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Abstract

Performance on the most commonly used Visual Question Answering dataset
(VQA v2) is starting to approach human accuracy. However, in interacting with
state-of-the-art VQA models, it is clear that the problem is far from being solved.
In order to stress test VQA models, we benchmark them against human-adversarial
examples. Human subjects interact with a state-of-the-art VQA model, and for
each image in the dataset, attempt to find a question where the model’s predicted
answer is incorrect. We find that a wide range of state-of-the-art models perform
poorly when evaluated on these examples. We conduct an extensive analysis of the
collected adversarial examples and provide guidance on future research directions.
We hope that this Adversarial VQA (AdVQA) benchmark can help drive progress
in the field and advance the state of the art.

1 Introduction

Visual question answering (VQA) is widely recognized as an important evaluation task for vision and
language research. Besides direct applications such as helping the visually impaired or multimodal
content understanding on the web, it offers a mechanism for probing machine understanding of
images via natural language queries. Making progress on VQA requires bringing together different
subfields in AI – combining advances from natural language processing (NLP) and computer vision
together with those in multimodal fusion – making it an exciting task in AI research.

Over the years, the performance of VQA models has started to plateau on the popular VQA v2
dataset [20] – approaching inter-human agreement – as evidenced by Fig. 1. This raises important
questions for the field: To what extent have we solved the problem? If we haven’t, what are we still
missing? How good are we really?

An intriguing method for investigating these questions is dynamic data collection [29], where human
annotators and state-of-the-art models are put “in the loop” together to collect data adversarially.
Annotators are tasked with and rewarded for finding model-fooling examples, which are then verified
by other humans. The easier it is to find such examples, the worse the model’s performance can be
said to be. The collected data can be used to “stress test” current VQA models and serve as the next
iteration of the VQA benchmark helping drive further progress.

The commonly used VQA dataset [20] was collected by instructing annotators to “ask a question
about this scene that [a] smart robot probably can not answer” [4]. One way of thinking about our
proposed human-adversarial data collection is that it explicitly ensures that the questions can not be
answered by today’s “smartest” models.
∗Equal contribution. Correspondence to advqa@fb.com.
†Work done as an intern at Facebook AI Research.
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Table 1: Contrastive examples from VQA and AdVQA. Predictions are given for the VisualBERT,
ViLBERT and UniT models, respectively. Models can answer VQA questions accurately, but
consistently fail on AdVQA questions.

Image VQA AdVQA

Q: How many cats are in
the image?
A: 2
Model: 2, 2, 2

Q: What brand is the tv?
A: lg
Model: sony, samsung, samsung

Q: Does the cat look happy?
A: no
Model: no, no, no

Q: How many cartoon drawings
are present on the cat’s tie?
A: 4
Model: 1, 1, 2

Q: What kind of floor is the
man sitting on?
A: wood
Model: wood, wood, wood

Q: Did someone else take this
picture?
A: no
Model: yes, yes, yes

This work is, to the best of our knowledge, the first to apply this human-adversarial approach to
an image and language multimodal problem. We introduce Adversarial VQA (AdVQA), a large
evaluation dataset of 46,807 examples in total, all of which fooled the VQA 2020 challenge winner,
the MoViE+MCAN [45] model.

We evaluate a wide range of existing VQA models on AdVQA and find that their performance is
significantly lower than on the commonly used VQA v2 dataset [20] (see Table 1). Furthermore, we
conduct an extensive analysis of AdVQA characteristics, and contrast with the VQA v2 dataset.

We hope that this new benchmark can help advance the state of the art by shedding important light
on the current model shortcomings. Our findings suggest that there is still considerable room for
continued improvement, with much more work remaining to be done.

2 Related Work

Stress testing VQA. Several attempts exist for stress testing VQA models. Some examine to
what extent VQA models’ predictions are grounded in the image content, as opposed to them
relying primarily on language biases learned from the training dataset. The widely used VQA v2
dataset [20] was one attempt at this. The dataset contains pairs of similar images that have different
answers to the same question, rendering a language-based prior inadequate. VQA under changing
priors (VQA-CP) [2] is a more stringent test where the linguistic prior not only is weak in the test
set, but is adversarial relative to the training dataset (i.e., answers that are popular for a question
type during training are rarer in the test set and vice versa). Other complementary datasets test
model robustness against certain conditions, such as different logicial compositions [18], question
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rephrasings [52], suprious correlations [1], and consistency in answering sub-questions [51]. Datasets
which benchmark specific capabilities in VQA models also exist, such as reading and reasoning
about text in images [57], leveraging external knowledge [44], and spatial [26] or compositional
reasoning [28]. Other vision and language datasets, such as Hateful Memes [31], have also tried to
make sure the task involves true multimodal reasoning, as opposed to any of the individual modalities
sufficing for arriving at the correct label. Compared to the previous work, with AdVQA, we aim to
have a more holistic and general dataset that pushes the boundaries of the state-of-the-art on VQA.

