Multi-Step Budgeted Bayesian Optimization
with Unknown Evaluation Costs

Raul Astudillo Daniel R. Jiang Maximilian Balandat
Cornell University Facebook Facebook
rab98Q@cornell.edu drjiang@fb.com balandat@fb.com
Eytan Bakshy Peter 1. Frazier
Facebook Cornell University
ebakshy@fb.com pf98Q@cornell.edu
Abstract

Bayesian optimization (BO) is a sample-efficient approach to optimizing costly-to-
evaluate black-box functions. Most BO methods ignore how evaluation costs may
vary over the optimization domain. However, these costs can be highly heteroge-
neous and are often unknown in advance. This occurs in many practical settings,
such as hyperparameter tuning of machine learning algorithms or physics-based
simulation optimization. Moreover, those few existing methods that acknowledge
cost heterogeneity do not naturally accommodate a budget constraint on the total
evaluation cost. This combination of unknown costs and a budget constraint intro-
duces a new dimension to the exploration-exploitation trade-off, where learning
about the cost incurs a cost itself. Existing methods do not reason about the various
trade-offs of this problem in a principled way, leading often to poor performance.
We formalize this claim by proving that the expected improvement and the expected
improvement per unit of cost, arguably the two most widely used acquisition func-
tions in practice, can be arbitrarily inferior with respect to the optimal non-myopic
policy. To overcome the shortcomings of existing approaches, we propose the
budgeted multi-step expected improvement, a non-myopic acquisition function
that generalizes classical expected improvement to the setting of heterogeneous
and unknown evaluation costs. Finally, we show that our acquisition function
outperforms existing methods in a variety of synthetic and real problems.

1 Introduction

Bayesian optimization (BO) (Shahriari et al., [2016} |Frazier, 2018) is a family of algorithms for opti-
mizing black-box functions that performs well when the number of evaluations is limited (Snoek et al.
2012; Calandra et al., 2016; |Griffiths and Hernandez-Lobato, [2020). However, most BO algorithms
ignore the fact that the cost of evaluating the black-box objective function may vary substantially
across the optimization domain and is often unknown. Problems with this feature arise commonly in
practice. For instance, in the context of hyperparameter optimization of machine learning algorithms
(Swersky et al., 2013} [Wu et al.,|2020), certain values of hyperparameters such as the learning rate
may yield longer training times. Similarly, in materials design and robotics, simulation experiments
can take longer for certain parameter configurations (Field, [1999). Figure [I|illustrates heterogeneity
in evaluation costs from benchmark problems used in this paper, which can vary by an order of magni-
tude. Failing to account for these heterogeneous evaluation costs can lead to evaluating an expensive
point when another less expensive one would provide equal benefit towards finding the optimum.
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Figure 1: Evaluation times of the latent Dirichlet allocation, random forest, and energy-aware robot
pushing benchmark problems (described later in Section @

We consider budgeted BO of a black-box objective function, whose evaluation costs are unknown
and possibly heterogeneous across the domain. The goal is to find a point with the largest possible
objective value by querying the objective function at a sequence of adaptively chosen points, where
the total evaluation cost is subject to a budget constraint (this cost only affects evaluation, and not a
point’s quality upon implementation).

While some existing approaches do address heterogeneous evaluation costs, all do so heuristically,
e.g. by maximizing a traditional cost-agnostic acquisition function divided by the cost of evaluation
(Snoek et al, 2012} [Poloczek et al., 2017; [Wu et al., 2020} [Lee et al.} 2020b)), or by rolling out a
heuristic base policy (Lee et al.,2021). Importantly, most of these approaches accommodate neither
budget constraints nor uncertainty about the cost function as part of the exploration-exploitation
trade-off. As we argue theoretically and demonstrate through experiments, this can lead to poor
performance. A notable exception is the concurrent work of (2021), which introduces
a budget-aware non-myopic acquisition function based on rollout of a heuristic base policy. This
work appeared while the present paper was under review.

Main Contributions. Motivated by the above shortcomings in existing work, we provide a principled
approach to budgeted BO with unknown and potentially heterogeneous evaluation costs. Our main
contributions are:

» We propose a Markov decision process (MDP) formulation of the budgeted BO problem with
unknown and heterogeneous evaluation costs. Our formulation allows for a random time
horizon (i.e., the last time before the budget is depleted), going beyond the fixed-horizon MDPs
formulated in existing work on non-myopic BO.

* Budgeted multi-step expected improvement (B-MS-EI), a novel look-ahead acquisition function
that generalizes classical expected improvement to the budgeted cost-heterogeneous setting.
B-MS-EI can be seen as a principled approximation of the optimal policy of our MDP.

* We prove that expected improvement (EI) and its cost-normalized variant, two popular existing
approaches, can be arbitrarily inferior with respect to the optimal non-myopic policy.

