
A Restatement of Theorems and Full Proofs
In this section, we will restate our main results and give full proofs.

Theorem 19 (Existence of Backdoor Data Poisoning Attack (Theorem 3)). Let Fadv be some family
of patch functions such that for all i ∈ U , Pr

x∼D
[vi(patch (x)) = vi(x)] = 1, there exists at least one

j ∈ [dim (V)] \ U such that Pr
x∼D

[vj(patch (x)) 6= 0] = 1, and for all j ∈ [dim (V)], we either have

Pr
x∼D

[vj(patch (x)) ≥ 0] = 1 or Pr
x∼D

[vj(patch (x)) ≤ 0] = 1.

Fix any target label t ∈ {±1}. Draw a training set Sclean of size at least m0 :=
Ω
(
ε−1clean (VC (H) + log (1/δ))

)
. Then, draw a backdoor training set Sadv of size at least m1 :=

Ω
(
ε−1adv (VC (H) + log (1/δ))

)
of the form (x, t) where x ∼ patch (D|h∗(x) 6= t).

With probability at least 1 − δ, empirical risk minimization on the training set S := Sclean ∪ Sadv

yields a classifier ĥ satisfying the success conditions for Problem 2.

Proof. We first show that our choice of Fadv is valid. Observe that for our choice of h∗, we have that
with probability 1:

h∗ (patch (x)) = sign

(∑
i∈U

ai · vi(patch (x))

)

= sign

(∑
i∈U

ai · vi(x)

)
, since Pr

x∼D
[vi(patch (x)) = vi(x)] = 1

= h∗ (x)

as desired.

Next, we pick a patch function from Fadv and construct our stamped training set. We will show that
there exists a classifier in H achieving 0 training error on the corrupted training set Sclean ∪ Sadv.
Without loss of generality, assume that Pr

x∼D
[vi(patch (x)) ≥ 0] = 1, for all i ∈ [dim (V)] (as

negating the basis vector doesn’t affect the space spanned).

Specifically, we will show that the following function achieves 0 training error on the corrupted
training set S = Sclean ∪ Sadv (let ai, i ∈ U denote the coefficients corresponding to h∗, let
R = maxx∈Sclean

|v∗(x)|, and let j be any index in [dim (V)] \ U :

ĥ(x) := sign

(∑
i∈U

ai · vi(x) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(x)

)

We first evaluate ĥ(x) on x ∼ D. We have, with probability 1:

ĥ(x) = sign

(∑
i∈U

ai · vi(x) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(x)

)

= sign

(∑
i∈U

ai · vi(x)

)
, since Pr

x∼D
[vj(x) = 0] = 1

= h∗(x)

We now evaluate ĥ(patch (x)) on x ∼ D|h∗(x) 6= t. We have, with probability 1:

ĥ(x) = sign

(∑
i∈U

ai · vi(patch (x)) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)

= sign

(∑
i∈U

ai · vi(x) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)

= sign

(
v∗(x) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)

13

We now have to show that regardless of the x ∈ X we pick, we have that the above expression
evaluates to t with probability 1. We have two cases. In the first case, h∗(x) = 1, which implies that
v∗(x) ≤ R. Since t = −1, we write:

ĥ(patch (x)) = sign

(
v∗(x) + t · 2R

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)
= sign

(
R− 2R

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)
= sign

(
1− 2

minx∈Sadv
vj(patch (x))

· vj(patch (x))

)
= −1

where the last line follows from the fact that 1− 2
minx∈Sadv vj(patch(x))

· vj(patch (x)) ≤ −1.

The proof in the event where t = 1 follows similarly. It thus follows that there exists a function ĥ ∈ H
obtaining 0 error on Sclean ∪ Sadv. The desired result immediately follows from uniform convergence
(we have a 0-error classifier over Sclean ∼ D and a 0-error classifier over Sadv ∼ patch (D|h∗(x) 6= t),
so with probability 1− 2δ, we have error at most εclean on the clean distribution and error at most
εadv on the adversarial distribution).

Corollary 20 (Overparameterized Linear Classifier (Corollary 4)). Let H be the set of linear sep-
arators over Rd, and let X = Rd. Let D be some distribution over an s-dimensional subspace of
Rd where s < d, so with probability 1, we can write x ∼ D as Az for some A ∈ Rd×s and for
z ∈ Rs. Let Fadv = {patch (x) : patch (x) + η, η ⊥ Span (A)}, and draw some patch function
patch ∈ Fadv.

Fix any target label t ∈ {±1}. Draw a training set Sclean of size at least m0 :=
Ω
(
ε−1clean (VC (H) + log (1/δ))

)
. Then, draw a backdoor training set Sadv of size at least m1 :=

Ω
(
ε−1adv (VC (H) + log (1/δ))

)
of the form (x, t) where x ∼ (D|h∗(x) 6= t) + η.

With probability at least 1− δ, empirical risk minimization on the training set Sclean ∪ Sadv yields a
classifier ĥ satisfying the success conditions for Problem 2.

Proof. We will show that our problem setup is a special case of that considered in Theorem 3; then,
we can apply that result as a black box.

Observe that the set of linear classifiers over Rd is a thresholded vector space with dimension d. Pick
the basis {v1, . . . , vs, . . . , vd} such that {v1, . . . , vs} form a basis for the subspace Span (A) and
vs+1, . . . , vd are some completion of the basis for the rest of Rd.

Clearly, there is a size-s set of indices U ⊂ [d] such that for all i ∈ U , we have Pr
x∼D

[vi(x) 6= 0] > 0.

Without loss of generality, assume U = [s].

Next, we need to show that for all i ∈ U , we have vi(patch (x)) = 0. Since we have η ⊥ Span (A),
we have vi(η) = 0 for all i ∈ U . Since the vi are also linear functions, we satisfy vi(Az + η) = 0
for all z ∈ Rs.
We now show that there is at least one j ∈ [dim (V)] \ U such that Pr

x∼D
[vj(patch (x)) 6= 0] = 1.

Since η ⊥ Span (A), η must be expressible as some nonzero linear combination of the vectors vj ;
thus, taking the inner product with any such vector will result in a nonzero value.

Finally, we show that for all j ∈ [dim (V)] \ U , we either have Pr
x∼D

[vj(patch (x)) ≥ 0] = 1 or

Pr
x∼D

[vj(patch (x)) ≤ 0] = 1. Since η is expressible as a linear combination of several such vj , we

can write:

〈Az + η, vj〉 = 〈Az, vj〉+ 〈η, vj〉

= 0 +

〈
d∑

j=s+1

aj · vj , vj

〉

14

= aj

which is clearly nonzero.

The result now follows from Theorem 3.

Theorem 21 (Random direction is an adversarial watermark (Theorem 5)). Consider the same setting
used in Corollary 4, and set Fadv =

{
patch : patch (x) = x+ η, η ∈ Rd

}
.

If h∗ achieves margin γ and if the ambient dimension d of the model satisfies d ≥ Ω (s log(s/δ)/γ2),
then an adversary can find a patch function such that with probability 1 − δ, a training
set S = Sclean ∪ Sadv satisfying |Sclean| ≥ Ω

(
ε−1clean (VC (H) + log (1/δ))

)
and |Sadv| ≥

Ω
(
ε−1clean (VC (H) + log (1/δ))

)
yields a classifier ĥ satisfying the success conditions for Problem 2

while also satisfying E
(x,y)∼D

[
1

{
ĥ(x) 6= y

}]
≤ εclean.