Saturating prior work. The VQA v2 [20] challenge has been running yearly since 2016 and has
seen tremendous progress, as can be seen in Figure 1. From simple LSTM [23] and VGGNet [54]
fused models to more advanced fusion techniques (MCB [16], Pythia [27]) to better object detec-
tors (MCAN [61], MoViE+MCAN [45], BUTD [3]) to transformers [59, 56] and self-supervised
pretraining (MCAN [61], UNIMO [38]), the community has brought the performance of models on
the VQA v2 dataset close to human accuracy, thus starting to saturate progress on dataset. As we
show through AdVQA, however, saturation is far from achieved on the overall task, and hence there
is a need for new datasets to continue benchmarking progress in vision and language reasoning.

2015 2016 2017 2018 2019 2020 2021

55

60

65

70

75

80
VQ

A 
Ac

cu
ra

cy

Human
UNIMO
MoViE-MCAN
MCAN
Pythia
BUTD
MCB
LSTM  VGGNet

Figure 1: Progress on the VQA v2 dataset over time.

Adversarial datasets. As AI models are
starting to work well enough in some narrow
contexts for real world deployment, there are
increasing concerns about the robustness of
these models. This has led to fertile research
both in designing adversarial examples to
“attack” models (e.g., minor imperceptible
noise added to image pixels that significantly
changes the model’s prediction [19]), as well
as in approaches to make models more robust
to “defend” against these attacks [9, 12]. The
human-in-the-loop adversarial setting that we
consider in this paper is qualitatively differ-
ent from the statistical perturbations typically
explored when creating adversarial examples.
This type of human-in-the-loop adversarial
data collection has been explored in NLP e.g.,
natural language inference [46], question an-
swering [5, 50], sentiment analysis [49], hate
speech detection [60], next video-and-language event prediction [35] and dialogue safety [15]. To
the best of our knowledge, ours is the first work to explore an image and language multimodal
human-adversarial benchmark.1

3 AdVQA

The aim of this work is to investigate state of the art VQA model performance via human-adversarial
data collection. In this human-and-model-in-the-loop paradigm, human annotators are tasked with
finding examples that fool the model. In this case, annotators are shown an image and are tasked with
asking difficult but valid questions that the model answers incorrectly. We collected our dataset using
Dynabench [29], a platform for dynamic adversarial data collection and benchmarking. For details
on our labeling user interface, please refer to the supplementary material.

The VQA v2 dataset is based on COCO [39] images. We collected adversarial questions on both
val2017 COCO images and testdev2015 COCO images. We then random sampled the collected set
down to 2 questions per val2017 COCO images (10,000) and 1 question per testdev2015 COCO
images (36,807). The random sampling was done to balance the annotator’s contributions. The
data collection involves three phrases (Figure 2): First, in the question collection phase, Amazon
Mechanical Turk workers interact with a state-of-the-art VQA model and self-report image-question
pairs that the model failed to answer correctly. Second, in the question validation phase, a new set

1Concurrent work [36] jointly available with AdVQA at https://adversarialvqa.org also focuses on the same
problem but uses images from a different source.
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Figure 2: Diagram of the AdVQA human-adversarial data collection flow.

(a) Main interface. The annotators follow the instructions
provided to write the question in the text field provided
which is then answered by the model-in-the-loop.

(b) Magnifier, available both in
question collection, validation
and answer collection helps an-
notators ask and answer more spe-
cific questions.

Figure 3: Question collection interface showing the first stage of AdVQA collection setup.

of workers validates whether the answers provided by the VQA model for the image-question pairs
collected in the first phrase are indeed incorrect. Finally, in the answer collection phase, we collect
10 ground truth answers for the image-question pairs validated in the second phase. In what follows,
we provide further details for each of these steps.