* An empirical evaluation on a number of synthetic and real-world experiments demonstrates that
B-MS-EI performs favorably with respect to other acquisition functions that are widely-used in
settings with heterogeneous costs.

The remainder of this work is organized as follows: In Section [2] we review related work. Our
problem setup is formalized in Section[3] In Sectionfd] we introduce B-MS-EI and discuss its efficient
maximization via one-shot multi-step Monte Carlo trees. Numerical experiments are presented in
Section[3] Finally, we discuss directions of future work and conclude in Section [6]

2 Related Work

Our work falls within the BO framework 2018), whose origins date back to the seminal work
of (1964). BO has been successful in a wide range of applications, such as hyperparameter
tuning of machine learning algorithms (Snoek et al.,[2012} 2020), materials design (Zhang
et al.| 2020), drug discovery (Griffiths and Hernandez-Lobato, 2020), and robot locomotion (Calandra
et al., 2016; [Wang and Jegelka, 2017).

Within the BO literature, the works most closely related to ours are those that acknowledge the
existence of costs for evaluating the objective function that are heterogeneous across the search space
and aim to devise algorithms that are cost-aware. Much of this work has occurred in the multi-fidelity




setting (Swersky et al.|, [2013}; |Kandasamy et al.} 2016/ [2017; [Poloczek et al.,[2017;Song et al., 2019
Wau et al.|, 2020), i.e., where cheaper approximations of the objective function are available. The
only exceptions known to us are [Snoek et al.|(2012), [Lee et al.|(2020b)), and [Lee et al.| (2021)), which
consider the single-fidelity setting.

Snoek et al. (2012)) proposes the expected improvement per unit of cost (EI-PUC), i.e, EI(z)/ c(x)|T|
where c(x) is the cost of evaluating the objective at = and EI(x) is the expected improvement. Lee
et al.| (2020b)) proposes a simple variation called the expected improvement per unit of cost with
cost cooling (EI-PUC-CC). EI-PUC-CC is defined by EI(z)/c(x)”, where v is the ratio between
the current remaining and initial budgets. The intuition behind the cost exponent is that evaluating
points with high cost should be discouraged early in the BO loop (when v ~ 1) and accommodated
as the budget is consumed and v decreases to 0. However, neither EI-PUC nor EI-PUC-CC consider
uncertainty in the cost or measure the budget-dependent value of information in a principled way.

Work concurrent to ours, [Lee et al.|(2021), also tackles budgeted BO with heterogeneous costs using
a non-myopic strategy. However, our work differs in both the model and solution method. Lee
et al.| (2021) uses a finite-horizon constrained MDP, while our model is an MDP with a random
horizon. We argue that the random horizon formulation is more natural: the formulation of Lee et al.
(2021)) requires the addition of a zero reward, zero cost state to accommodate trajectories with a
small number of evaluations. Within this formulation, [Lee et al.|(2021)) proposes a rollout acquisition
function with a particular heuristic base policy: h — 1 steps of EI-PUC followed by a last step of EI,
where h is the number of look-ahead steps performed. The acquisition function is essentially a single
step of policy improvement over the “EI-PUC followed by EI” heuristic (Sutton and Barto, [2018). In
contrast, our acquisition function aims to directly approximate the optimal policy.

The approach of dividing a cost-agnostic acquisition function by some cost term is widely used in
practice for addressing heterogeneity in costs, and is closely related to the use of “value divided by
cost” in knapsack problems (Badanidiyuru et al.l 2013)). In the knapsack problem, one selects items
to include into a knapsack to maximize the sum of the selected items’ values subject to a budget
constraint on the sum of the items’ costs. In this setting, myopically adding items to the knapsack that
maximize value divided by cost has strong theoretical guarantees: this algorithm provides at least 1,/2
the optimal value (Williamson and Shmoys| 2011)). However, this theoretical guarantee relies on the
additive nature of value in the knapsack problem. In contrast, in BO, the value obtained from multiple
evaluations is the maximum of the values of the evaluations, not their sum. Indeed, we show that in
this setting the “value divided by cost” approach can perform arbitrarily worse than the optimal policy.

Heterogeneous evaluation costs have also been considered in the multi-armed bandits literature
(Badanidiyuru et al.l 2013} Xia et al. [2015] 2016). These works develop algorithms based on
optimistic policies that maximize some form of reward-to-cost ratio. As mentioned above, this type
of policy is sensible when the measure of performance is the cumulative regret but is not appropriate
in an optimization or “best-arm identification” setting.

Our work is also closely related to non-myopic BO (Gonzalez et al.l [ 2016; Lam et al., 2016} [Yue and
Kontar}, [2020; Jiang et al., [2020a; |Lee et al.| [2020a; Jiang et al.,|2020b; |Lee et al.,[2021), a class of
acquisition functions that account for future evaluations when quantifying a point’s acquisition value.
To the best of our knowledge, the work of [Lee et al.|(2021) discussed above is the only one among
these that is able to handle heterogeneous evaluation costs.