This result holds true particularly when the adversary does not know Supp (D).

Proof. We prove Theorem 5 in two parts. We first show that although the adversary doesn’t know
Fadv(h

∗), they can find patch ∈ Fadv(h
∗) with high probability. We then invoke the result from

Corollary 4.

Let ai denote the ith column of A. Next, draw η from Unif
(
Sd−1

)
.

Recall that there exists a universal constant C0 for which η
√
d is C0-subgaussian ([18]). Next,

remember that if η
√
d is C0-subgaussian, then

〈
η
√
d, ai

〉
has subgaussian constant C0 ‖ai‖ = C0.

Using classical subgaussian concentration inequalities, we arrive at the following:

Pr

[∣∣∣〈η√d, ai〉∣∣∣ ≥ ε
√
d√
s

]
≤ 2exp

(
− ε

2d

sC2
0

)
⇒ Pr

[
for all i ∈ [s], |〈η, ai〉| ≤

ε√
s

]
≥ 1− 2s · exp

(
− ε

2d

sC2
0

)
≥ 1− δ

2
, pick d =

C2
0

ε2
· s · log

(
4s

δ

)
Next, observe that if we have |〈η, ai〉| ≤ ε/

√
s for all i ∈ [s], then we have:

∥∥AT η∥∥ =

√√√√ s∑
i=1

|〈η, ai〉|2

≤

√√√√ s∑
i=1

ε2

s

= ε

This implies that the norm of the component of the trigger in Ker
(
AT
)

is at least
√

1− ε2 ≥ 1− ε
from the Pythagorean Theorem.

Next, we substitute ε = γ. From this, we have that
∥∥AT v∥∥ ≤ γ with probability 1 − δ/2, which

implies that h∗(x + η) = h∗(x) with probability 1 − δ/2 over the draws of η. This gives us that
patch (x) = x+ η ∈ Fadv(h

∗) with probability 1− δ/2 over the draws of η.

It is now easy to see that the result we want follows from a simple application of Corollary 4 using a
failure probability of δ/2, and we’re done, where the final failure probability 1 − δ follows from a
union bound.

Theorem 22 (Theorem 6). Consider some h∗(x) = sign (〈w∗, x〉) and a data distribution
D satisfying Pr

(x,y)∼D
[y 〈w∗, x〉 ≥ 1] = 1 and Pr

(x,y)∼D
[‖x‖ ≤ R] = 1. Let γ be the max-

imum margin over all weight vectors classifying the uncorrupted data, and let Fadv =
{patch (x) : ‖patch (x)− x‖ ≤ γ}.

15

If Sclean consists of at least Ω
(
ε−2clean

(
γ−2R2 + log (1/δ)

))
i.i.d examples drawn from D and if Sadv

consists of at least Ω
(
ε−2adv

(
γ−2R2 + log (1/δ)

))
i.i.d examples drawn from D|h∗(x) 6= t, then we

have:
min

w : ‖w‖≤γ−1

1

|S|
∑

(x,y)∈S

1 {y 〈w, x〉 < 1} > 0

In other words, assuming there exists a margin γ and a 0-loss classifier, empirical risk minimization
of margin-loss with a norm constraint fails to find a 0-loss classifier on a sufficiently contaminated
training set.

Proof. We will proceed by contradiction.

Let patch (x) denote the patched version of x. Without loss of generality, let the target label be +1.
Set εclean and εadv such that εclean + εadv < 1 and draw enough samples such that the attack succeeds
with parameters εadv and δ.

Observe that we can write every member in Sadv as (patch (x) , y) for some natural x with label ¬y.
Next, suppose that the learner recovers a ŵ such that the empirical margin loss of ŵ is 0. Next, recall
that the following holds for ŵ obtained from the minimization in the theorem statement and for a
training set S ∼ Dm (see, for instance, Theorem 26.12 of [5]):

E
(x,y)∼D

[1 {y 〈ŵ, x〉 < 1}] ≤ inf
w : ‖w‖≤γ−1

E
(x,y)∼S

[1 {y 〈w, x〉 < 1}]+O

√ (R/γ)
2

+ log (1/δ)

m


Using this, it is easy to see that from uniform convergence, we have, with probability 1− δ:

Pr
x∼D

[y 〈ŵ, x〉 ≥ 1] ≥ 1− εclean

Pr
x∼D

[〈ŵ, patch (x)〉 ≥ 1] ≥ 1− εadv

Thus, by a Union Bound, the following must be true:

Pr
x∼D

[(y 〈ŵ, x〉 ≥ 1) ∧ (〈ŵ, patch (x)〉 ≥ 1)] ≥ 1− εclean − εadv

Hence, it must be the case that there exists at least one true negative x for which both y 〈ŵ, x〉 ≥ 1
and 〈ŵ, patch (x)〉 ≥ 1 hold. We will use this to obtain a lower bound on ‖ŵ‖, from which a
contradiction will follow. Notice that:

1 ≤ 〈ŵ, patch (x)〉
= 〈ŵ, x〉+ 〈ŵ, patch (x)− x〉
≤ −1 + ‖ŵ‖ · ‖patch (x)− x‖

where the last line follows from the fact that x is labeled differently from patch (x). This gives:

‖ŵ‖ ≥ 2

‖patch (x)− x‖

Assuming that we meet the constraint ‖ŵ‖ ≤ 1/γ, putting the inequalities together gives:

‖patch (x)− x‖ ≥ 2γ

which is a contradiction, since we require that the size of the perturbation is smaller than the
margin.

Lemma 23 (Lemma 8). We have 0 ≤ mcapX ,D (H) ≤ VC (H).

Proof. The lower bound is obvious. This is also tight, as we can set X = {0, 1}n, D = Unif(X),
andH = {f : f(x) = 1,∀x ∈ X}.
We now tackle the upper bound. Suppose for the sake of contradiction that mcapX ,D (H) ≥
VC (H) + 1. Then, we can find k = VC (H) + 1 nonempty subsets of X , X1, . . . , Xk and an h for
which every labeling of these subsets can be achieved by some other ĥ ∈ H. Hence, picking any

16

collection of points xi ∈ Xi yields a set witnessing VC (H) ≥ k = VC (H) + 1, which is clearly a
contradiction.

The upper bound is tight as well. Consider the dataset S = {0, e1, . . . , ed}, let D be a distribution
assigning a point mass of 1 to x = 0, and let h∗(0) = 1. It is easy to see that the class of origin-
containing halfspaces can memorize every labeling e1, . . . , ed as follows – suppose we have labels
b1, . . . , bd. Then, the classifier:

1

{
d∑
i=1

bi · xi ≥ 0

}
memorizes every labeling of e1, . . . , ed while correctly classifying the pair (0, 1). Hence, we
can memorize d irrelevant sets, which is equal to the VC dimension of origin-containing linear
separators.