3.1 Question Collection

In this phase, annotators on Amazon MTurk are shown an image and are tasked with asking questions
about this image. The interface has a state-of-the-art VQA model in the loop. For each question the
annotator asks, the model produces an answer. Annotators are asked to come up with questions that
fool the model. Annotators are done (i.e., can submit the HIT) once they successfully fooled the
model or after they tried a minimum of 10 questions (whichever occurs first). To account for the fact
that it may be hard to think of many questions for some images, annotators are given the option to
skip an image after providing non-fooling three questions. We use the VQA Challenge 2020 winner –
MoViE+MCAN [45] – trained on the COCO 2017 train set as the model in the loop. This is to ensure
that the adversarial benchmark we collect is challenging for the current state-of-the-art in VQA.

The interface provides a digital magnifier to zoom into an area of the image when the mouse hovers
over it, allowing workers to examine the image closely if necessary. See Figure 3b. Keyboard
shortcuts were provided for convenience.

3.2 Question Validation

Note that in the question collection phase, annotators self-report when they have identified a question
that is incorrectly answered by the model. Whether or not this was actually the case is verified in
the question validation phase. Two different annotators are shown the image, question, and answer
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predicted by the model, and asked whether the model’s answer is correct. As an additional quality
control, the annotator is also asked whether the question is “valid”. A valid question is one where the
image is necessary and sufficient to answer the question. Examples of invalid questions are: “What is
the capital of USA?” (does not need an image) or “What is the person doing?” when the image does
not contain any people or where there are multiple people doing multiple things. If the two validators
disagree, a third annotator is used to break the tie. Examples are added to the dataset only if at least
two annotators agree that the question is valid.

3.3 Answer Collection

In the final stage of data collection, following [20, 57], we collect 10 answers per question providing
instructions similar to those used in [20] making sure that no annotator sees the same question twice.
In addition, as an extra step of caution, to filter bad questions that might have passed through last
two stages and to account for ambiguity that can be present in questions, we allow annotators to
select “unanswerable” as an answer. Further, to ensure superior data quality, we occasionally provide
annotators with hand-crafted questions for which we know the non-ambiguous single true answer, as
a means to identify and filter out annotators providing poor quality responses.

3.4 Human-Adversarial Annotation Statistics

The statistics for the first two stages (question collection and validation) are shown in Table 2. We find
that annotators took about 5 tries and on average around 4 minutes to find a model-fooling example.
For computing the model error rate, we can look at the instances where annotators claimed they had
fooled the model, and where annotators were verified by other annotators to have fooled the model.
The latter has been argued to be a particularly good metric for measuring model performance [29].
We also further confirm that the model was indeed fooled by running the model-in-the-loop on a
subset of examples in which human agreement was 100% and found the accuracy to be 0.15% on val,
and 0.18% on test splits of AdVQA respectively.

Table 2: AdVQA human-adversarial question collection and dataset statistics. The model error
rate is the percentage of examples where the submitted questions fooled the model (either as claimed
during question collection, or after validation). We also report the number of attempts (tries) needed
before a validated model-fooling example was found, and how long this took, in seconds.

Total Model error rate Tries Time in sec
claimed validated mean/median per ex.

208,932 40.94% (85,537) 36.17% (75,571) 5.33/4.0 203.22/107.26

Interestingly, the “claimed” model error rate, based on self-reported model-fooling questions, is
similar to that of text-based adversarial question answering, which was at 44.0% for RoBERTa and
47.1% for BERT [5]. The validated error rate for our task is much higher than e.g. for ANLI [46],
which was 9.52% overall, suggesting that fooling models is a lot easier for VQA than for NLI. It
appears to be not too difficult for annotators to find examples that the model fails to predict correctly.

4 Model Evaluation

4.1 Baselines and Methods

We analyze the performance of several baselines and a wide variety of state-of-the-art VQA models on
the AdVQA dataset. We evaluate the same set of models on VQA v2 dataset as a direct comparison.

Prior baselines. We start by evaluating two prior baselines: answering based on the overall majority
answer, or the per answer type majority answer in the validation dataset. We use the same answer
types as in [4]. The overall majority answer in AdVQA is no. The majority answer is no for “yes/no”,
2 for “numbers” and unanswerable for “others”. See Section 5 for more details on answer types.