3 Budgeted Bayesian Optimization with Unknown Evaluation Costs

We now formally state the problem of budgeted BO with unknown evaluation costs. Given a compact
optimization domain X C RY, our goal is to find a point z € X with the largest possible objective
value by querying the black-box objective function, f : X — R, at a sequence of points {z;}7_,,
subject to the constraint Y ., ¢(x;) < B, where c¢(z) is the cost of evaluating f at z and B is the
evaluation budget. The cost observation ¢(z) is revealed immediately after the evaluation of f(x) is
performed. However, the actual cost function ¢ is unknown. As is typical in BO, we endow f and ¢
with a joint prior distribution, p. An observation in our setting is a triple (z;, y;, 2;) € X x R x Ry,

'This expression is for the case when c(z) is known. When ¢(z) is unknown and learned, then either the
expectation is taken over the distribution of improvement to cost ratios (as we do in our experiments) or the
denominator is replaced by the mean cost.



where y; is an observation of the objective f at x;, and 2; is an observation of the cost ¢ for evaluating
f atx;.

3.1 MDP Formulation

The state of our MDP at step n is D,,, defined as the set of observations so far. These sets are defined
recursively by D,, = D,,—1 U (p, Yn, 2n) for n > 1, where Dy is a set of initial observations. The
joint posterior distribution over f and ¢ given D,, is denoted by p(- | D,,). The utility generated by
a particular state D, is defined as the maximum observed objective value u(D,,) = max, . .)eD, Y-
Note that this utility function encodes the fact that after evaluation, a point with maximum objective
value is desired regardless of its cost. We also let s(Dy,) = }>(, , .)ep, # denote the total cost of

observed points in D,,.

The sets of observations D1, Ds, . .. are random due to the yet unobserved values of the objective and
cost functions. A policy m = {m,}32 ; is a sequence of functions, each mapping sets of observations
to points in X, so that z;, = 7 (Dg—_1). Given a set of observations D such that (D) < B (i.e.,
there is nonnegative remaining budget), the value function of a policy 7 is defined as V™ (D) =
E™[u(Dny) — u(Do) | Do = D], where the random stopping time N = sup{k : s(Dy,) < B} is
the largest time step & for which the budget constraint is still satisfied. The notation E™[ -] indicates
an expectation taken over sequences of observation sets D;,Ds, ..., Dy, selected by a policy .
For a set D where s(D) > B (i.e., budget is exhausted), we define V™ (D) = 0. Our goal is to find a
policy 7 that maximizes the increase in expected utility:

V*(D) = sup V™ (D), (D

mell

where I is the set of all possible policies. The above problem is well-defined provided that Np < oo
for all policies 7. This is the case, for example, when In ¢ follows a Gaussian process (GP) prior, a
modeling choice that we make in our numerical experiments. Since the horizon Np is random, the
formulation (I)) can be viewed as a stochastic shortest path problem, rather than a standard finite or
discounted infinite horizon dynamic program (Bertsekas and Tsitsiklis, |1991)). Note that at time k,
the set Dy, contains all past observed costs and fully captures the remaining budget. This formulation
is capable of the following:

1. Through multi-step planning, it can navigate the trade-off of how to sequence high-cost and
low-cost evaluations in order to make the best use of the given budget.

2. It can reason about uncertainty when planning optimal cost-learning. For example, an ex-
ploratory evaluation may be worthwhile in a region with moderate estimated cost and high
model uncertainty: the evaluation may reveal the cost is lower than estimated, allowing us to
explore the region more fully for low cost.

3.2 Contrast with Value-to-Cost Ratio Methods

It is not surprising that cost-agnostic methods, such as expected improvement (EI), can perform poorly
when the evaluation cost is heterogeneous. In particular, ignoring cost can lead to evaluating exces-
sively high-cost points, depleting budget and limiting future evaluations. In an attempt to avoid this,
past work has focused on using a value-to-cost ratio (Snoek et al.|[2012; |Swersky et al.,|2013}; Kan+
dasamy et al.,[2016,[2017; [Poloczek et al., 2017} Song et al.,[2019; Wu et al., 2020; |Lee et al.,[2020b).

We show here, however, that value-to-cost acquisition functions exhibit a complementary kind of
undesirable behavior: they may repeatedly measure excessively low-cost points that are also low-
value, leading to poor overall performance. In fact, the performance can be arbitrarily bad compared
with an optimal policy. Theorem [I| demonstrates this formally for the most widely-used of these
policies: measuring at the point that maximizes the expected improvement per unit of cost (EI-PUC),
and also for cost-agnostic expected improvement (EI).