Theorem 24 (Theorem 9). Pick a target label t ∈ ±1. Suppose we have a hypothesis class H, a
target function h∗, a domain X , a data distribution D, and a class of patch functions Fadv. Define:

C(Fadv(h
∗)) := {patch (Supp (D|h∗(x) 6= t)) : patch ∈ Fadv}

Now, suppose that mcapX ,D (h∗,H, C(Fadv(h
∗))) ≥ 1. Then, there exists a function patch ∈ Fadv

for which the adversary can draw a set Sadv consisting of m = Ω
(
ε−1adv (VC (H) + log (1/δ))

)
i.i.d

samples from D|h∗(x) 6= t such that with probability at least 1 − δ over the draws of Sadv, the
adversary achieves the objectives of Problem 2, regardless of the number of samples the learner
draws from D for Sclean.

Theorem 25 (Generalization of Theorem 9). Pick an array of k target labels t ∈ {±1}k. Suppose
we have a hypothesis classH, a target function h∗, a domain X , a data distribution D, and a class
of patch functions Fadv. Define:

C(Fadv(h
∗))t′ := {patch (Supp (D|h∗(x) 6= t′)) : patch ∈ Fadv}

and let:
C(Fadv(h

∗)) := C(Fadv(h
∗))−1 ∪ C(Fadv(h

∗))1

Now, suppose that mcapX ,D (h∗,H, C(Fadv(h
∗))) ≥ k. Then, there exists k functions

patch1, . . . , patchk ∈ Fadv for which the adversary can draw sets {(Sadv)i}i∈[k] each consisting of
mi = Ω

(
ε−1adv (VC (H) + log (k/δ))

)
i.i.d samples from D|h∗(x) 6= ti such that with probability at

least 1− δ over the draws of (Sadv)i, the adversary achieves the objectives of Problem 2, regardless
of the number of samples the learner draws from D for Sclean.

Proof. As per the theorem statement, we can draw m samples from D|h∗(x) 6= ti to form Sadv by
inverting the labels of the samples we draw.

Since mcapX ,D (h∗,H, C(Fadv(h
∗))) = k, there must exist k sets X1, . . . , Xk ∈ C(Fadv(h

∗))
such that the Xi are memorizable, for which we can write Xi ⊆ patchi (Supp (D|h∗(x) 6= ti)) for
appropriate choices of patchi, and for which µpatch(D|h∗(x)6=ti)(Xi) = 1. This implies that with
probability 1, there exists at least one function ĥ ∈ H such that ĥ returns ti on every element in
(Sadv)i for all i ∈ [k] and agrees with h∗ on every element in the clean training set Sclean.

Thus, we can recover a classifier ĥ fromH with 0 error on the training set Sclean ∪
(⋃

i∈[k](Sadv)i

)
.

In particular, notice that we achieve 0 error on Sclean from distribution D and on every (Sadv)i
from distribution patchi (D|h∗(x) 6= ti). From the Fundamental Theorem of PAC Learning ([5]),
it follows that as long as |Sclean| and |(Sadv)i| are each at least Ω

(
ε−1clean (VC (H) + log (k/δ))

)
and

Ω
(
ε−1adv (VC (H) + log (k/δ))

)
, respectively, we have that ĥ has error at most ε onD and error at least

1− ε on patchi (D|h∗(x) 6= ti) with probability 1− δ (following from a union bound, where each
training subset yields a failure to attain uniform convergence with probability at most δ/(k+1)).

Theorem 26 (Theorem 10). Let C(Fadv(h
∗)) be defined the same as in Theorem 9. Suppose we have

a hypothesis classH over a domain X , a true classifier h∗, data distribution D, and a perturbation
class Fadv. If mcapX ,D (h∗,H, C(Fadv(h

∗))) = 0, then the adversary cannot successfully construct
a backdoor data poisoning attack as per the conditions of Problem 2.

17

Proof. The condition in the theorem statement implies that there does not exist an irrelevant set that
can be memorized atop any choice of h ∈ H.

For the sake of contradiction, suppose that there does exist a target classifier h∗, a function patch ∈
Fadv and a target label t such that for all choices of εclean, εadv, and δ, we obtain a successful attack.

Define the set X := patch (Supp (D|h∗(x) 6= t)); in words, X is the subset of X consisting of
patched examples that are originally of the opposite class of the the target label. It is easy to see that
X ∈ C.

We will first show that if µD(X) > 0, then we obtain a contradiction. Set 0 < εadv, εclean <
µD(X)

1+µD(X) .
Since the attack is successful, we must classify at least a 1− εadv fraction of X as the target label.
Hence, we can write:

µD

({
x ∈ X : ĥ(x) = t

})
≥ (1− εadv)µD(X)

>
1

1 + µD(X)
· µD(X)

> εclean

Since the set
{
x ∈ X : ĥ(x) = t

}
is a subset of the region of X that ĥ makes a mistake on, we

have that ĥ must make a mistake on at least εclean measure of D, which is a contradiction.

Hence, it must be the case that µD(X) = 0; in other words, X is an irrelevant set. Recall that
in the beginning of the proof, we assume there exists a function ĥ that achieves label t on X ,
which is opposite of the value of h∗ on X . Since we can achieve both possible labelings of X
with functions from H, it follows that X is a memorizable set, and thus the set X witnesses
mcapX ,D (h∗,H, C(Fadv(h

∗))).

Example 27 (Overparameterized Linear Classifiers (Example 11)). Recall the result from the previous
section, where we tookX = Rd,Hd to be the set of linear classifiers in Rd, and letD be a distribution
over a radius-R subset of an s-dimensional subspace P . We also assume that the true labeler h∗
achieves margin γ.

If we set Fadv =
{
patch (x) : patch (x) = x+ η, η ∈ Rd

}
, then we have

mcapX ,D (h∗,Hd, C(Fadv(h
∗))) ≥ d− s.

Proof. Let w∗ be the weight vector corresponding to h∗.

Observe that there exists k := d− s unit vectors v1, . . . , vk that complete an orthonormal basis from
that for P to one for Rd. Next, consider the following subset of Fadv(h

∗):

F ′adv :=

{
patch ∈ Fadv : ∀i ∈ [k], patchi (x) =

({
x+ η · tivi , h∗(x) 6= ti
x otherwise

)}
We prove the memorization capacity result by using the images of functions in F ′adv. We will show
that the function:

ĥ(x) = sign

(〈
w∗ +

2R

γ

k∑
i=1

ti ·
vi
ηi
, x

〉)
memorizes the k sets Ci := {x+ ηi · vi : 〈w∗, x〉 ∈ [1,R/γ] ∪ [−R/γ,−1]}. Moreover, observe
that the preimages of the Ci have measure 1 under the conditional distributions D|h∗(x) 6= ti, since
the preimages contain the support of these conditional distributions. We now have that, for a clean
point x ∈ P :

ĥ(x) = sign

(〈
w∗ +

2R

γ

k∑
i=1

ti ·
vi
ηi
, x

〉)

= sign

(
〈w∗, x〉+

2R

γ

〈
k∑
i=1

ti ·
vi
ηi
, x

〉)

18

= sign (〈w∗, x〉) = h∗(x)

and for a corrupted point x+ ηj · vj , for j ∈ [k]:

ĥ(x) = sign

(〈
w∗ +

2R

γ

k∑
i=1

ti ·
vi
ηi
, x+ ηj · vj

〉)

= sign

(
〈w∗, x+ ηj · vj〉+

2R

γ

〈
k∑
i=1

ti ·
vj
ηj
, x+ ηj · vj

〉)

= sign

(
〈w∗, x〉+

2R

γ

〈
k∑
i=1

ti ·
vi
ηi
, x

〉
+

2R

γ

〈
k∑
i=1

ti ·
vi
ηi
, ηj · vj

〉)

= sign

([
±R
γ

]
+ tj ·

2R

γ

)
= tj

This shows that we can memorize the k sets Ci. It is easy to see that µD(Ci) = 0, so the Ci are
irrelevant memorizable sets; in turn, we have that mcapX ,D (h∗) ≥ k = d− s, as desired.

