been carried out in recent years for fully connected feed-forward networks and
CNNs, mainly restricted to depth-2 non-linear networks or deep linear networks [Ge et al., 2017,
Andoni et al., 2014, Bartlett et al., 2017, Arora et al., 2018a, Hardt and Ma, 2016]. However, the
message passing nature of GNNs makes it harder to theoretically analyze the optimization problem
in GNNs, compared to other neural network architectures.

We provide the first convergence analysis of gradient descent for GNNs, and provably show that
gradient descent can recover near optimal solutions. We first consider the case of a one-round (or one
hidden-layer) GNN with ReLU activations. This scenario already captures much of the complexity of
the problem, in particular allowing for multiple local optima. Following standard assumptions made
in the case of analyzing feed-forward networks, we show that when the input data distribution is the
standard Gaussian distribution, and the training objective is to minimize least square regression loss,
gradient descent converges to the population error of ε in O( 1

ε2 log( 1
ε )) iterations. In particular, our

analysis applies to the standard practice of initializing the network with weights from a Gaussian
distribution, and we do not perform any complicated pre-processing step to initialize the network.

We then extend our result to the multi-round (or multi-layer) case, but for the case of linear activations
(analogous to the setting for deep linear networks [Arora et al., 2018a, Bartlett et al., 2018]). In this
case, we show a stronger convergence result; gradient descent converges to an error ε in O(log(1/ε))
iterations. All our results are for the realizable setting, i.e, we assume that the data is indeed generated
by an (unknown) underlying GNN, as is typical in analysis of gradient descent for other network
architectures (see the discussion of related work in Section A). The rest of the paper is organized as
follows. In Section 2 we set up notation and discuss the model of GNNs that we consider. In Section 3
we present our first main convergence theorem for the case of one layer/round GNNs with ReLU
activations. This is followed by our second main result on analyzing deep linear GNNs in Section 4.
We conclude with discussion and open problems in Section 6. We discuss the most relevant related
works in individual sections (Section 3 and Section 4), and provide a more comprehensive survey of
related work in Section A.

2 Preliminaries

Graph Neural Networks operate via passing and aggregating messages among the nodes of a graph.
Given an undirected unweighted graph G = (V,E), let n = |V | be the number of nodes in the
graph and m = |E| be the number of edges. Initially each node i ∈ [n] is initialized with its own
private embedding xi ∈ Rr, where r denotes the embedding size. Then the computation in a GNN
proceeds in a number of rounds where at round `, the new embedding x`i for vertex i is obtained via a
combination of aggregate and combine steps Gilmer et al. [2017] as shown below.

a
(`)
i = AGGREGATE({x`−1

j : j ∈ N(i)}) (1)

x
(`)
i = COMBINE(x

(`−1)
i , a`i). (2)

Here N(i) is the neighborhood of vertex i. When comparing to standard architectures such as
feed-forward networks, it is useful to think of a round of message passing as computation performed
by one layer of a more standard architecture. Hence an `-round GNN shouldbe thought of as a
network with ` hidden layers. Different choices of the aggregate and combine operations lead to
different versions of GNNs such as graph convolutional networks (GCNs) [Kipf and Welling, 2016],
GraphSAGE [Hamilton et al., 2017], and graph isomorphism networks (GINs) [Xu et al., 2019b]
to name a few. The aggregate operation is typically a simple pooling operation such as the sum or
average, and the combine operation is implemented via a low depth neural network. Furthermore, in
the most popular implementation, i.e, GCNs, the network parameters are shared across the different
rounds. This setting will also be the focus of study in our work. In particular we consider two problem
settings. In the first case (Section 3) we assume that the number of rounds in the GNN is one (i.e. one
hidden layer) and that the combine operation is a depth one network with ReLU activations. In the
second setting (Section 4) we consider arbitrary round L GNNs but restrict the combine operation to
be a linear network. In both the settings we will assume that the aggregate operation is a sum, and that
the initial input embeddings for the nodes are drawn from the standard Gaussian distributions, i.e.,
N(0, Ir×r). Finally, our analysis for the case of ReLU activations will rely crucially on the notion of
dual activations and their properties that we recap below.
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Definition 1 ([Daniely et al., 2016]). The dual activation of σ is the function σ̂ : [−1, 1] 7→ R defined
as

σ̂(ρ) = E[σ(X)σ(Y )], (3)

where X and Y are jointly Gaussian random variables with mean, zero variance one, and covariance
ρ.

The work of Daniely et al. [2016] showed that dual activations satisfy many nice properties such
as continuity in [−1, 1] and the fact that they are convex in [0, 1]. For a more extensive list of the
properties of the dual activations please refer to Lemma 11 in Daniely et al. [2016].

3 One round GNNs with ReLU activations

In ths section we present our main result on convergence of gradient descent for learning an unknown
one round GNN with ReLU activations. We consider a graphG = (V,E) with n nodes and maximum
degree d. Furthermore, we assume that there is an unknown GNN generating outcomes as

y =
n∑
i=1

σ(W ∗x̄i), (4)

where x̄i =
∑
j∈N(i) xj and each xj is drawn i.i.d. from N(0, Ir×r), and σ(t) =

√
2 max(t, 0). In

other words, the aggregate operation is a sum, and the combine operation is a depth-1 neural network
with ReLU activations that produces an h-dimensional embedding for each node, where h is the
number of hidden units (inner dimensionality of W ∗). Finally, the embeddings of all the nodes are
summed up to produce an h-dimensional output for the graph G.

The
√

2 factor multiplication to the ReLU function is for technical convenience and does not affect
our results. The ground truth matrix W ∗ is an h× r matrix where we denote w∗1 , . . . , w

∗
h to be the

rows of W ∗. Without loss of generality we will assume that ‖w∗j ‖ = 1, and again our results extend
easily to the case when ‖wj‖ is bounded for all j (see Appendix B). We train another one round GNN
with unknown parameter matrix W to minimize the following loss via gradient descent.

L(W ) =
1

2
E
[
‖ŷ − y‖2

]
(5)

=
1

2
E
[∥∥ n∑

i=1

σ(Wx̄i)−
n∑
i=1

σ(W ∗x̄i)
∥∥2]

(6)

=

h∑
j=1

Lj(wj) :=

h∑
j=1

1

2
E
[( n∑

i=1

σ(w>j x̄i)−
n∑
i=1

σ(w∗j
>x̄i)

)2]
. (7)

We will analyze the following gradient descent updates.

Wt+1 = Wt − η∇L(Wt). (8)

Here∇L(W ) denotes the gradient of the population loss and as is common in practice, we assume
that the entries of the matrix W are initialized i.i.d. from a Gaussian distribution. We are now ready
to state our main theorem below.
Theorem 1. Let W ∗ be the unknown parameter for a one-round GNN in Eq. (4) with ‖w∗j ‖ = 1 for
j ∈ [h], and let L(W ) denote the population loss at W as defined in Eq. (5). If the degree d of the
graph is o(

√
n), then for any ε ∈ (0, 1), if W0 ∼ N(0, I), with probability at least 1− h · e−c′rwe

have that L(WT ) ≤ ε2 provided T ≥ c · n
4h2(d+1)
ε2 log(nhε ) for absolute constants c, c′ > 0.

Several remarks are in order regarding the above theorem. Note that the convergence rate is
O( 1

ε2 log( 1
ε )) as a function of the desired error, and is polynomial in the other problem param-

eters such as the number of nodes, the maximum degree of the graph, and the dimensionality of the
W ∗ matrix. In the context of feedforward neural networks, gradient descent based algorithms have
been analyzed primarily in the Neural Tangent Kernel (NTK) regime where an unknown target is
learned by performing gradient descent on a highly over-parameterized network [Jacot et al., 2018,
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Du et al., 2018, Daniely, 2017, Allen-Zhu et al., 2019]. The advantage of such an analysis is that it
can be carried out for large depth neural networks (at least for smooth activations). However, due
to the massive overparameterization the gradient descent updates move extremely slowly and the
dynamics correspond to performing kernel regression in a very high dimensional space [Lee et al.,
2019b, Arora et al., 2019b]. This is quite far from the behavior of gradient descent in realistic settings.
We, on the other hand are interested in the setting where there is an unknown network generating
the data and one would like to learn it via gradient descent with only mild over-parameterization. In
particular, even the simple problem setting we consider in this section captures important aspects of
the complexity of the general problem, in particular allowing for multiple local minima.