Unimodal baselines. Next, we evaluate two unimodal pretrained models: i) ResNet-152 [22]
pretrained on Imagenet [13]; and ii) BERT [14], both finetuned on the task using the visual (image)
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or textual (question) modality respectively, while ignoring the other modality. We observe that the
unimodal text model performs better than unimodal image for both VQA and AdVQA.

Multimodal methods. We evaluate two varieties of multimodal models: i) unimodal pretrained
and ii) multimodal pretrained. In the unimodal pretrained category we explore MMBT [30],
MoViE+MCAN [45] and UniT [24]. These models are initialized from unimodal pretrained
weights: BERT pretraining for MMBT; Imagenet + Visual Genome [34] detection pretraining
for MoViE+MCAN; and Imagenet + COCO [40] detection pretraining for the image encoder part and
BERT pretraining for the text encoder part in UniT. In the multimodal pretrained category, we explore
VisualBERT [37], VilBERT [42, 43], VilT [32], UNITER[11] and VILLA [17]. These models are
first initialized from pretrained unimodal models and then pretrained on different multimodal datasets
on proxy self-supervised/semi-supervised tasks before finetuning on VQA. VisualBERT is pretrained
on COCO Captions [10]; VilBERT is pretrained on Conceptual Captions [53]; ViLT, UNITER
and VILLA models are pretrained on COCO Captions [10] + Visual Genome [34] + Conceptual
Captions [53] + SBU Captions [47] datasets.

We find that multimodal models in general perform better than unimodal models, as we would expect
given that both modalities are important for the VQA task.

Multimodal OCR methods. As we will see in Section 5, a significant amount of questions in
AdVQA can be answered using scene text.

We test a state-of-the-art TextVQA [55] model, M4C [25] on AdVQA. We evaluate two versions: (i)
trained on VQA 2.0 dataset, and (ii) trained on TextVQA [55] and STVQA [6]. In both cases, we use
OCR tokens extracted using the Rosetta OCR system [7]. We also use the same answer vocabulary
used by other models for fair comparison.

Table 3: Model performance on VQA v2 and AdVQA val and test sets. * indicates that this model
architecture (but not this model instance) was used in the data collection loop.

Model VQA AdVQA VQA AdVQA
test-dev test val

Human performance 80.78 89.01 84.73 88.46

Majority answer (overall) - 16.79 24.67 16.98
Majority answer (per answer type) - 31.86 31.01 33.38

Model in loop MoViE+MCAN [45] 73.58 13.89 73.51 14.08

Unimodal ResNet-152 [22] 26.66 20.59 24.85 19.02
BERT [14] 43.59 30.24 43.71 31.89

Multimodal
(unimodal pretrain)

MoViE+MCAN∗ [45] 69.81 30.02 69.77 31.31
MMBT [30] 49.27 30.80 49.36 32.57
UniT [24] 64.34 32.12 64.32 33.94

Multimodal
(multimodal pretrain)

VisualBERT [37] 70.40 31.96 69.98 28.09
ViLBERT [42] 59.45 32.01 59.78 33.67
ViLT [32] 62.30 31.00 62.33 32.48
UNITERBase [11] 70.67 27.56 69.30 29.44
UNITERLarge [11] 73.58 29.66 72.82 32.08
VILLABase [17] 71.17 27.55 69.87 29.36
VILLALarge [17] 72.02 28.59 71.1 30.58

Multimodal
(unimodal pretrain + OCR)

M4C (TextVQA+STVQA) [25] 32.89 33.84 31.44 34.05
M4C (VQA v2 train set) [25] 67.66 36.57 66.21 36.93

4.2 Discussion

Our model evaluation results show some surprising findings. We discuss our observations and
hypotheses around these findings in this section.

Baseline comparison. Surprisingly, most multimodal models are unable to outperform a unimodal
baseline (BERT [14]) and simple majority answer (per answer type) prior baseline which only predicts
the most-frequently occurring word for the question’s category (no for “yes/no”, 2 for “numbers” and
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unanswerable for “others”). A detailed breakdown of category-wise performance provided in Table 4
suggests that even though “yes/no” questions are often considered to be easy, the baseline multimodal
models we evaluate are unable to beat the majority answer prediction. We also observe varied but
close to majority answer performance in the “numbers” category, which is a question type known
to be difficult for VQA models [45]. In contrast, the models outperform the majority answer in the
“others” category even though “unanswerable” (the majority answer) is not in the answer vocabulary
used. Interestingly, M4C outperforms all on “numbers” and “others” categories possibly thanks to its
text reading capabilities. These trends showcase the difficulty of AdVQA and suggest that we have a
long way to go still, given that we are as yet apparently unable to beat such simple baselines.