Example 28 (Linear Classifiers Over Convex Bodies (Example 12)). Let H be the set of origin-
containing halfspaces. Fix an origin-containing halfspace h∗ with weight vector w∗. Let X ′ be a
closed compact convex set, let X = X ′ \ {x : 〈w∗, x〉 = 0}, and let D be any probability measure
over X that assigns nonzero measure to every `2 ball of nonzero radius contained in X and satisfies
the relation µD(Y) = 0 ⇐⇒ Vold(Y) = 0 for all Y ⊂ X . Then, mcapX ,D (h∗,H) = 0.

Proof. Observe that it must be the case that the dimension of the ambient space is equal to the
dimension of X .

Let w∗ be the weight vector corresponding to the true labeler h∗.

For the sake of contradiction, suppose there exists a classifier ŵ satisfying
Pr
x∼D

[sign (〈ŵ, x〉) = sign (〈w∗, x〉)] = 1, but there exists a subset Y ⊂ X for which

sign (〈ŵ, x〉) 6= sign (〈w∗, x〉), for all x ∈ Y . Such a Y would constitute a memorizable
set.

Without loss of generality, let the target label be −1; that is, the adversary is converting a set Y
whose label is originally +1 to one whose label is −1. Additionally, without loss of generality, take
‖w∗‖ = ‖ŵ‖ = 1. Observe that the following set relationship must hold:

Y ⊆ D := {x ∈ X : 〈ŵ, x〉 ≤ 0 and 〈w∗, x〉 > 0}
For D to be nonempty (and therefore for Y to be nonempty), observe that we require ŵ 6= w∗

(otherwise, the constraints in the definition of the set D are unsatisfiable).

We now need the following intermediate result.

Lemma. Consider some convex body K, a probability measure D such that every `2 ball of nonzero
radius within K has nonzero measure, and some subset K ′ ⊆ K satisfying µD(K ′) = 1. Then,
conv (K ′) contains every interior point of K.

Proof. Recall that an interior point is defined as one for which we can find some neighborhood
contained entirely within the convex body. Mathematically, x ∈ K is an interior point if we can find
nonzero δ for which {z : ‖x− z‖ ≤ δ} ⊆ K (see [1]).

For the sake of contradiction, suppose that there exists some interior point x ∈ K that is not contained
in conv (K ′). Hence, there must exist a halfspace H with boundary passing through x and entirely
containing conv (K ′). Furthermore, there must exist a nonzero δ for which there is an `2 ball centered
at x of radius δ contained entirely within K. Call this ball B2(x, δ). Thus, the set K \H cannot be
in conv (K ′).

We will now show that µD(K \H) > 0. Observe that the hyperplane inducing H must cut B2(x, δ)
through an equator. From this, we have that the set K \H contains a half-`2 ball of radius δ. It is

19

easy to see that this half-ball contains another `2 ball of radius δ/2 (call this B′), and as per our initial
assumption, B′ must have nonzero measure.

Thus, we can write µD(K\H) ≥ µD(B′) > 0. Since we know that µD(conv (K ′))+µD(K\H) ≤ 1,
it follows that µD(conv (K ′)) < 1 and therefore µD(K ′) < 1, violating our initial assumption that
µD(K ′) = 1.

This lemma implies that if Y is memorizable, then it must lie entirely on the boundary of the set
X+ := {x ∈ X : 〈w∗, x〉 > 0}. To see this, observe that if ŵ classifies any (conditional) measure-1
subset of X+ correctly, then it must classify the convex hull of that subset correctly as well. This
implies that ŵ must correctly classify every interior point in X+, and thus, Y must be entirely on the
boundary of X+.

We will now show the following intermediate result.

Lemma. Let K be a closed compact convex set. Let x1 be on the boundary of K and let x2 be an
interior point of K. Then, every point of the form λx1 + (1− λ)x2 for λ ∈ (0, 1) is an interior point
of K.

Proof. Since x2 is an interior point, there must exist an `2 ball of radius δ contained entirely within
K centered at x2. From similar triangles and the fact that any two points in a convex body can be
connected by a line contained in the convex body, it is easy to see that we can center an `2 ball of
radius (1− λ)δ at the point λx1 + (1− λ)x2 that lies entirely in K. This is what we wanted, and
we’re done.

Now, let x1 ∈ Y and x2 ∈ Interior(X−) where X− = {x ∈ X : 〈w∗, x〉 < 0}. Draw a line from x1
to x2 and consider the labels of the points assigned by ŵ. Since x1 ∈ Y , we have ĥ(x1) = −1, and
since x2 ∈ Interior(X−), we have that ĥ(x2) = −1 as well. Using our lemma, we have that every
point on the line connecting x1 to x2 (except for possibly x1) is an interior point to X ′. Since we
have that the number of sign changes along a line that can be induced by a linear classifier is at most
1, we must have that the line connecting x1 to x2 incurs 0 sign changes with respect to the classifier
induced by ŵ. This implies that the line connecting x1 to x2 cannot pass through any interior points
of X+. However, the only way that this can happen is if 〈w∗, x1〉 = 0, but per our definition of X , if
it is the case that 〈w∗, x1〉 = 0, then x1 /∈ X , which is a clear contradiction.

This is sufficient to conclude the proof, and we’re done.

Example 29 (Sign Changes (Example 13)). Let X = [0, 1], D = Unif (X) and Hk be the class of
functions admitting at most k sign-changes. Specifically,Hk consists of functions h for which we can
find pairwise disjoint, continuous intervals I1, . . . , Ik+1 such that:

• For all i < j and for all x ∈ Ii, y ∈ Ij , we have x < y.

•
⋃k+1
i=1 Ii = X .

• h(Ii) = −h(Ii+1), for all i ∈ [k].

Suppose the learner is learningHs for unknown s usingHd, where s ≤ d+ 2. For all h∗ ∈ Hs, we
have mcapX ,D (h∗,Hd) ≥ b(d−s)/2c.

Proof. Without loss of generality, take d− s to be an even integer.

Let I1, . . . , Is+1 be the intervals associated with h∗. It is easy to see that we can pick a total of (d−s)/2

points such that the sign of these points can be memorized by some ĥ. Since each point we pick
within an interval can induce at most 2 additional sign changes, we have that the resulting function ĥ
has at most s+ 2 · (d−s)/2 ≤ d sign-changes; thus, ĥ ∈ Hd. Moreover, the measure of a single point
is 0, and so the total measure of our (d−s)/2 points is 0.

Given this, it is easy to find Fadv and corresponding C(Fadv(h
∗)) for which the backdoor attack can

succeed as per Theorem 9.

20

Theorem 30 (Theorem 14). Suppose that the learner can calculate and minimize:

LFadv(h∗)(ĥ, S) = E
(x,y)∼S

[
sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}]
over a finite set S and ĥ ∈ H.

If the VC dimension of the loss class LHFadv(h∗)
is finite, then there exists an algorithm using

O
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
samples that allows the learner to defeat the adversary

through learning a backdoor-robust classifier or by rejecting the training set as being corrupted, with
probability 1− δ.