There have been recent efforts in going beyond the NTK regime for the case of feed-forward networks.
Similar to our setting, these works assume that the input is generated from the Gaussian distribution.
Furthermore, these works still either need some over-parameterization to argue convergence [Li et al.,
2020], or need to add appropriate regularizers to the squared loss objective [Ge et al., 2017].

In contrast, an interesting aspect of our result is that we do not need any additional over-
parameterization and learn the unknown GNN using another network of the same size. The recent
work of Zhang et al. [2020] studied a model for GNNs similar to our setting in Eq. (4) and designed
a learning algorithm that first initializes the network weights based on a tensor decomposition subrou-
tine, followed by an accelerated gradient descent procedure. We on the other hand do not perform
any special initialization based on techniques such as spectral methods and analyze gradient descent
updates starting from Gaussian initialization. The model of GNN we consider in Eq. (4) also bears
similarity to the model of overlapping patches considered in the work of Du et al. [2017] in the
context of convolutional neural networks. The authors analyze the convergence of gradient descent
under certain strong assumptions on the correlation among the different patch distributions. We on
the other hand make no such assumptions. Furthermore, even in the case of feed-forward networks,
current analysis in the non-NTK regime do not extend beyond one hidden layer. Hence our work
brings the understanding of gradient descent for GNNs on par with that of feed-forward networks.

We next present the main ideas and key lemmas behind the proof of Theorem 1.

3.1 Expressions for loss and gradients

In this section we first compute simplified expressions for the loss and the gradients that will be
useful in subsequent analysis. We first begin by writing an equivalent expression for the population
loss. We have

Lj(wj) =
1

2
E
[
(

n∑
i=1

σ(wj
>x̄i))

2
]

+
1

2
E
[
(

n∑
i=1

σ(w∗j
>x̄i))

2
]
− E

[ n∑
i,j=1

σ(wj
>x̄i)σ(w∗j

>x̄j)
]
.

Notice that each wj evolves independently and hence we can simply focus on the convergence of
Lj(wj) to Lj(w∗j ). To simplify the above expression we will make use of the dual activation function
of σ(·) from the work of Daniely et al. [2016] re-stated in Definition 1. For simplicity in this section
we assume that the degree of each node is exactly d. The case when degree is at most d follows with
minimal changes and is presented in Appendix B. Notice that each x̄i is a sum of d+ 1 messages,
one involving the node i and the other d messages involving neighbors of i. Hence, x̄i is a random
variable distributed as N(0, (d+ 1)I). Furthermore, for any i 6= j define di,j to be the number of
common messages between x̄i and x̄j . If i = j, then we define di,j = di,i = d+ 1. We next compute
expressions for each of the three terms above.

E
[
(

n∑
i=1

σ(wj
>x̄i))

2
]

= E
[ n∑
i,j=1

σ(wj
>x̄i))σ(wj

>x̄j))
]

= E
[
(d+ 1)‖wj‖2

n∑
i,j=1

σ
( wj

>x̄i√
(d+ 1)‖wj‖

)
σ
( wj

>x̄j√
(d+ 1)‖wj‖

)]
= (d+ 1)‖wj‖2

n∑
i,j=1

σ̂(
di,j
d+ 1

) (definition of the dual activation in Eq. (3)).

(9)
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Similarly we get that,

E
[
(

n∑
i=1

σ(w∗j
>x̄i))

2
]

= (d+ 1)‖w∗j ‖2
n∑

i,j=1

σ̂(
di,j
d+ 1

). (10)

Finally we simplify the last term.

E
[ n∑
i,j=1

σ(wj
>x̄i)σ(w∗j

>x̄j)
]

= E
[
(d+ 1)‖wj‖‖w∗j ‖

n∑
i,j=1

σ
( wj

>x̄i√
(d+ 1)‖wj‖

)
σ
( w∗j

>x̄j√
(d+ 1)‖w∗j ‖

)]
= (d+ 1)‖wj‖‖w∗j ‖

n∑
i,j=1

σ̂(
di,j
d+ 1

wj
>w∗j

‖wj‖‖w∗j ‖
). (11)

Combining the (9), (10), and (11), we have

L(wj) =
1

2
(d+ 1)‖wj‖2

n∑
i,j=1

σ̂(
di,j
d+ 1

) +
1

2
(d+ 1)‖w∗j ‖2

n∑
i,j=1

σ̂(
di,j
d+ 1

)

− (d+ 1)‖wj‖‖w∗j ‖
n∑

i,j=1

σ̂
( di,j
d+ 1

wj
>w∗j

‖wj‖‖w∗j ‖
)
. (12)

It is easy to see that if w0,j is the initial value of wj then each subsequent iteration will be a linear
combination of w0,j and w∗j . Hence we can assume that wj = αw∗j + βwj

⊥, where wj⊥ is a fixed
unit vector (depending on the initialization) orthogonal to w∗j . Then re-writing the loss in terms of
α, β and recalling that ‖w∗j ‖ = 1 we get the simplified expression:

L(α, β) =
1

2
(d+ 1)(α2 + β2)

n∑
i,j=1

σ̂(
di,j
d+ 1

) +
1

2
(d+ 1)

n∑
i,j=1

σ̂(
di,j
d+ 1

)

− (d+ 1)
√
α2 + β2

n∑
i,j=1

σ̂
( di,j
d+ 1

α√
α2 + β2

)
. (13)

In the rest of the section we will analyze the evolution of the updates of α and β. Furthermore we will
use αt, βt to denote the parameters α, β associated with the iterate wj,t at time t. We first compute
the gradient of the objective w.r.t. w or equivalently w.r.t. α, β.

∂L(α, β)

∂α
= α(d+ 1)

n∑
i,j=1

σ̂(
di,j
d+ 1

)− α√
α2 + β2

(d+ 1)

n∑
i,j=1

σ̂
( di,j
d+ 1

α√
α2 + β2

)
− β2

α2 + β2
(d+ 1)

n∑
i,j=1

di,j
d+ 1

σ̂′
( di,j
d+ 1

α√
α2 + β2

)
= α(d+ 1)

n∑
i,j=1

σ̂(
di,j
d+ 1

)− α√
α2 + β2

(d+ 1)

n∑
i,j=1

σ̂
( di,j
d+ 1

α√
α2 + β2

)
− β2

α2 + β2
(d+ 1)

n∑
i,j=1

di,j
d+ 1

σ̂step
( di,j
d+ 1

α√
α2 + β2

)
. (14)

Here in the last equality we have used the fact that σ̂′ = σ̂′ and that σ′(x) =
√

21(x ≥ 0) = σstep(x),
where σstep(x) is the step function. See [Daniely et al., 2016] for a proof. Similarly we get that

∂L(α, β)

∂β
= β(d+ 1)

n∑
i,j=1

σ̂(
di,j
d+ 1

)− β√
α2 + β2

(d+ 1)

n∑
i,j=1

σ̂
( di,j
d+ 1

α√
α2 + β2

)
+

αβ

α2 + β2
(d+ 1)

n∑
i,j=1

di,j
d+ 1

σ̂step
( di,j
d+ 1

α√
α2 + β2

)
. (15)
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3.2 Bounding the iterates.

In this section we show that if the initial weight w0,j is drawn from N(0, σ2I) then with high
probability, the iterates remain bounded for all subsequent time steps. We first analyze how the length
of w, i.e., ‖wt‖2 behaves over a period of time. In the rest of the proof we will often use the shorthand
A,Bt, Ct to denote the following key quantities that depend on the structure of the graph.

A =

n∑
i,j=1

σ̂(
di,j
d+ 1

)

Bt =

n∑
i,j=1

σ̂(
di,j
d+ 1

αt
`t

)

Ct =

n∑
i,j=1

di,j
d+ 1

σ̂step(
di,j
d+ 1

αt
`t

).

Here `t denotes the length of the iterate wt at time t, i.e., `t = ‖w‖t =
√
α2
t + β2

t . The above
quantities satisfy useful inequalities that will be used throughout the analysis. For example, we note
that A,Bt are always non-negative when d = o(

√
n) and αt ≥ 0. We also have n2

4π ≤ |Bt| ≤ A and
|Ct| = o(A). See Appendix B for the proof.

Lemma 1. If w0,j ∼ N(0, σ2I) and η ∈ [ 1
16π(d+1)A ,

1
6π(d+1)A ] then with probability at least

1− e−O(r), it holds that for all t ≥ 0, `t ≤ 2σ
√
r + 4π + 1, and `t ≥ 1

36π2 for all t ≥ 1.