Model rankings. First, M4C [25] performs the best among the evaluated models. Interestingly,
it is smaller than many of the more sophisticated model architectures that score higher on VQA.
This is probably due to the importance of the ability to read and reason about text in the image for
answering some AdVQA questions. Second, among models that can’t read text, UniT [24] is the best
model, despite (or perhaps because of?) it being only unimodal pretrained. As UniT was trained
jointly on unimodal as well as multimodal tasks, perhaps, it is less prone to biases in multimodal
datasets. Third, the adversarially-trained VILLA [17] model performs surprisingly poorly. While it
may be more robust to statistically-generated adversarial examples, it appears to be less so against
human-adversarial examples. Fourth, we find that all of these models perform poorly compared
to humans, while model performance on VQA is much closer to that of humans. A more detailed
analysis on model capabilities required for AdVQA and BERT’s superior performance can be found
in Section B.2 and B.3.

Table 4: The category-wise performance of
VQA models. The state-of-the-art VQA models
perform very close to the majority class prior, il-
lustrating the challenge and difficulty of AdVQA.

Model Question Type
yes/no numbers others

Majority Class 65.87 35.55 8.83

ResNet-152 65.72 0.35 0.19

BERT 67.25 30.27 14.39

VisualBERT 56.77 37.06 21.23

ViLBERT 57.09 35.19 20.00

MoViE+MCAN∗ 50.42 34.53 19.26

M4C (VQA2) 64.66 38.01 21.62

Human performance. Another surprising find-
ing is that inter-human agreement is higher on
the AdVQA dataset than on VQA. This could be
due to different data annotation procedures, re-
quirements on annotators or just statistical noise.
Human-adversarial questions may also be more
specific due to annotators having to make crisp
decisions about the model failing or not.

Model-in-the-loop’s performance. Interest-
ingly, the MoViE+MCAN model that was not
used in the loop and trained with a different
seed, performs very similarly to other models.
This suggests that to some extent, annotators
overfit to the model instance. An alternative
explanation is that model selection for all evalu-
ated models was done on the AdVQA validation
set, which was (obviously) not possible for the
model in the loop used to construct the dataset.
In Adversarial NLI [46], the entire model class
of the in-the-loop model was affected. Note however that all VQA models perform poorly on AdVQA,
suggesting that the examples are by and large representative of shortcomings of VQA techniques
overall, and not of an individual model instance or class.

Train vs Test Distribution. We experiment with finetuning VisualBERT and VilBERT further on
the AdVQA val set, finding that this improved test accuracy from 31.96 to 39.49 and 32.01 to 38.11,
respectively, suggesting a difference in the VQA and AdVQA distributions, as we would expect.

4.3 Training Details

We train all the models in Table 3 on the VQA train + val split excluding the COCO 2017 validation
images. We also add questions from Visual Genome [34] corresponding to the images that overlap
with the VQA training set to our training split. The VQA val set in our results contains all questions
associated with the images in the COCO 2017 validation split. This is also consistent with the training
split used for the model in the loop. We collect our AdVQA validation set on the images from the
COCO 2017 val split, ensuring there is no overlap with the training set images. We choose the best
checkpoint for each model by validating on the AdVQA validation set.

7



1 3 5 7 9 11 13 15 17 19
Number of words in question

0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f q
ue

st
io

ns VQA 2.0
AdVQA
TextVQA

(a)

100 200 300 400 500 600 700 800 900 1000
Number of most occurring answers selected

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f q
ue

st
io

ns
 so

lv
ab

le

VQA 2.0
AdVQA
TextVQA

(b)

1 2 3 4 5 6 7 8 9 10
Number of answers in agreement

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f q
ue

st
io

ns

VQA 2.0
AdVQA

(c)

Figure 5: Quantitative statistics for AdVQA val set questions and answers showing longer
question length, more diversity and better human-agreement. (a) Percentage of questions solvable
with a particular question length in AdVQA val set. We see that the average question length (7.82) in
AdVQA is higher than the prior work. (b) Percentage of questions solvable when a particular number
of top k most occurring answers are selected from each dataset. The plot suggests that AdVQA has a
much more diverse answer vocabulary compared to [20] but also not quite as challenging as [57]. (c)
Cumulative human agreement scores. We see that human agreement is better and higher on AdVQA
compared to [20].
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Figure 4: Sunburst distribution for the first four
words in the AdVQA val set questions. Most
questions start with “what” or “how”.