Proof. See Algorithm A.1 for the pseudocode of an algorithm witnessing Theorem 17.

Algorithm A.1 Implementation of an algorithm certifying backdoor corruption
1: Input: Training set S = Sclean ∪ Sadv

satisfying |Sclean| = Ω
(
ε−2clean

(
VC
(
LHFadv(h∗)

)
+ log (1/δ)

))
2: Set ĥ := argminh∈HLFadv(h∗)(h, S)

3: Output: ĥ if LFadv(h∗)(ĥ, S) ≤ 2ε and reject otherwise

There are two scenarios to consider.

Training set is (mostly) clean. Suppose that S satisfies minh∈H LFadv(h∗)(h, S) . εclean. Since
the VC dimension of the loss class LHFadv(h∗)

is finite, it follows that with finitely many samples, we
attain uniform convergence with respect to the robust loss, and we’re done; in particular, we can write
LFadv(h∗)

(
argminh∈HLFadv(h∗)(h, S),D

)
. εclean with high probability.

Training set contains many backdoored examples. Here, we will show that with high probability,
minimizing LFadv(h∗)(ĥ, S) over ĥ will result in a nonzero loss, which certifies that the training set S
consists of malicious examples.

Suppose that for the sake of contradiction, the learner finds a classifier ĥ such that LFadv(h∗)(ĥ, S) .

εclean. Hence, with high probability, we satisfy LFadv(h∗)(ĥ,D) . εclean. Since there is a constant
measure allocated to each class, we can write:

E
(x,y)∼D|y 6=t

[
sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}]
. εclean

Furthermore, since we achieved a loss of 0 on the whole training set, including the subset Sadv, from
uniform convergence, we satisfy the following with high probability:

E
(x,y)∼D|y 6=t

[
1

{
ĥ(patch (x)) = t

}]
≥ 1− εadv

which immediately implies:

E
(x,y)∼D|y 6=t

[
sup

patch∈Fadv(h∗)

1

{
ĥ(patch (x)) 6= y

}]
≥ 1− εadv

Chaining the inequalities together yields:
εclean & 1− εadv

which is a contradiction, as we can make εclean sufficiently small so as to violate this statement.

Theorem 31 (Filtering Implies Generalization (Theorem 17)). Let α ≤ 1/3 and εclean ≤ 1/10.

Suppose we have a training set S = Sclean ∪ Sadv such that |Sclean| =
Ω
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
and |Sadv| ≤ α · (|Sadv|+ |Sclean|). If there exists an

algorithm that given S can find a subset S′ = S′clean ∪ S′adv satisfying |S′clean|/|Sclean| ≥ 1− εclean and
minh∈H LFadv(h∗)(h, S

′) . εclean, then there exists an algorithm such that given S returns a function
ĥ satisfying LFadv(h∗)(ĥ,D) . εclean with probability 1− δ.

21

Proof. See Algorithm A.2 for the pseudocode of an algorithm witnessing the theorem statement.

Algorithm A.2 Implementation of a generalization algorithm given an implementation of a filtering
algorithm

1: Input: Training set S = Sclean ∪ Sadv

satisfying |Sclean| = Ω
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
2: Run the filtering algorithm on S to obtain S′ satisfying the conditions in the theorem statement
3: Output: Output ĥ, defined as ĥ := argminh∈HLFadv(h∗)(h, S

′)

Recall that we have drawn enough samples to achieve uniform convergence (see [14] and [26]); in
particular, assuming that our previous steps succeeded in removing very few points from Sclean, then
for all h ∈ H, we have with probability 1− δ:∣∣LFadv(h∗)(h,D)− LFadv(h∗)(h, Sclean)

∣∣ ≤ εclean
Observe that we have deleted at most m · 2εclean points from Sclean. Let S′clean := S′ ∩ Sclean (i.e., the
surviving members of Sclean from our filtering procedure). We start with the following claim.

Claim 32. The following holds for all h ∈ H:∣∣LFadv(h∗)(h, Sclean)− LFadv(h∗)(h, S
′
clean)

∣∣ ≤ εclean
Proof. Let a, b, c be positive numbers. We first write:

a

b
−max

{
0,
a− c
b− c

}
=
c(b− a)

b(b− c)
≤ c

b

which occurs exactly when c ≤ a. In case where a ≤ c:

a

b
−max

{
0,
a− c
b− c

}
=
a

b
≤ c

b

which gives:
a

b
−max

{
0,
a− c
b− c

}
≤ c

b

Next, consider:

min

{
1,

a

b− c

}
− a

b
=

a

b− c
− a

b
=
c

b
· a

b− c
≤ c

b

which happens exactly when we have b ≥ a+ c. In the other case:

min

{
1,

a

b− c

}
− a

b
= 1− a

b
≤ c

b

We can thus write:

max

{
0,
a− c
b− c

}
,min

{
1,

a

b− c

}
∈
[a
b
± c

b

]
Now, let a denote the number of samples from Sclean that h incurs robust loss on, let b be the total
number of samples from Sclean, and let c be the number of samples our filtering procedure deletes
from Sclean. It is easy to see that a/b corresponds LFadv(h∗)(h, Sclean) and that LFadv(h∗)(h, S

′
clean) ∈

[max {0, (a−c)/(b−c)} ,min {1, a/(b−c)}]. From our argument above, this means that we must have:

LFadv(h∗)(h, S
′
clean) ∈

[
LFadv(h∗)(h, Sclean)±

εclean(1− α)m

(1− α)m

]
Finally:

εclean(1− α)m

(1− α)m
= εclean

and we’re done.

22

We now use our claim and triangle inequality to write:∣∣LFadv(h∗)(h, S
′
clean)− LFadv(h∗)(h,D)

∣∣ ≤ ∣∣LFadv(h∗)(h, Sclean)− LFadv(h∗)(h, S
′
clean)

∣∣+∣∣LFadv(h∗)(h,D)− LFadv(h∗)(h, Sclean)
∣∣

≤εclean

Next, consider some ĥ satisfying LFadv(h∗)(ĥ, S
′) . εclean (which must exist, as per our argument in

Part 3), and observe that, for a constant C:

LFadv(h∗)(ĥ, S
′) ≥ (1− Cεclean)LFadv(h∗)(ĥ, S

′ ∩ Sclean) + CεcleanLFadv(h∗)(ĥ, S
′ ∩ Sadv)

≥ (1− Cεclean)LFadv(h∗)(ĥ, S
′
clean)

⇒ LFadv(h∗)(ĥ, S
′
clean) ≤

εclean
1− Cεclean

= 2εclean

(
1

1− Cεclean

)
. εclean

We now use the fact that
∣∣LFadv(h∗)(h, S

′
clean)− LFadv(h∗)(h,D)

∣∣ ≤ εclean to arrive at the conclusion
that LFadv(h∗)(h,D) . εclean, which is what we wanted to show.

Theorem 33 (Generalization Implies Filtering (Theorem 18)). Set εclean ≤ 1/10 and α ≤ 1/6.