3.3 Establishing smoothness and analyzing initial updates

We first show that if the condition in Lemma 1 holds, then throughout the trajectory of the iterates,
the loss function is smooth. This is formalized in the lemma below.

Lemma 2. If the degree d of the graph is o(
√
n) and the conditions in Lemma 1 hold, then for all

t ≥ 1 and any γ ∈ [0, 1] such that (α, β) = (1− γ)(αt, βt) + γ(αt+1, βt+1), we have that

λmax(∇2L(α, β)) ≤ 4(d+ 1)A
(

1 +

√
2σ
√
r + 4π + 1 + o(1)

)
.

Here λmax is the maximum eigenvalue of the population Hessian denoted by∇2L(α, β). Our overall
proof strategy is to show that the Polyak-Łojasiewicz (PL) condition [Polyak, 1963] holds, namely
that the squared norm of the gradient lower bounds the loss value at any iterate. This will let us easily
analyze convergence of gradient descent via standard arguments. However a challenge is that since
we are starting from random initialization, the PL condition does not hold true at the beginning. As a
result we separately analyze an initial phase of the algorithm and show that gradient descent very
quickly escapes a region where the PL condition does not hold. This is formalized below.

Lemma 3. If w0,j ∼ N(0, σ2I) and η ∈ [ 1
16π(d+1)A ,

1
6π(d+1)A ] then with at least 1− 1/h2, it holds

that for all t ≥ c log(σ log h), αt ≥ − 1
100 and `t ≥ 1− o(1), where c > 0 is an absolute constant.

3.4 Establishing the PL-condition

Finally, using the above lemma we show that under the conditions of Lemma 1 the iterates wt =
(αt, βt) satisfy the Polyak-Łojasiewicz inequality [Polyak, 1963].

Lemma 4. If the degree d of the graph is o(
√
n) and the conditions in Lemma 1 hold then there is

an absolute constant c > 0, such that for all t ≥ c log(σ log h) and ε ∈ (0, 1), either |βt| ≤ ε
4hn and

‖`t − 1‖ ≤ ε
4hn or we have that

‖∇L(αt, βt)‖2 ≥ µ∗L(αt, βt),

where µ∗ ≥ ε2

380(d+1)h2πn2 .
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3.5 Putting everything together

Finally, we combine the analysis from the previous sections to prove the main theorem, i.e., Theo-
rem 1.

Proof of Theorem 1. We will analyze an arbitrary j ∈ [h] and the evolution of the corresponding wj
vector. By setting σ = 1 we have from Lemma 2 that the smoothness parameter of the loss function is

L ≤ 4(d+ 1)A
(

1 +
√

4π + 3 + o(1)
)
.

Hence we get that for any t ≥ 0,

Lj(wj,t+1) ≤ Lj(wj,t) +∇Lj(wj,t)(wj,t+1 − wj,t) +
L

2
‖wj,t+1 − wj,t‖2

≤ Lj(wj,t)− η‖∇Lj(wj,t)‖2 +
η2L

2
‖∇Lj(wj,t)‖2

= Lj(wj,t)− η‖∇Lj(wj,t)‖2(1− ηL

2
). (16)

From the range of η in Lemma 1 we get that ηL ≤ 1. Furthermore, using Lemma 4 we can write

Lj(wj,t+1) ≤ Lj(wj,t) +∇Lj(wj,t)(wj,t+1 − wj,t) +
L

2
‖wj,t+1 − wj,t‖2

≤ Lj(wj,t)(1− ηµ∗)
≤ Lj(wj,0)(1− ηµ∗)t. (17)

Hence after T ≥ c · n
4h2(d+1)
ε2 log(nhε ) time steps we will either have Lj(wj,t) ≤ ε2/h, or that

|βt| ≤ ε
4hn and ‖`t − 1‖ ≤ ε

4hn . The latter implies that

‖wj,t − w∗j ‖2 ≤
ε2

2hn2
.

Furthermore, it is easy to see that
Lj(wj,t) ≤ n(n− 1)‖wj,t − w∗j ‖2.

Hence if the latter happens then again, Lj(wj,t) ≤ ε2/h thereby implying that L(WT ) ≤ ε2.

4 Deep linear GNNs

In the previous section we analyzed one round GNNs with ReLU activations. Analyzing the dynamics
of gradient descent beyond one layer (in the non NTK regime) with non-linear activations is a
challenging problem, even for standard network architectures. Hence, in this section we consider
deep linear GNNs in order to analyze the dynamics of gradient descent in deeper message passing
architectures. Linearity has been a commonly studied setting in recent years for analyzing deep
feed-forward networks [Hardt and Ma, 2016, Bartlett et al., 2018, Arora et al., 2018a].

We assume the existence of an unknown L-round GNN characterized by positive-definite symmetric
matrices W ∗1 ,W

∗
2 ∈ Rr×r. Given node inputs x1, . . . , xn ∼ N(0, Ir×r) the embedding of node i at

round ` ≥ 1 is defined as

a
(`)
i = AGGREGATE({x`−1

j : j ∈ N(i)}) = W ∗2
∑

j∈N(i)

x
(`−1)
j . (18)

x
(`)
i = COMBINE(x

(`−1)
i , a`i) = W ∗1 x

(`−1)
i + a

(`)
i . (19)

Notice that this is a more general setting than the case of ReLU network studied in the previous
section where the aggregate was a simple summation operation. In this section we can analyze the
case where both the aggregate and combine operations have their own set of parameters W ∗1 and W ∗2 .
Finally, the output of the network on input ~x = {x1, . . . , xn} is defined as

y =

n∑
i=1

x
(L)
i .

7



As in the case of ReLU activations from the previous section, we will analyze the non-
overparameterized case where another architecture of the same size is used to learn the unknown
ground truth network. Given another L-round GNN defined by parameters W1,W2 we define the
population loss as

L(W1,W2) =
1

2
E
[
‖(ŷ − y)‖2

]
(20)

=
1

2
E
[
‖(

n∑
i=1

x̂
(L)
i −

n∑
i=1

x
(L)
i )‖2

]
. (21)

We will analyze the gradient descent updates defined as

W1,t+1 = W1,t − η∇L(W1,t,W2,t) (22)
W2,t+1 = W2,t − η∇L(W1,t,W2,t). (23)

For ease of interpretation, we state our main theorem below for the case when each node in the
graph has degree exactly d. The general theorem is stated in Appendix C and achieves similar rate of
convergence. The theorem below shows that if the network parameters are initialized at identity, i.e.,
W1,0,W2,0 = I , then gradient descent minimizes the population loss at a polylogartihmic rate.

Theorem 2. Let the initialization of W1,0,W2,0 be identity. Then, L(W1,T ,W2,T ) ≤ ε2 if,

T ≥ max
i∈[n]

1

η0L2(d2 + 1)`2L−2
i

log(
rLui((1− σ∗i )2)

ε
) (24)

η := η0 ≤ min
i

`2L−1
i min(1, 1

(σ∗i )2L−2 )

2nL2(δi)2(d2 + 1)u2L−3
i (1 + ui)L−1

. (25)

Here σ∗i is the ith smallest singular value of W ∗1 + dW ∗2 , and ui, `i and δi depend only on σ∗i .

We make a few comments about the theorem above. Notice that unlike the case of ReLU networks
we do not assume any bound on the maximum degree of the graph and the theorem applies generally.
Furthermore, the convergence rate is logarithmic in 1

ε and exponential in the depth L of the network.
The dependence on the number of nodes in the graph is linear and the dependence on the maximum
degree d is polynomial and appears via the bound on the maximum singular value of the matrix
W ∗1 + dW ∗2 . Our analysis for the case of equal degrees proceeds by showing that it is enough to track
the evolution of the singular values σi,t of the matrix Mt = W1,t + dW2,t at each time step. We then
show that is η is sufficiently small then the singular values σi,t will converge to the singular values
σ∗i of the true unknown matrix W ∗1 + dW ∗2 . Handling the case of unequal degrees is along similar
lines but is technically more challenging as we need to separately track the evolution of the singular
values of W1,t and W2,t separately. See Appendix C for details.