For all our experiments, we use the standard ar-
chitecture for the models as provided by their
authors. For the models that are initialized from
pretrained models (whether unimodal or mul-
timodal pretrained), we use off-the-shelf pre-
trained model weights and then finetune on our
training set. We do not do any hyperparamter
search for these models and use the best hyper-
params as provided by respective authors. We
finetune each model with three different seeds
and report average accuracy.

We run most of our experiments on NVIDIA
V100 GPUs. The maximum number of GPUs
used for training is 8 for larger models. Maxi-
mum training time is 2 days. More details about
hyperparameters, number of devices and time
for training each model are provided in the sup-
plementary material.

5 Dataset Analysis

Questions. We first analyze the question diver-
sity in AdVQA and compare them with popular
VQA datasets. AdVQA contains 46,807 ques-
tions (10,000 in val and 36,807 in test) each with
10 answers.

Fig. 5a shows the distribution of question length compared with [20, 57]. The average question length
in AdVQA is 8.1, which is higher than the VQA v2 (6.3), and TextVQA (7.2). The workers often
need to get creative and more specific to fool the model-in-the-loop, leading to somewhat longer
questions (e.g. specifying a particular person to ask about). Fig. 6a shows the top 15 most occurring
questions from the val set, showcasing that questions involving text (e.g. time, sign) and counting (e.g.
how many) are major failures for current state-of-the-art VQA models, corroborating the findings of
prior work in [57, 21, 58, 28]. Fig. 4 shows a sunburst plot for the first 4 words in the AdVQA val set
questions. We can observe that questions in AdVQA often start with “what” or “how” frequently
inquiring about aspects like “many” (count) and “brand” (text).

Answers. In AdVQA val set, 75.4% (1,930) answers only occur once compared to 56.2% in VQA
v2 [20], suggesting that the diversity of possible answers is much larger in AdVQA compared to

8



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

what time is it
how many people are there

what time is on the clock
how many people are visible

how many ears are visible
is there teeth visible

how many fingers are visible
how many pillows are there

what does the sign say
how many visible eyes in the photo
how many people are in the photo

what is the man holding
how many chairs are there

what is the time on the clock
how many eyes can you see

(a)

0 100 200 300 400 500
Rank of the answer

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f t
he

 o
cc

ur
re

nc
es no

1
5
yellow
2013
32
bench
peppers
horizontal
keys

(b)

Figure 6: Qualitative statistics for AdVQA val set questions and answers showing top questions,
answers and word distribution. (a) Top 15 most occurring questions in AdVQA val. Most of the
top questions start with “what”. (b) Total occurrences for 500 most common answers with markers
for particular ranks.

VQA v2. Fig. 5b shows the percentage of questions that are solvable with a vocabulary of top k most
occurring answers. We observe that more questions in VQA v2 while fewer question in TextVQA are
solvable with smaller vocabulary compare to AdVQA. This suggests that AdVQA is more diverse and
difficult than VQA v2 but not as narrowly focused as TextVQA, making it a great testbed for future
VQA models. We also showcase more qualitative examples in our supplementary to demonstrate that
AdVQA’s diversity doesn’t lead to unnatural questions. Fig. 5c shows the cumulative percentage of
questions where more than a particular number of annotators agree with each other. Fig. 6b shows
the top 500 most occurring answers in the AdVQA val set; starting from very common answers such
as “no” and counts (“1”, “5”), to gradually more specific and targeted answers like “32”, “peppers”
and “horizontal”.

Table 5: The category-wise distribution of an-
swers. Compared to VQA, AdVQA contains more
“number”based and lesser “yes/no” questions sup-
porting the prior work’s observations around fail-
ure of VQA models to count and read text.