If there exists an algorithm that, given at most a 2α fraction of outliers in the training set, can
output a hypothesis satisfying LFadv(h∗)(ĥ,D) ≤ εclean with probability 1− δ over the draw of the
training set, then there exists an algorithm that given a training set S = Sclean ∪ Sadv satisfying
|Sclean| ≥ Ω

(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
outputs a subset S′ ⊆ S with the property that

LFadv(h∗)

(
argminh∈HLFadv(h∗) (h, S′) ,D

)
. εclean with probability 1− 7δ.

Proof. See Algorithm A.3 for the pseudocode of an algorithm witnessing the theorem statement.

At a high level, our proof proceeds as follows. We first show that the partitioning step results in
partitions that don’t have too high of a fraction of outliers, which will allow us to call the filtering
procedure without exceeding the outlier tolerance. Then, we will show that the hypotheses ĥL and
ĥR mark most of the backdoor points for deletion while marking only few of the clean points for
deletion. Finally, we will show that although ĥ is learned on S′ that is not sampled i.i.d from D, ĥ
still generalizes to D without great decrease in accuracy.

Algorithm A.3 Implementation of a filtering algorithm given an implementation of a generalization
algorithm

1: Input: Training set S = Sclean ∪ Sadv

satisfying |Sclean| = Ω
(
ε−2clean

(
VC
(
LFadv(h∗)

)
+ log (1/δ)

))
2: Calculate ĥ = argminh∈HLFadv(h∗)(h, S) and early-return S if LFadv(h∗)(ĥ, S) ≤ Cεclean, for

some universal constant C
3: Randomly partition S into two equal halves SL and SR
4: Run the generalizing algorithm to obtain ĥL and ĥR using training sets SL and SR, respectively
5: Run ĥL on SR and mark every mistake that ĥL makes on SR, and similarly for ĥR
6: Remove all marked examples to obtain a new training set S′ ⊆ S
7: Output: S′ such that ĥ = argminh∈HLFadv(h∗)(h, S

′) satisfies LFadv(h∗)(ĥ,D) . εclean with
probability 1− δ

We have two cases to consider based on the number of outliers in our training set. Let m be the total
number of examples in our training set.

Case 1 – αm ≤ max {2/3εclean · log (1/δ) , 24 log (2/δ)} It is easy to see that L(h∗, S) ≤ α. Using
this, we can write:

L(h∗, S) ≤ α
2

3εclean ·m
· log

(
1

δ

)

23

.
εclean

VC (H) + log (1/δ)
· log

(
1

δ

)
< εclean

which implies that we exit the routine via the early-return. From uniform convergence, this implies that
with probability 1− δ over the draws of S, we have LFadv(h∗)

(
argminh∈HLFadv(h∗) (h, S′) ,D

)
.

εclean.

In the other case, we write:
L(h∗, S) ≤ α

≤ 24 log (2/δ)

m

.
ε2clean log (1/δ)

VC (H) + log (1/δ)

. ε2clean ≤ εclean
and the rest follows from a similar argument.

Case 2 – αm ≥ max {2/3εclean · log (1/δ) , 24 log (2/δ)} Let τ = δ; we make this rewrite to help
simplify the various failure events.

Part 1 – Partitioning Doesn’t Affect Outlier Balance Define indicator random variables Xi such
that Xi is 1 if and only if example i ends up in SR. We want to show that:

Pr

[∑
i∈Sadv

Xi /∈ [0.5, 1.5]α · m/2

]
≤ τ

Although the Xi are not independent, they are negatively associated, so we can still use the Chernoff
Bound and the fact that the number of outliers αm ≥ 24 log (2/τ):

Pr

[∑
i∈Sadv

Xi /∈ [0.5, 1.5]α · m/2

]
≤ 2exp

(
−
α/2 ·m · 1/4

3

)
≤ 2exp

(
−αm

24

)
≤ τ

Moreover, if SL has a [α/2, 3α/2] fraction of outliers, then it also follows that SR has a [α/2, 3α/2]
fraction of outliers. Thus, this step succeeds with probability 1− τ .

Part 2 – Approximately Correctly Marking Points We now move onto showing that ĥL deletes
most outliers from SR while deleting few clean points. Recall that ĥL satisfies LFadv(h∗)(ĥL,D) ≤
εclean with probability 1− δ. Thus, we have that ĥL labels the outliers as opposite the target label
with probability at least 1− εclean. Since we have that the number of outliers αm ≥ 2/3εclean · log (1/τ),
we have from Chernoff Bound (let Xi be the indicator random variable that is 1 when ĥL classifies a
backdoored example as the target label):

Pr

[∑
i∈Sadv∩SR

Xi ≥ 2 ·
(
εclean ·

3

2
αm

)]
≤ exp

(
−εclean ·

3

2
αm

)
≤ τ

Thus, with probability 1− 2τ , we mark all but at most εclean · 6αm outliers across both SR and SL;
since we impose that α . 1, we have that we delete all but a cεclean fraction of outliers for some
universal constant c.

It remains to show that we don’t delete too many good points. Since ĥL has true error at most εclean
and using the fact that m(1− α/2) ≥ m(1− α) ≥ mα ≥ 2 log(1/τ)

εclean
, from the Chernoff Bound, we

have (let Xi be the indicator random variable that is 1 when ĥL misclassifies a clean example):

Pr

[∑
i∈Sclean∩SR

Xi ≥ 2 ·
(
εclean · (1− α/2) · m

2

)]
≤ exp

(
−εclean · (1− α/2) · m

2

)
≤ τ

From a union bound over the runs of ĥL and ĥR, we have that with probability 1− 2τ , we mark at
most 2mεclean · (1− α/2) ≤ 2mεclean clean points for deletion. From a union bound, we have that
this whole step succeeds with probability 1− 4τ − 2δ.

24

Part 3 – There Exists a Low-Error Classifier At this stage, we have a training set S′ that has at
least m(1− 2εclean) clean points and at most εclean · 6αm outliers. Recall that h∗ incurs robust loss
on none of the clean points and incurs robust loss on every outlier. This implies that h∗ has empirical
robust loss at most:

εclean · 6αm
m(1− 2εclean)

=
6αεclean

1− 2εclean
≤ 2εclean

where we use the fact that we pick εclean ≤ 1/10 < 1/4 and α ≤ 1/6. From this, it follows that
ĥ = argminh∈HLFadv(h∗)(h, S

′) satisfies LFadv(h∗)(ĥ, S
′) ≤ 2εclean.

Part 4 – Generalizing from S′ to D We now have to argue that LFadv(h∗)(ĥ, S
′) ≤ 2εclean implies

LFadv(h∗)(ĥ,D) . εclean. Recall that we have drawn enough samples to achieve uniform convergence
(see [14] and [26]); in particular, assuming that our previous steps succeeded in removing very few
points from Sclean, then for all h ∈ H, we have with probability 1− δ:∣∣LFadv(h∗)(h,D)− LFadv(h∗)(h, Sclean)

∣∣ ≤ εclean
Observe that we have deleted at most m · 2εclean points from Sclean. Let S′clean := S′ ∩ Sclean (i.e., the
surviving members of Sclean from our filtering procedure). We start with the following claim.