5 Experiments

In this section we verify our theoretical results via simulations. Our first goal is to understand whether
the ∼ 1

ε2 rate of convergence obtained for the case of one round ReLU GNNs is tight, or whether
in practice we can obtain polylog( 1

ε ) rates even for the ReLU setting. Secondly, we understand via
experiments the regime where the degree of the graph d exceeds

√
n, and hence our theoretical results

for the case of ReLU GNNs do not hold. In order to do this we generate random d-regular graphs
over n = 100 nodes. For the case of one round GNNs with ReLU activations we set the embedding
size r = 10, and h = 10 (number of hidden units in the ReLU GNN). We use the same value of r for
the case of deep linear GNNs, where r equals the input dimensionality and also the dimensionality of
the matrices W ∗1 , and W ∗2 .

We generate an unknown ground truth network in the case of ReLU GNNs by choosing each column
of W ∗ to be a random unit length vector. For the case of linear networks we generate positive definite
matrices W ∗1 ,W

∗
2 by picking random Gaussian entries, and then adding a small multiplicative factor

of 0.001 times the identity matrix. As dictated by our theory, we initialize network weights from
a standard Gaussian for the case of ReLU networks, and to the identity matrix for the linear case.
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Figure 1: Loss vs. number of iterations of gradient descent for one round GNN with ReLU activations.

Figure 2: Loss vs. number of iterations of gradient descent for deep linear GNNs.

We simulate population gradient descent and implement our networks using the JAX programming
language [Bradbury et al., 2018]. Our experiments are run using one GPU. See Section D for further
details.

For the case of ReLU networks we run gradient descent on instances with varying values of the
degree d. In particular we present results for d ∈ {5, 10, 30, 80, 99}. For the case of linear networks
we vary the depth L in {1, 2, 3}. Finally, in each case we plot the loss value (`2 loss) vs. the number
of iterations. The results are shown in Figure 1 and Figure 2. We make a few remarks about the
experiments. Note that the convergence rate for the case of linear networks is indeed much better
than the case of ReLU GNNs and hence we, in general, do not expect significantly better rates of
convergence than the ∼ 1

ε2 bound that we prove. An interesting observation is that as d increases and
is close to the regime of Θ(n), the rates of convergence of gradient descent for the case of a one round
GNN with ReLU activations, become much better. This is along expected lines, since if d = n− 1,
i.e, the graph is a complete graph, then the network in Eq. (4) boils down to h independent single
ReLU units with standard Gaussian inputs. It is known for this extreme setting that gradient descent
has a logarithmic convergence in 1

ε [Soltanolkotabi, 2017]. Hence, extending our existing theoretical
analysis beyond the

√
n degree setting is an interesting open question.

6 Conclusions

The main question left open by our work is to analyze the gradient descent updates for multi-round
GNNs with ReLU activations. Given the difficulty of analyzing gradient descent for multi-layer
networks beyond the NTK setting, the above seems like a challenging problem. It would also be
interesting to explore whether the convergence rate for the case of one round GNNs can be improved
via over-parameterization. Finally, it would also be of interest to extend our results to more general
distributions going beyond the Gaussian setting. Another fascinating question is to analyze gradient
descent in the agnostic setup. If the best one round GNN with ReLU activations (or a deep linear
GNN) achieves an error of OPT on the data distribution, can gradient descent recover a network of
error f(OPT)? This style of analysis has recently been carried out in the case of a single ReLU unit
[Frei et al., 2020].
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A Related Work

There is a vast amount of literature on theory of deep learning. Some recent works [Ge et al., 2017,
Bakshi et al., 2019, Ge et al., 2018, Janzamin et al., 2015, Vempala and Wilmes, 2018] provide
polynomial time algorithms for learning depth-2 feedforward ReLU networks using techniques based
on tensor decompositions and spectral methods. Other works focus on designing learning algorithms
without assumptions on the linear independence of columns of W . These results incur an exponential
dependence on either the input dimensionality or the number of parameters in the unknown network
[Diakonikolas et al., 2020, Chen et al., 2020]. Polynomial time algorithms beyond depth 2 can be
designed (under some assumptions) for other activations such as the sigmoid function [Goel and
Klivans, 2019].

Properties of Gradient Descent The works of Bartlett et al. [2018] and Arora et al. [2018a] study
the convergence of gradient descent on deep linear feed-forward networks. Recent extensions include
studying the behavior of gradient descent on overparameterized deep linear networks for solving
problems such as matrix factorization [Arora et al., 2019a, 2018b] and also exploring distributions
that are hard for gradient descent [Malach and Shalev-Shwartz, 2019].

There is also a large body of work in analyzing the convergence of gradient descent and stochastic
gradient descent (SGD) on over parameterized neural networks. The work of Andoni et al. [2014]
concerns learning low degree polynomials via gradient descent on depth-2 networks with quadratic
activations. There have also been works analyzing the convergence properties of gradient descent on
depth-2 feedforward networks with identity mapping [Li and Yuan, 2017, Soltanolkotabi et al., 2018,
Li and Liang, 2018] and certain assumptionson the data distribution.

Going beyond assumptions on the data distribution, there has been a recent surge in analyzing the
convergence of gradient descent in the so called “NTK regime”, i.e., gradient descent on massively
overparameterized networks [Daniely, 2017, Daniely et al., 2016, Allen-Zhu et al., 2018, Du et al.,
2018, Arora et al., 2019b, Lee et al., 2019b, Chizat and Bach, 2018, Jacot et al., 2018, Oymak and
Soltanolkotabi, 2019, Zou and Gu, 2019, Su and Yang, 2019].

The NTK or the neural tangent kernel as proposed in the work of Jacot et al. [2018] is a kernel defined
by the gradient of the network parameters at random initialization. Recent works have shown that the
NTK effectively captures the dynamic of gradient descent in the above mentioned overparameterized
settings [Lee et al., 2019a, Arora et al., 2019c]. An alternate line of work focused on studying the the
mean field dynamics of SGD on infinite width neural networks [Mei et al., 2018, Chizat and Bach,
2018, Rotskoff and Vanden-Eijnden, 2018, Sirignano and Spiliopoulos, 2018]. Very recent works
have also explored analyzing gradient descent beyond the NTK regime [Wei et al., 2019, Allen-Zhu
and Li, 2020].
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B Proof from Section 3

Properties of A,Bt, Ct. Recall the following key quantities that we will use throughout the proof.

A =

n∑
i,j=1

σ̂(
di,j
d+ 1

)

Bt =

n∑
i,j=1

σ̂(
di,j
d+ 1

αt
`t

)

Ct =

n∑
i,j=1

di,j
d+ 1

σ̂step(
di,j
d+ 1

αt
`t

).

We first establish some useful relations among the above quantities.
Lemma 5. If the degree of the graph d = o(

√
n), then we have that

1. A ≥ n2

π , n
2

4π ≤ Bt ≤ A, and |Ct| = o(A).

2. When αt ≥ − 1
100 and `t ≥ 1− o(1), then Ct ≥ A

2n .

We prove the lemma above at the end of the section and first prove the main claims needed for the
proof of Theorem 1.
Lemma 6 (Restatement of Lemma 1.). If w0,j ∼ N(0, σ2I) and η ∈ [ 1

16π(d+1)A ,
1

6π(d+1)A ] then

with probability at least 1− e−O(r), it holds that for all t ≥ 0, `t ≤ 2σ
√
r + 4π + 1, and `t ≥ 1

36π2

for all t ≥ 1.

Proof. From (14) and (15) we have
`2t+1 := ‖wt+1‖2

= α2
t+1 + β2

t+1

=
(
αt − η

∂L(α, β)

α

∣∣∣
αt,βt

)2

+
(
βt − η

∂L(α, β)

β

∣∣∣
αt,βt

)2

=
(
αt − ηαt(d+ 1)A+ η

αt
`t

(d+ 1)Bt + η
β2
t

`2t
(d+ 1)Ct

)2

+
(
βt − ηβt(d+ 1)A+ η

βt
`t

(d+ 1)Bt − η
αtβt
`2t

(d+ 1)Ct

)2

= `2t + η2(d+ 1)2A2`2t + η2(d+ 1)2B2
t + η2 β

2
t

`2t
(d+ 1)2C2

t

− 2η(d+ 1)A`2t + 2η(d+ 1)`tBt − 2η2(d+ 1)2ABt`t.

Hence setting η ∈ [ 1
16π(d+1)A ,

1
6π(d+1)A ] we get that

`2t+1 ≤
(
`t(1−

1

16π
)
)2

+
1

16
.