Question
Type

VQA AdVQA VQA AdVQA
test-dev test val

yes/no 38.36 23.22 37.70 24.58

number 12.31 35.73 11.48 32.44

others 49.33 41.05 50.82 42.98

Answer Vocabulary. To showcase the chal-
lenge of AdVQA, we take the original VQA
v2 vocabulary used in the Pythia v0.3 model
[55]. We find that 87.2% of the AdVQA val
set’s questions are answerable using this vocab-
ulary, suggesting that a model with powerful
reasoning capability won’t be heavily limited
by vocabulary on AdVQA. But, we also note
that for high performance on AdVQA, a model
will need to understand and reason about rare
concepts, as 52.6% of the answers in AdVQA
val and test sets don’t occur in VQA v2 train set.

Question Types. Table 5 shows the category-
wise distribution for AdVQA questions com-
pared with VQA v2 [20]. We can observe a shift
from more easy questions of the “yes/no” category in VQA v2 dataset to more difficult questions
in “numbers” category (as suggested in prior work [45]) in AdVQA. Please refer to Section B.1 for
further detailed breakdown of question types.

Human Agreement. In the AdVQA val set, 27.8% human annotators agree on all 10 answers while
3 or more annotators agree an answer for 97.8%, which is higher compared to 93.4% on VQA v2
[20], even though as discussed AdVQA contains a large number of rare concepts.

Relationship to TextVQA [55]. To understand if the ability to read text is crucial for AdVQA, we
extract Rosetta [7] tokens on the AdVQA val set and determine how many questions can be answered
using OCR tokens at an edit distance of 1 to account for OCR errors. We find that 11.1% of the
AdVQA val questions are solvable using OCR tokens suggesting that ability to read scene text would
play a crucial role for AdVQA. Refer to Section B.4 for comparison with other important datasets.
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6 Conclusion, Limitations & Outlook

We introduced the AdVQA dataset, a novel human-adversarial multimodal dataset designed for
accelerating progress on Visual Question Answering (VQA). Current VQA datasets have started
plateauing and are approaching saturation with respect to human performance. In this work, we
demonstrate that the problem is far from solved.

In particular, our analysis and model evaluation results suggest that current state-of-the-art models
underperform on AdVQA due to a reasoning gap incurred from a combination of (i) inability to read
text; (ii) inability to count; (iii) heavy bias towards the VQA v2 question and answer distribution; (iv)
external knowledge; (v) rare unseen concepts; and (vi) weak multimodal understanding. We’ve shown
the gap is unlikely to be due to (i) limited answer vocabulary; (ii) language representation (BERT per-
formance compared to other); (iii) no pretraining (UniT); or (iv) lack of adversarial training (VILLA
performance). The evaluation benchmark for AdVQA is available at https://adversarialvqa.org for
the community and we hope that AdVQA will help bridge the gap by serving as a dynamic new
benchmark for visual reasoning with a large amount of headroom for further progress in the field.2

In future work, it would be interesting to continue AdVQA as a dynamic benchmark. If a new state
of the art emerges, those models can be put in the loop to examine how we can improve even further.

Broader Impact

This work analyzed state-of-the-art Visual Question Answering (VQA) models via a dataset con-
structed using a dynamic human-adversarial approach. We hope that this work can help make VQA
models more robust.

VQA datasets contain biases, both in the distribution of images in these datasets, as well as the
corresponding questions and answers which are likely amplified by the VQA models trained on these
datasets. Biases studied in the context of image captioning [8, 62] are also relevant for VQA. English
is the only language represented in this work and most annotators are based in the United States.

VQA models can be useful for aiding visually impaired users. The commonly used VQA datasets
are not representative of the needs of visually impaired users – both in terms of the distribution of
images (typically consumer photographs from the web), and in terms of the questions contained
in the datasets (typically asked by sighted individuals while looking at the image). In contrast, the
VizWiz dataset [21] contains questions asked by visually impaired users on images taken by them to
accomplish day-to-day tasks. It is also worth mentioning to the researchers working on the VQA
problem that VQA systems can also possibly be used in surveillance systems. It would be beneficial
for the community to collect larger datasets in this context to enable progress towards useful and
relevant technology while making efforts to reduce the harmful side-effects and applications. It
would be important to do this with input from all relevant stakeholders, and in a responsible and
privacy-preserving manner. VQA models are currently far from being accurate enough to be uesful
or safe in these contexts.
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