Claim 34. The following holds for all h ∈ H:∣∣LFadv(h∗)(h, Sclean)− LFadv(h∗)(h, S
′
clean)

∣∣ < 3εclean

Proof. Recall that in the proof of Theorem 17, we showed that for positive numbers a, b, c we have:

max

{
0,
a− c
b− c

}
,min

{
1,

a

b− c

}
∈
[a
b
± c

b

]
Now, let a denote the number of samples from Sclean that h incurs robust loss on, let b be the total
number of samples from Sclean, and let c be the number of samples our filtering procedure deletes
from Sclean. It is easy to see that a/b corresponds LFadv(h∗)(h, Sclean) and that LFadv(h∗)(h, S

′
clean) ∈

[max {0, (a−c)/(b−c)} ,min {1, a/(b−c)}]. From our argument above, this means that we must have:

LFadv(h∗)(h, S
′
clean) ∈

[
LFadv(h∗)(h, Sclean)±

2εcleanm

(1− α)m

]
Finally:

2εcleanm

(1− α)m
=

2εclean
(1− α)

≤ 2εclean
5/6

< 3εclean

and we’re done.

We now use our claim and triangle inequality to write:∣∣LFadv(h∗)(h, S
′
clean)− LFadv(h∗)(h,D)

∣∣ ≤ ∣∣LFadv(h∗)(h, Sclean)− LFadv(h∗)(h, S
′
clean)

∣∣+∣∣LFadv(h∗)(h,D)− LFadv(h∗)(h, Sclean)
∣∣

<4εclean

Next, consider some ĥ satisfying LFadv(h∗)(ĥ, S
′) ≤ 2εclean (which must exist, as per our argument

in Part 3), and observe that:

LFadv(h∗)(ĥ, S
′) ≥ (1− 2εclean)LFadv(h∗)(ĥ, S

′ ∩ Sclean) + 2εcleanLFadv(h∗)(ĥ, S
′ ∩ Sadv)

≥ (1− 2εclean)LFadv(h∗)(ĥ, S
′
clean)

⇒ LFadv(h∗)(ĥ, S
′
clean) ≤

2εclean
1− 2εclean

= 2εclean

(
1

1− 2εclean

)
≤ 5εclean

2

We now use the fact that
∣∣LFadv(h∗)(h, S

′
clean)− LFadv(h∗)(h,D)

∣∣ < 4εclean to arrive at the conclusion
that LFadv(h∗)(h,D) < 13/2 · εclean, which is what we wanted to show.

The constants in the statement of Theorem 18 follow from setting τ = δ.

25

B Numerical Trials
In this section, we present a practical use case for Theorem 14 (Appendix Theorem 30).

Recall that, at a high level, Theorem 14 states that under certain assumptions, minimizing robust loss
on the corrupted training set will either:

1. Result in a low robust loss, which will imply from uniform convergence that the resulting
classifier is robust to adversarial (and therefore backdoor) perturbations.

2. Result in a high robust loss, which will be noticeable at training time.

This suggests that practitioners can use adversarial training on a training set which may be backdoored
and use the resulting robust loss value to make a decision about whether to deploy the classifier.
To empirically validate this approach, we run this procedure (i.e., some variant of Algorithm A.1)
on the MNIST handwritten digit classification task6(see [2]). Here, the learner wishes to recover a
neural network robust to small `∞ perturbations and where the adversary is allowed to make a small
`∞-norm watermark.

Disclaimers As far as we are aware, the MNIST dataset does not contain personally identifiable
information or objectionable content. The MNIST dataset is made available under the terms of the
Creative Commons Attribution-Share Alike 3.0 License.

Reproducibility We have included all the code to generate these results in the supple-
mentary material. Our code can be found at https://github.com/narenmanoj/
mnist-adv-training.7. Our code is tested and working with TensorFlow 2.4.1, CUDA 11.0,
NVIDIA RTX 2080Ti, and the Google Colab GPU runtime.

B.1 MNIST Using Neural Networks
B.1.1 Scenario
Recall that the MNIST dataset consists of 10 classes, where each corresponds to a handwritten digit
in {0, . . . , 9}. The classification task here is to recover a classifier that, upon receiving an image of a
handwritten digit, correctly identifies which digit is present in the image.

In our example use case, an adversary picks a target label t ∈ {0, . . . , 9} and a small additive
watermark. If the true classifier is h∗(x), then the adversary wants the learner to find a classifier ĥ
maximizing Pr

x∼D|h∗(x)6=t

[
ĥ(x) = t

]
. In other words, this can be seen as a “many-to-one” attack,

where the adversary is corrupting examples whose labels are not t in order to induce a classification
of t. The adversary is allowed to inject some number of examples into the training set such that the
resulting fraction of corrupted examples in the training set is at most α.

We will experimentally demonstrate that the learner can use the intuition behind Theorem 14 (Ap-
pendix Theorem 30) to either recover a reasonably robust classifier or detect the presence of significant
corruptions in the training set. Specifically, the learner can optimize a proxy for the robust loss via
adversarial training using `∞ bounded adversarial examples, as done by [11].

Instantiation of Relevant Problem Parameters Let H be the set of neural networks with archi-
tecture as shown in Table 1. Let X be the set of images of handwritten digits; we represent these as
vectors in [0, 1]

784. Define Fadv below:

{patch (x) : ‖x− patch (x)‖∞ ≤ 0.3 and patch (x)− x = pattern}

where pattern is the shape of the backdoor (we use an “X” shape in the top left corner of the image,
inspired by [17]). We let the maximum `∞ perturbation be at most 0.3 since this parameter has been
historically used in training and evaluating robust networks on MNIST (see [11]). In our setup, we

6We select MNIST because one can achieve a reasonably robust classifier on the clean version of the dataset.
This helps us underscore the difference between the robust loss at train time with and without backdoors in
the training set. Moreover, this allows us to explore a setting where our assumptions in Theorem 14 might not
hold – in particular, it’s not clear that we have enough data to attain uniform convergence for the binary loss and
LFadv(h

∗), and it’s not clear how to efficiently minimize LFadv(h
∗).

7Some of our code is derived from the GitHub repositories https://github.com/MadryLab/
backdoor_data_poisoning and https://github.com/skmda37/Adversarial_Machine_
Learning_Tensorflow.

26

demonstrate that these parameters suffice to yield a successful backdoor attack on a vanilla training
procedure (described in greater detail in a subsequent paragraph).

Although it is not clear how to efficiently exactly calculate and minimize LFadv(h∗), we will approxi-
mate LFadv(h∗) by calculating `∞-perturbed adversarial examples using a Projected Gradient Descent
(PGD) attack. To minimize LFadv(h∗), we use adversarial training as described in [11]. Generating
Table 3 takes roughly 155 minutes using our implementation of this procedure with TensorFlow 2.4.1
running on the GPU runtime freely available via Google Colab. We list all our relevant optimization
and other experimental parameters in Table 2.

Table 1: Neural network architecture used in experiments. We implemented this architecture using
the Keras API of TensorFlow 2.4.1.

Layer Parameters
Conv2D filters=32, kernel_size=(3,3),activation=’relu’
MaxPooling2D pool_size=(2,2)
Conv2D filters=64,kernel_size=(3,3),activation=’relu’
Flatten
Dense units=1024,activation=’relu’
Dense units=10,activation=’softmax’

Table 2: Experimental hyperparameters. We made no effort to optimize these hyperparameters;
indeed, many of these are simply the default arguments for the respective TensorFlow functions.