A simple calculation then shows that for all t ≥ 1, `t ≤ `0 + 4π + 1. Furthermore, we also have that
if Bt ≥ 0 then

`2t+1 ≥ `2t (1− η(d+ 1)A)2 + 2η(d+ 1)Bt`t(1− η(d+ 1)A) + η2(d+ 1)2B2
t

≥ η2(d+ 1)2B2
t .

Using the fact that Bt ≥ n2/(4π) and the range of η we get that `t ≥ 1
36π2 for t ≥ 1. Finally, notice

that with probability at least 1− e−O(r), we will have `0 = O(σ
√
r).

Lemma 7 (Restatement of Lemma 2). If the degree d of the graph is o(
√
n) and the conditions in

Lemma 1 hold then for all t ≥ 1 and any γ ∈ [0, 1] such that (α, β) = (1−γ)(αt, βt)+γ(αt+1, βt+1),
we have that

λmax(∇2L(α, β)) ≤ 4(d+ 1)A
(

1 +

√
2σ
√
r + 4π + 1 + o(1)

)
.
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Proof. We first establish upper and lower bounds on the length of the iterate, i.e., `2 = α2 + β2. By
convexity of length and Lemma 1 we immediately get that α2 + β2 ≤ 2σ

√
r + 4π + 1. To obtain a

lower bound on the length we have
`2 = ((1− λ)αt + λαt+1)2 + ((1− λ)βt + λβt+1)2

= (αt − ηλ
∂L

∂α
)2 + (βt − ηλ

∂L

∂β
)2

Following the same calculation as in the proof of Lemma 1 we get that
`2 ≥ `2t (1− λη(d+ 1)A)2 + 2λη(d+ 1)Bt`t(1− λη(d+ 1)A) + η2(d+ 1)2B2

t

≥ `2t (1− λη(d+ 1)A)2

≥ `2t (1−
1

6π
)2.

Hence we get that ` ≥ 1
36π2 (1 − 1

6π ). Next we upper bound λmax(∇2(α, β)). We will use the
following simple upper bound on the maximum eigenvalue.

λmax(∇2(α, β)) ≤
∣∣∣∂2L(α, β)

∂α2

∣∣∣+
∣∣∣∂2L(α, β)

∂β2

∣∣∣+
∣∣∣∂2L(α, β)

∂α∂β

∣∣∣+
∣∣∣∂2L(α, β)

∂β∂α

∣∣∣.
Taking the second derivatives we get
∂2L(α, β)

∂α2
= (d+ 1)A− α

`
(d+ 1)

∂B

∂α
− β2

`3/2
(d+ 1)B − β2

`2
(d+ 1)

∂C

∂α
+

2αβ2

`4
(d+ 1)C

∂2L(α, β)

∂β2
= (d+ 1)A− β

`
(d+ 1)

∂B

∂β
+

αβ

`3/2
(d+ 1)B +

αβ

`2
(d+ 1)

∂C

∂α
+
α(α2 − β2)

`4
(d+ 1)C

∂2L(α, β)

∂α∂β
= −β

`
(d+ 1)

∂B

∂α
+

αβ

`3/2
(d+ 1)B +

αβ

`2
(d+ 1)

∂C

∂α
+
β(β2 − α2)

`4
(d+ 1)C

∂2L(α, β)

∂β∂α
= −α

`
(d+ 1)

∂B

∂β
+

αβ

`3/2
(d+ 1)B − β2

`2
(d+ 1)

∂C

∂β
− 2

αβ2

`4
(d+ 1)C.

Next we have∣∣∣∂B
∂α

∣∣∣ =
∣∣∣ n∑
i,j=1

di,j
d+ 1

σ̂step(
di,j
d+ 1

α√
α2 + β2

) · β
2

`3/2

∣∣∣ ≤ √`|C| = o(A)

∣∣∣∂B
∂β

∣∣∣ =
∣∣∣ n∑
i,j=1

di,j
d+ 1

σ̂step(
di,j
d+ 1

α√
α2 + β2

) · αβ
`3/2

∣∣∣ ≤ √`|C| = o(A),

where we have used the fact that |C| ≤ nd2 = o(A).

To differentiate C we use the fact that σ̂step(ρ) = 1− arccos(ρ)
π [Daniely et al., 2016] and arccos′(ρ) =

− 1√
1−ρ2

to get ∣∣∣∂C
∂α

∣∣∣ =
∣∣∣ n∑
i,j=1

d2
i,j

(d+ 1)2

`

β

β2

`3/2

∣∣∣ ≤ √`∑
i,j

d2
i,j

(d+ 1)2
= o(A)

∣∣∣∂C
∂β

∣∣∣ =
∣∣∣ n∑
i,j=1

d2
i,j

(d+ 1)2

`

β

αβ

`3/2

∣∣∣ ≤ √`∑
i,j

d2
i,j

(d+ 1)2
= o(A).

Hence we get that∣∣∣∂2L(α, β)

∂α2

∣∣∣ ≤ (d+ 1)A+
√
`(d+ 1)A+ o(A) ≤ (d+ 1)A

(
1 +

√
2σ
√
r + 4π + 1 + o(1)

)
∣∣∣∂2L(α, β)

∂β2

∣∣∣ ≤ (d+ 1)A+
√
`(d+ 1)A+ o(A) ≤ (d+ 1)A

(
1 +

√
2σ
√
r + 4π + 1 + o(1)

)
∣∣∣∂2L(α, β)

∂αβ

∣∣∣ ≤ √`(d+ 1)A+ o(A) ≤ (d+ 1)A
(√

2σ
√
r + 4π + 1 + o(1)

)
∣∣∣∂2L(α, β)

∂βα

∣∣∣ ≤ √`(d+ 1)A+ o(A) ≤ (d+ 1)A
(√

2σ
√
r + 4π + 1 + o(1)

)
.
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Lemma 8 (Restatement of Lemma 3). If w0,j ∼ N(0, σ2I) and η ∈ [ 1
16π(d+1)A ,

1
6π(d+1)A ] then

with at least 1− 1/h2, it holds that for all t ≥ c log(σ log h), αt ≥ − 1
100 and `t ≥ 1− o(1).

Proof. Notice that due to random initialization, with probability at least 1 − 1
h2 we will have that

`0 = θ(σ
√
r) and α0 ≥ −c′σ

√
log h. Furthermore we have the following updates for `t and αt:

`2t+1 =
(
`t(1− η(d+ 1)A) + η(d+ 1)Bt

)2
+ η2 β

2
t

`2t
(d+ 1)2C2

t

αt+1 = αt(1− η(d+ 1)A) + η
αt
`t

(d+ 1)Bt + η
β2
t

`2t
(d+ 1)Ct.

Since Bt ≥ 0 and is bounded by A and Ct = o(A), if αt < 0 and `t ≥ 2 we will have that

`t+1 ≥ `t(1− η(d+ 1)A).

αt+1 ≥ αt(1−
η

2
(d+ 1)A− η(d+ 1)o(A)).

Hence, after t ≥ c log(σ log h) steps we will have that αt ≥ − 1
100 and `t ≥ 2. We next argue that

from this point on αt and `t continue to satisfy the conditions stated in the Lemma. From the update
equation for `t+1 above we have that

`t+1 ≥ `t − η(d+ 1)A(`t − 1) + η(d+ 1)∆t,

where

∆t := Bt −A =
∑

i,j:di,j 6=0

σ̂(
di,j
d+ 1

αt
`t

)− σ̂(
di,j
d+ 1

).

Once αt ≥ −1
100 we will have that∣∣∣σ̂(

di,j
d+ 1

αt
`t

)− σ̂(
di,j
d+ 1

)
∣∣∣ ≤ 2

di,j
d+ 1

.

Hence defining

∆ =
∑

i,j:di,j 6=0

di,j
d+ 1

we get that if αt ≥ − 1
100 then `t ≥ 1 − O(∆

A ) = 1 − o(1). Next we argue that αt continues to
be larger than − 1

100 . We first notice that if αt ≥ 0 the is continues to remain so. Furthermore if
αt ∈ [− 1

100 , 0), then Ct is non negative and is at least ∆/4. Hence we get that

αt+1 ≥ αt − η(d+ 1)Aαt(1−
1

`t
) + η

αt
`t

(d+ 1)∆t + η
β2
t

`2t
(d+ 1)

∆

4
.