Property Details
Epochs 2
Validation Split None
Batch Size 32
Loss Sparse Categorical Cross Entropy
Optimizer RMSProp (step size = 0.001, ρ = 0.9, momentum = 0, ε = 10−7)
NumPy Random Seed 4321
TensorFlow Random Seed 1234
PGD Attack ε = 0.3, step size = 0.01, iterations = 40, restarts = 10

Optimization Details See Table 2 for all relevant hyperparameters and see Table 1 for the architec-
ture we use.

For the “Vanilla Training” procedure, we use no adversarial training and simply use our optimizer
to minimize our loss directly. For the “PGD-Adversarial Training” procedure, we use adversarial
training with a PGD adversary.

In our implementation of adversarial training, we compute adversarial examples for each image in
each batch using the PGD attack and we minimize our surrogate loss on this new batch. This is
sufficient to attain a classifier with estimated robust loss of around 0.08 on an uncorrupted training
set.

B.1.2 Goals and Evaluation Methods
We want to observe the impact of adding backdoor examples and the impact of running adversarial
training on varied values of α (the fraction of the training set that is corrupted).

To do so, we fix a value for α and a target label t and inject enough backdoor examples such that
exactly an α fraction of the resulting training set contains corrupted examples. Then, we evaluate the
train and test robust losses on the training set with and without adversarial training to highlight the
difference in robust loss observable to the learner. As sanity checks, we also include binary losses
and test set metrics. For the full set of metrics we collect, see Table 3.

To avoid out-of-memory issues when computing the robust loss on the full training set (roughly 60000
training examples and their adversarial examples), we sample 5000 training set examples uniformly
at random from the full training set and compute the robust loss on these examples. By Hoeffding’s
Inequality (see [18]), this means that with probability 0.99 over the choice of the subsampled training
set, the difference between our reported statistic and its population value is at most ∼ 0.02.

27

B.1.3 Results and Discussion

Table 3: Results with MNIST with a target label t = 0 and backdoor pattern “X.” In each cell, the
top number represents the respective value when the network was trained without any kind of robust
training, and the bottom number represents the respective value when the network was trained using
adversarial training as per [11]. For example, at α = 0.05, for Vanilla Training, the training 0− 1
loss is only 0.01, but the training robust loss is 1.00, whereas for PGD-Adversarial Training, the
training 0 − 1 loss is 0.07 and the training robust loss is 0.13. The Backdoor Success Rate is our
estimate of Pr

x∼D||y 6=t
[patch (x) = t], which may be less than the value of the robust loss.

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.13 0.24 0.27 0.41

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.02 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.09 0.11 0.10 0.19

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.00 0.05

See Table 3 for sample results from our trials. Over runs of the same experiment with varied target
labels t, we attain similar results; see Section B.1.4 for the full results. We now discuss the key
takeaways from this numerical trial.

Training Robust Loss Increases With α Observe that our proxy for LFadv(h∗)(ĥ, S) increases as
α increases. This is consistent with the intuition from Theorem 14 in that a highly corrupted training
set is unlikely to have low robust loss. Hence, if the learner expects a reasonably low robust loss and
fails to observe this during training, then the learner can reject the training set, particularly at high α.

Smaller α and Adversarial Training Defeats Backdoor On the other hand, notice that at smaller
values of α (particularly α ≤ 0.20), the learner can still recover a classifier with minimal decrease
in robust accuracy. Furthermore, there is not an appreciable decrease in natural accuracy either
when using adversarial training on a minimally corrupted training set. Interestingly, even at large
α, the test-time robust loss and binary losses are not too high when adversarial training was used.
Furthermore, the test-time robust loss attained at α > 0 is certainly better than that obtained when
adversarial training is not used, even at α = 0. Hence, although the practitioner cannot certify that
the learned model is robust without a clean validation set, the learned model does tend to be fairly
robust.

Backdoor Is Successful With Vanilla Training Finally, as a sanity check, notice that when we
use vanilla training, the backdoor trigger induces a targeted misclassification very reliably, even at
α = 0.05. Furthermore, the training and testing error on clean data is very low, which indicates that
the learner would have failed to detect the fact that the model had been corrupted had they checked
only the training and testing errors before deployment.

Prior Empirical Work The work of [31] empirically shows the power of data augmentation in
defending against backdoored training sets. Although their implementation of data augmentation
is different from ours8, their work still demonstrates that attempting to minimize some proxy for
the robust loss can lead to a classifier robust to backdoors at test time. However, our evaluation
also demonstrates that classifiers trained using adversarial training can be robust against test-time
adversarial attacks, in addition to being robust to train-time backdoor attacks. Furthermore, our
empirical results indicate that the train-time robust loss can serve as a good indicator for whether a
significant number of backdoors are in the training set.

8Observe that our implementation of adversarial training can be seen as a form of adaptive data augmentation.

28

B.1.4 Results For All Target Labels

Here, we present tables of the form of Table 3 for all choices of target label t ∈ {0, . . . , 9}. Notice
that the key takeaways remain the same across all target labels.

Table 4: Results with MNIST with a target label t = 0 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.13 0.24 0.27 0.41

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.02 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.09 0.11 0.10 0.19

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.00 0.05

Table 5: Results with MNIST with a target label t = 1 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.23 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.12 0.23 0.32 0.38

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.02 0.03 0.04 0.05

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.08 0.11 0.13 0.14

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.00 0.02 0.03

Table 6: Results with MNIST with a target label t = 2 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.00
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.13 0.23 0.28 0.38

Testing 0− 1 Loss Vanilla Training 0.01 0.02 0.01 0.02 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.05

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.09 0.10 0.10 0.14

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.00 0.01 0.04

29

Table 7: Results with MNIST with a target label t = 3 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.18 0.23 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.13 0.23 0.28 0.38

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.02 0.02
PGD-Adversarial Training 0.02 0.02 0.03 0.04 0.05

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.09 0.11 0.11 0.13

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.01 0.00 0.01 0.03

Table 8: Results with MNIST with a target label t = 4 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.13 0.24 0.27 0.42

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.02 0.03 0.03 0.05

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.15

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.04

Table 9: Results with MNIST with a target label t = 5 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.07 0.13 0.23 0.28 0.41

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.02 0.02
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.16

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.05

Table 10: Results with MNIST with a target label t = 6 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.12 0.24 0.27 0.40

Testing 0− 1 Loss Vanilla Training 0.01 0.02 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.06

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.09 0.12 0.10 0.16

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.04

30

Table 11: Results with MNIST with a target label t = 7 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.18 0.22 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.07 0.12 0.25 0.29 0.39

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.02 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.04

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.08 0.11 0.10 0.13

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.00 0.00 0.03

Table 12: Results with MNIST with a target label t = 8 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.32

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.14 0.23 0.28 0.41

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.03 0.05

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.09 0.11 0.10 0.17

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.00 0.00 0.01 0.01 0.05

Table 13: Results with MNIST with a target label t = 9 and backdoor pattern “X.”

α 0.00 0.05 0.15 0.20 0.30

Training 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.07 0.17 0.22 0.33

Training Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.08 0.13 0.23 0.29 0.43

Testing 0− 1 Loss Vanilla Training 0.01 0.01 0.01 0.01 0.01
PGD-Adversarial Training 0.02 0.03 0.03 0.04 0.06

Testing Robust Loss Vanilla Training 1.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.09 0.10 0.11 0.11 0.20

Backdoor Success Rate Vanilla Training 0.00 1.00 1.00 1.00 1.00
PGD-Adversarial Training 0.01 0.01 0.01 0.01 0.06

31