Using the fact that |`t − 1| = O(∆
A ) and the fact that if αt ∈ [− 1

100 , 0) and `t ≥ 1 − o(1), then
|βt`t | ≥

1
2 we get that

αt+1 ≥ αt − cη(d+ 1)|αt|∆ + η(d+ 1)
∆

16
≥ αt.

Lemma 9 (Restatement of Lemma 4.). If the degree d of the graph is o(
√
n) and the conditions in

Lemma 1 hold then for all t ≥ c log(σ log h), either |βt| ≤ ε
4hn and ‖`t − 1‖ ≤ ε

4hn or we have that

‖∇L(αt, βt)‖2 ≥ µ∗L(αt, βt),

where µ∗ ≥ ε2

380(d+1)h2πn2 .
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Proof. We have

‖∇L(αt, βt)‖2 =
(
αt(d+ 1)A− αt

`t
(d+ 1)Bt −

β2

`2t
Ct

)2

+
(
βt(d+ 1)A− βt

`t
(d+ 1)Bt +

αβ

`2t
Ct

)2

= (d+ 1)2
(

(`tA−Bt)2 +
β2
t

`2t (d+ 1)2
C2
t

)
.

On the other hand the loss L(αt, βt) can be written as

L(αt, βt) =
1

2
(d+ 1)(`2t + 1)A− (d+ 1)`tB ≤

1

2
(d+ 1)(`2t + 1)A. (26)

Hence we get that

‖∇L(αt, βt)‖2

L(αt, βt)
≥ (d+ 1)

(`tA−Bt)2

A
+ 2

(d+ 1)β2
tC

2
t

(`2t + 1)A
.

If `t − 1 > ε
4hn then the first term above combined with the fact that Bt ≤ A leads to

‖∇L(αt, βt)‖2

L(αt, βt)
≥ (d+ 1)A

ε2

16h2n2

≥ (d+ 1)
ε2

16h2π
. (27)

If |`t − 1| ≤ ε
4hn ≤ 2 and |βt| > ε

4hn then the second term leads to

‖∇L(αt, βt)‖2

L(αt, βt)
≥ 2

(d+ 1)β2
tC

2
t

(`2t + 1)h2(d+ 1)2A

≥
5

C2
t

A(d+ 1)

ε2

16h2n2
. (28)

Using the fact that Ct ≥ A
2n we get that

‖∇L(αt, βt)‖2

L(αt, βt)
≥ ε2

380πh2n2(d+ 1)
. (29)

Finally, consider the case when `t < 1− ε
4hn . Furthermore, we can assume that |Bt − `tA| ≤ ε

8hnA
since otherwise we get the same bound as in (27), up to a loss of a constant factor. In this case we
will show that |βt| must be at least ε

4hn and the hence the bound of (28) will be applicable. To see
this we use the fact that σ̂() is convex in [0, 1] to get

σ̂
( di,j
d+ 1

αt
`t

)
− σ̂

( di,j
d+ 1

)
≥ di,j
d+ 1

αt − `t
`t

σ̂step
( di,j
d+ 1

)
. (30)

Summing over i, j, we can conclude that

Bt −A ≥
αt − `t
`t

∑
i,j

di,j
d+ 1

σ̂step
( di,j
d+ 1

)
. (31)

Substituting Bt = `tA± εA
8hn we get that

(`t − 1)A± εA

8n
≥ αt − `t

`t

∑
i,j

di,j
d+ 1

σ̂step
( di,j
d+ 1

)
. (32)

Using the bound on `t the above implies that

εA

8hn
≤ `t − αt

`t

∑
i,j

di,j
d+ 1

σ̂step
( di,j
d+ 1

)
(33)

≤ `t − αt
`t

nd2. (34)
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Noticing that A ≥ n2

π we get that

`t − αt
`t

≥ ε

8πhd2
. (35)

Since `t ≥ 1
36π2 we can further conclude that

βt ≥ `t − αt ≥
ε

8 · 36 · hπ3d2
≥ ε

4hn
, (36)

where the last inequality uses the fact that d = o(
√
n).

Proof of Lemma 5. For property 1, we first recall that σ̂(x) ≥ 1
π whenever x ≥ 0 [Daniely et al.,

2016]. Hence, the bound on A follows. To bound Bt we use the fact that |σ̂(x)| ≤ σ̂(|x|), and that
σ̂() is a non-decreasing function in [0, 1]. Hence, the upper bound on Bt follows. For the lower
bound on Bt notice that whenever di,j = 0, the corresponding term in Bt contributes σ̂(0) = 1

π .
The remaining at most nd2 terms can contribute at most −1 each. Therefore we have that Bt ≥
(n2 − nd2) 1

π − nd
2 ≥ n2

4π .

For the upper bound on Ct notice that each term in the summation is non-zero only when di,j 6= 0.
Hence, there at most nd2 non-zero terms in the summation, and each is upper bounded by 1 since
di,j ≤ d+ 1 and | ˆσ(x)| ≤ 1. Using the fact that d = o(

√
n), the upper bound on Ct follows.

For the lower bound on Ct in property 2 we recall that σ̂step(x) ≥ 1
2 whenever |x| ≤ 1

50 [Daniely
et al., 2016] which is ensured by the fact that αt ≥ − 1

100 and `t ≥ 1− o(1). Hence, in this case each
term in the summation in the expression of Ct will be non-negative. Finally, notice that for i = j,
each of the n terms in the summation will contributed at least 1

200 . Hence in this case Ct ≥ n
2 ≥

A
2n

(since A ≤ n2).

Handling unequal degrees. Our main theorem (Theorem 1) continues to hold when the vertices
have unequal degrees and the maximum degree is bounded by d. All our proofs easily and (almost)
identically translate to the setting of unequal degrees and hence we avoid repeating them. We instead
highlight the main differences in the different terms that appear in the proofs. In the case of unequal
degrees we redefine the quantities A,Bt, Ct as

A′ =

n∑
i,j=1

√
(di + 1)(dj + 1)σ̂(

di,j√
(di + 1)(dj + 1)

)

B′t =

n∑
i,j=1

√
(di + 1)(dj + 1)σ̂(

di,j√
(di + 1)(dj + 1)

αt
`t

)

C ′t =

n∑
i,j=1

di,j σ̂step(
di,j√

(di + 1)(dj + 1)

αt
`t

).

Here, di is the degree of node i. In other words we systematically replace (d+1) in all the summations
with the term

√
(di + 1)(dj + 1). Following this change all our Lemmas follow as is.

C Proof from Section 4

C.1 Expressions for Loss and Gradients

In this section we compute expressions for the population loss and the gradients that will be useful in
subsequent analysis. We first analyze the population loss.
Lemma 10. If G is a degree-d graph and node inputs xi are drawn from N(0, I) then for any
W1,W2 we have that

L(W1,W2) =
n

2
‖ML − (M∗)L‖2F , (37)

where M = W1 + d ·W2 and M∗ = W ∗1 + d ·W ∗2 .
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Proof. Define µ~x =
∑n
i=1 xi. We will prove via induction that

∑n
i=1 h

(L)
i = MLµ~x. The case of

L = 1 is easy to see since
n∑
i=1

h
(1)
i =

n∑
i=1

W1xi +

n∑
i=1

W2

∑
j∈N(i)

xj

= (W1 + d ·W2)µ~x
= Mµ~x.

Next for any k > 1 we have
n∑
i=1

h
(k)
i =

n∑
i=1

W1ĥ
(k−1)
i +

n∑
i=1

W2

∑
j∈N(i)

ĥ
(k−1)
j

= (W1 + d ·W2)

n∑
i=1

ĥ
(k−1)
i

= (W1 + d ·W2)Mk−1µ~x (by induction hypothesis.)

= Mkµ~x.

Hence we get that

L(W1,W2) =
1

2
E
[
‖MLµ~x − (M∗)Lµ~x‖

]
=

1

2
E
[
〈(ML − (M∗)L)µ~x, (M

L − (M∗)L)µ~x〉
]

=
1

2
E
[
〈(ML − (M∗)L), (ML − (M∗)L)µ~xµ

>
~x 〉
]

=
n

2
‖ML − (M∗)L‖2F .

Next we compute the expression for the gradient of the loss w.r.t. the weights.
Lemma 11. For the multi-round GNN as defined in Eq. (18) it holds that

∂L(W1,W2)

∂W1
=
n

2

L−1∑
k=0

MkEML−k−1 (38)

∂L(W1,W2)

∂W2
=
nd

2

L−1∑
k=0

MkEML−k−1, (39)

where E = ML − (M∗)L.

Proof. For i and j in [r],

∂L(W1,W2)

∂W i,j
1

=
n

2
〈vec(E), vec(

∂ML

∂W i,j
1

)〉.

Furthermore, by chain rule we get that

∂ML

∂W i,j
1

=

L−1∑
k=0

MkRi,jM
L−k−1,

where Ri,j is an r × r matrix with 1 in the (i, j)th entry and 0 everywhere else. Denoting by Ai to
be the ith column of a matrix we can simply the above as

∂ML

∂W i,j
1

=

L−1∑
k=0

(Mk)i ⊗ (ML−k−1)j .
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Hence we get that

∂L(W1,W2)

∂W i,j
1

=
n

2
〈vec(E), vec(

L−1∑
k=0

(Mk)i ⊗ (ML−k−1)j)〉

=
n

2

L−1∑
k=0

〈vec(E), vec((Mk)i ⊗ (ML−k−1)j)〉

=
n

2

L−1∑
k=0

(Mk
i )>E(Mj)

K−k−1.

From the above it follows that

∂L(W1,W2)

∂W1
=
n

2

L−1∑
k=0

MkEML−k−1.

An identical calculation establishes the bound for the partial derivative w.r.t. W2.

C.2 Analyzing Gradient Updates

In this section we analyze the gradient descent updates as defined in (22) and prove our main
convergence result. To begin with we will track the evolution of the matrix Mt defined as Mt :=
W1,t + d ·W2,t. From Lemma 11 we get that

Mt+1 = Mt − η
n

2
(d2 + 1)

L−1∑
k=0

Mk
t EtM

L−k−1
t . (40)

Let the singular value decomposition of M∗ be denoted by M∗ =
∑r
i=1 σiviv

>
i . We will ensure that

throughout the trajectory of the updates the matrix Mt remains positive definite in which case we can
write Mt =

∑r
i=1 σi,tviv

>
i . This is true for t = 0 since we initialize the matrices W1,W2 to identity.

Then from (40) we get

r∑
i=1

σi,t+1viv
>
i =

r∑
i=1

σi,tviv
>
i − η

n

2
(d2 + 1)

L−1∑
k=0

( r∑
i=1

σki,tviv
>
i

)( r∑
i=1

(σLi,t − (σ∗i )Lviv
>
i

)( r∑
i=1

σL−k−1
i,t viv

>
i

)
=

r∑
i=1

σi,tviv
>
i − η

n

2
(d2 + 1)

L−1∑
k=0

r∑
i=1

σL−1
i,t

(
σLi,t − (σ∗i )L

)
=

r∑
i=1

(
σi,t − η

n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

))
viv
>
i .

Hence each singular value evolves as

σi,t+1 := σi,t − η
n

2
gt (41)

= σi,t − η
n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

)
. (42)

It is enough to show that over a period of time the singular values σi are getting closer to σ∗i . In order
to do this we first prove that the singular values remain bounded throughout the trajectory of the
iterates.
Lemma 12. Let the initialization be a symmetric matrices W1,0,W2,0 such that M0 = W1,0 + d ·
W2,0 =

∑n
i=1 σi,0viv

>
i , where σi,0 > 0 for all i. For each i ∈ [r] define

ui = σ∗i
(
1 + max(1,

σi,0
σ∗i
− 1)

)
`i = σ∗i

(
1−max(

1

2
, 1− σi,0

σ∗i
)
)
.
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Then for all t ≥ 0 it holds that σi,t ∈ [`i, ui] provided that

η ≤ ηi :=
max(1,

σi,0
σ∗i
− 1)

2nL2uLi (d2 + 1)(σ∗i )2L−2(1 + ui)L−1
.

.

Proof. We will prove the claim by induction. At t = 0 the bound holds by definition. Consider time
t and assume that σti = σ∗i (1 + δ) where δ > 0. The case for δ ≤ 0 will be similar. In this case we
have that

σi,t+1 = σi,t − η
n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

)
≤ σi,t ≤ ui, (by induction hypothesis.)

Furthermore we have

σi,t+1 = σi,t − η
n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

)
= σ∗i

(
1 + δ − ηn

2
L(d2 + 1)(σ∗i )2L−2(1 + δ)L−1

(
(1 + δ)L − 1

))
≥ σ∗i

(
1− ηn

2
L(d2 + 1)(σ∗i )2L−2(1 + ui)

L−1 · LuLi
)

(by induction hypothesis.)

≥ 1

2
σ∗i ,

where the last inequality holds provided that

η ≤ 1

2nL2uLi (d2 + 1)(σ∗i )2L−2(1 + ui)L−1
.

Next consider the case when σi,t = σ∗i (1− δ) for δ > 0. Then we have

σi,t+1 = σi,t − η
n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

)
≥ σi,t ≥ `i, (by induction hypothesis.)

Finally, we have

σi,t+1 = σi,t − η
n

2
L(d2 + 1)σL−1

i,t

(
σLi,t − (σ∗i )L

)
= σ∗i

(
1− δ + η

n

2
L(d2 + 1)(σ∗i )2L−2(1 + δ)L−1

(
1− (1− δ)L

))
≤ σ∗i

(
1 + η

n

2
L(d2 + 1)(σ∗i )2L−2(1 + ui)

L−1 · LuLi
)

(by induction hypothesis.)

≤ ui,

where the last inequality holds provided that

η ≤
max(1,

σi,0
σ∗i
− 1)

2nL2uLi (d2 + 1)(σ∗i )2L−2(1 + ui)L−1
.

Next we use the above bounds to establish two useful properties of the gradient value gt in (41).

Lemma 13. Let ui, `i be as defined in Lemma 12. Then for all t ≥ 0 it holds that

g2
t ≤ L2(d2 + 1)2u2L−3

i (Lδi)
2(σi,t − σ∗i )2

gt(σi,t − σ∗i ) ≥ L2(d2 + 1)`2L−2
i (σi,t − σ∗i )2.

Here δi := max( uiσ∗i
,
σ∗i
`i

).
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Proof. For the upper bound on gt notice that

g2
t = L2(d2 + 1)2σ2L−2

i,t (σLi,t − (σ∗i )L)2

≤ L2(d2 + 1)2u2L−2
i (σLi,t − (σ∗i )L)2

≤ L2(d2 + 1)2u2L−3
i (Lδi)

2(σi,t − σ∗i )2.

Next notice that

gt(σi,t − σ∗i ) = L(d2 + 1)σL−1
i,t (σLi,t − (σ∗i )L)(σi,t − σ∗i ) (43)

≥ L(d2 + 1)`L−1
i (σLi,t − (σ∗i )L)(σi,t − σ∗i ) (44)

≥ L2(d2 + 1)`2L−2
i (σi,t − σ∗i )2, (45)

where the last inequality follows from the fact that (aL− bL)(a− b) ≥ Lmin(a, b)L−1(a− b)2.

We are now ready to prove our main theorem regarding convergence of gradient descent on multi-
round linear GNNs.

Theorem 3 (Restatement of Theorem 2.). Let ui, `i, δi be as defined in Lemma 12 and Lemma 13.
Then we have that L(W1,T ,W2,T ) ≤ ε2 provided T ≥ maxi

1
η0L2(d2+1)`2L−2

i

log(
rLui((1−σ∗i )2)

ε )

and

η := η0 ≤ min
i

`2L−1
i min(1, 1

(σ∗i )2L−2 )

2nL2(δi)2(d2 + 1)u2L−3
i (1 + ui)L−1

.

Proof. Fix an i ∈ [r]. We have

(σi,t+1 − σ∗i )2 = (σi,t − η
n

2
gt − σ∗i )2

= (σi,t − σ∗i )2 + η2
0

n2

4
g2
t − η0ngt(σi,t − σ∗i )

≤ (σi,t − σ∗i )2 + η2
0

n2

4
(δ∗i )2L4(d2 + 1)2u2L−3

i (σi,t − σ∗i )2 − η0nL
2(d2 + 1)`2L−2

i (σi,t − σ∗i )2 (Lemma 13)

≤ (σi,t − σ∗i )2
(
1− η0nL

2(d2 + 1)`2L−2
i

)
≤ (1− σ∗i )2

(
1− η0nL

2(d2 + 1)`2L−2
i

)t
.

Hence after T ≥ maxi
1

η0L2(d2+1)`2L−2
i

log(
nrLui((1−σ∗i )2)

ε ) time steps we will have that |σLi,T −
(σ∗i )L| ≤ ε/(

√
nr) for all i. This implies an ε2 upper bound on the loss since we have that

L(W1,T ,W2,T ) =
n

2
‖ML

T − (M∗)L‖2F

≤ nrmax
i

(σLi,T − (σ∗i )L)2

≤ ε2.

Handling unequal degrees. Similar to the case of one round ReLU GNNs, handling the case of
unequal (but bounded by d) vertex degrees follows from our main analysis above at the expense of
more complicated expressions. We next discuss the main changes. In the case of unequal vertex
degrees we have that the loss function equals:

L(W1,W2) =
1

2

n∑
i=1

‖ML
i − (M∗)Li ‖2F . (46)
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Here Mi = W1 + diW2 and M∗i = W ∗1 + diW
∗
2 . Similarly, the gradient expressions become as

stated below.

∂L(W1,W2)

∂W1
=

1

2

n∑
i=1

L−1∑
k=0

Mk
i EiM

L−k−1
i (47)

∂L(W1,W2)

∂W2
=

1

2

n∑
i=1

di

L−1∑
k=0

Mk
i EiM

L−k−1
i , (48)

where Ei = ML
i − (M∗)Li . In contrast to the case of equal degrees where it was enough to track

the evolution of singular values of W1 + dW2, in the general case we will track the evolution of the
singular values of W1 and W2 separately. Denote by αp,t, α∗p the pth singular values of W1, t and
W ∗1 respectively. Similarly, denote by βp,t, β∗p the pth singular values of W2, t and W ∗2 respectively.
Then we get the following recurrence.

αp,t+1 = αp,t − η
n∑
i=1

gi,p,t (49)

βp,t+1 = βp,t − η
n∑
i=1

digi,p,t. (50)

Here gi,p,t is given by the following expression.

gi,p,t = (αp,t + diβp,t)
L−1

(
(αp,t + diβp,t)

L − (α∗p,t + diβ
∗
p,t)

L
)
. (51)

Next we further simplify the above to get the following updates that are easier to analyze.

αp,t+1 − α∗p = (αp,t − α∗p)
(
1− η

n∑
i=1

ri
)
− η(βp,t − β∗p)

n∑
i=1

diri (52)

βp,t+1 − β∗p = (βp,t − β∗p)
(
1− η

n∑
i=1

d2
i ri
)
− η(αp,t − α∗p)

n∑
i=1

diri. (53)

Here ri is defined as

ri = (αp,t + diβp,t)
L−1 · (α∗p + diβ

∗
p)L−1γi, (54)

and γi equals

γi =

L−1∑
j=0

(
L

t

)
sji . (55)

Finally, δ equals

si =
αp,t + diβp,t
α∗p + diβ∗p

− 1. (56)

Next we prove the following analog of Lemma 12.
Lemma 14. There exist `α, uα and `β , uβ such that for all t ≥ 0 and p, αp,t ∈ [`α, uα] and
βp,t ∈ [`β , uβ ], provided that

η := η0 ≤ min

(
`2L−1
α min(1, 1

(σ∗i )2L−2 )

2nL2u2L−3
α (1 + uα)L−1(maxi δi,α)2(d2 + 1)

,
`2L−1
β min(1, 1

(σ∗i )2L−2 )

2nL2u2L−3
β (1 + uβ)L−1(maxi δi,β)2(d2 + 1)

)
,

where δi,α := max(uαα∗i
,
α∗i
`α

), and δi,β := max(
uβ
β∗i
,
β∗i
`β

).

Proof. We will prove the lemma by a case analysis and show that provided η is small enough there
exists a choice of values `α, uα, `β , uβ . We will focus on a particular p since the analysis is similar
for all p. Hence in the rest of the lemma we will omit the subscript on p for notational convenience.
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1. βt ≥ β∗, and αt ≥ α∗,
∑n
i=1 gi,t ≥ 0 and

∑n
i=1 digi,t ≥ 0. In this case we have

αt+1 ≥ α∗ − ηnGu
αt+1 ≥ β∗ − ηndGu.

Here Gu is a uniform upper bound on
∑n
i=1 gi,t and

∑n
i=1 digi,t (See Eq. (49)). Then for

the updates to remain bounded we need

η ≤ α∗ − `α
nGu

η ≤ β∗ − `β
ndGu

.

2. βt ≤ β∗, αt ≤ α∗,
∑n
i=1 gi,t ≤ 0 and

∑n
i=1 digi,t ≤ 0.. In this case we have

αt+1 ≤ α∗ + ηnGu
βt+1 ≤ β∗ + ηndGu.

For the updates to remain bounded we need

η ≤ uα − α∗

nGu

η ≤ uβ − β∗

ndGu
.

3. βt ≤ β∗, αt ≥ α∗,
∑n
i=1 gi,t ≥ 0 and

∑n
i=1 digi,t ≥ 0. This in particular implies that

αt − α∗ ≥ βt − β∗. In this case we have

αt+1 ≥ α∗ − ηnGu
βt+1 ≥ βt − ηndGu

≥ β∗ + α∗ − uα − ηndGu
For the updates to remain bounded we need

η ≤ β∗ + α∗ − uα − `β
ndGu

.

4. βt ≥ β∗, αt ≤ α∗,
∑n
i=1 gi,t ≥ 0 and

∑n
i=1 digi,t ≥ 0. This in particular implies that

αt − α∗ ≤ βt − β∗. In this case we have

βt+1 ≥ β∗ − ηnGu
αt+1 ≥ αt − ηnGu

≥ β∗ + α∗ − uβ − ηnGu
For the updates to remain bounded we need

η ≤ β∗ + α∗ − uβ − `α
nGu

.

5. βt ≥ β∗, αt ≤ α∗,
∑n
i=1 gi,t ≤ 0 and

∑n
i=1 digi,t ≤ 0. This in particular implies that

αt − α∗ ≥ βt − β∗. In this case we have

αt+1 ≤ α∗ + ηnGu
βt+1 ≤ β∗ + α∗ − `α + ηndGu

For the updates to remain bounded we need

η ≤ β∗ + α∗ − uβ
ndGu

.

The other cases not covered above lead to invalid configurations. It is then easy to see that given the
chosen value of η0, there is a setting of `α, uα, `β , uβ that satisfies all the constraints above.
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Given the above lemma we obtain, analogously to Theorem 2, the following general theorem.
Theorem 4. Let `α, uα, `β , uβ and η0 be as defined in Lemma 14. Then we have that
L(W1,T ,W2,T ) ≤ ε2 provided that

T ≥ max

(
max
i

1

η0L2(d2 + 1)`2L−2
α

log(
rLuα((1− α∗i )2)

ε
),max

i

1

η0L2(d2 + 1)`2L−2
β

log(
rLuβ((1− β∗i )2)

ε
)

)
.

(57)

Proof. The proof is analogous to the proof of Theorem 2. For notational convenience we define
P = 1− η

∑n
i=1 ri, Q =

∑n
i=1 diri, and R = 1− η

∑n
i=1 d

2
i ri. Then we have

(αp,t+1 − α∗p)2 + (βp,t+1 − β∗p)2 = (αp,t − α∗p)2(P 2 +Q2) + (βp,t − β∗p)2(R2 +Q2)

− 2(αp,t − α∗p)(βp,t − β∗p)(PQ+RQ)

≤ (αp,t − α∗p)2(P 2 +Q2 +Q(P +R))

+ (βp,t − β∗p)2(P 2 +R2 +Q(P +R)) (58)

≤ (P 2 +R2 +Q2 +Q(P +R))
(
(αp,t − α∗p)2 + (βp,t − β∗p)2

)
.

(59)

Next it is easy to verify that from our choice of η, the above decays at a geometric rate and the
statement of the theorem follows.

D Further details on experiments

We simulate population gradient descent and implement our networks using the JAX programming
language [Bradbury et al., 2018]. Our experiments are run using one GPU. Below we present the
hyperparameters used in our experiments.

One round ReLU GNNs. For the case of degree d = 5 (see Figure 1) we use a learning rate of
2× 10−5. For the remaining degrees, we use a learning rate of 1× 10−6.

Multi round linear GNNs. For the case of depth L = 1 (see Figure 2) we use a learning rate of
0.1. For depths 2 and 3, we use a learning rate of 0.0075.
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