Theorem 1. The approximation ratios provided by the El and EI-PUC policies are unbounded.
That is, for any arbitrarily large p > 0 and each policy 1 € {EI, EI-PUC}, there exists a Bayesian
optimization problem instance (a prior probability distribution over objective and cost functions, a
budget, and a set of initial observations Do) where V*(Dg) > p V™ (Dy).

Sketch of Proof. To show that EI-PUC has an unbounded approximation ratio, the detailed proof
of Theorem|T] (provided in Section [A]of the supplementary material) constructs a problem instance



with a prior that is independent across a discrete domain with a known cost function. There are two
kinds of points: high-cost points with large prior variance; and low-cost points with low variance.
To support analysis, all points have the same mean.

The variance of the low-cost points is low enough that spending the entire budget on evaluating
them earns only a fraction of the value, in expectation, earned by evaluating a single high cost point.
The acquisition function EI-PUC, however, does not understand this. Its greedy nature leads it to
overvalue these points. Indeed, EI (the numerator of EI-PUC’s acquisition function) greedily values
improvement relative to the status quo, even though the status quo will likely be surpassed by other
later evaluations. This overvalues small improvements like those that result from low-variance points.

EI-PUC spends its entire budget on these low-cost low-variance points, earning almost no value.
In contrast, the optimal policy spends its entire budget on a single evaluation of the high-cost point,
obtaining substantially more value in expectation.

For the case of EI, we construct a similar example, with the change that the low-cost points now
have variance only slightly smaller than that of the high-cost points, while still being significantly
cheaper. Here, EI performs a single evaluation of the high-cost point and runs out of budget. On
the other hand, repeatedly measuring low-cost points is far superior to EI in expectation. O

Figure[2]illustrates this phenomenon in a continuous one-dimensional setting with a Gaussian process
prior. Under the posterior in the first time slice, there is a lower-cost region on the left (z < 0.5) with
low-variance and a mean that is significantly below the best point observed. There is a higher-cost
region on the right (z > 0.5) where the mean and variance are both larger. These means and variances
are such that the global maximum of the function is likely to be in the right-hand region. In its first
two measurements, the EI-PUC strategy measures at two low-cost points, which results in reduction
of variance in this region but (as expected) no values that contend with the likely value of the global
maximum on the right. In contrast, in its first two measurements, our multi-step B-MS-EI strategy
evaluates on the right, finding values that are close to the global optimum.

In this example, EI-PUC encounters the same difficulty it faces in the proof of Theorem I} It overval-
ues low-cost points that improve relative to the status quo but not relative to where we hope to be near
the end of the budget. While some budget remains to evaluate on the right after these evaluations,
the evaluations on the left are likely unproductive toward the goal of finding a global maximum.

3.3 Decomposition and Truncation

We now discuss how we can additively decompose and then truncate the problem in (IJ) so that it is
more amenable as a BO acquisition function. Let r(D,,—1, D,,) = u(D,,) — u(Dy,—1) be the increase
in utility between successive states. Using a telescoping sum and rewriting the summation as an
infinite sum, we have

oo

Z Dy-1, n) 1{n<NB}

V*(D) = supE™
mell

Do = D] . )

A truncated version of (2) that is useful within our scenario tree optimization approach described in
Section[4.2)is given by

N
Vn(D) = sug]wr [Z 7(Dn-1.Dy) Linang) ‘DO = D], (3)
e n=1

where N is a fixed number of “look-ahead steps.” When for each ¢ drawn from the prior, there exists
a lower bound on ¢(z) over X so that (1) is well-defined, it follows that the truncation becomes more
accurate when N becomes large: limy_, o Vv (D) = V*(D). This serves as the motivation for our
acquisition function described below.

4 Budgeted Multi-Step Expected Improvement

We now derive the budgeted multi-step expected improvement (B-MS-EI) acquisition function,
where the main idea is to solve the truncated problem given in (3). Accordingly, the acquisition
function is parameterized by /N, the maximum number of look-ahead steps. In Section we
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Figure 2: The top six panels show the EI-PUC strategy and the bottom six show our B-MS-EI
strategy. In each group, the top and middle rows show the posterior on the objective and cost,
respectively, and the bottom row shows the implied acquisition function. Time moves from left to
right, where the first column shows the initial posteriors, and the second and third columns show the
posteriors after one and two evaluations. EI-PUC evaluates low-variance, low-mean points that are
low-cost but unlikely to reveal values near the global optimum. In contrast, B-MS-EI discovers a
point near this global optimum within budget after two evaluations. While the remaining budget of
EI-PUC after two evaluations is still relatively large, we include additional plots in Section [G]of the
supplementary material showing that indeed B-MS-EI achieves a better objective value within budget.



discuss how to approximately optimize this acquisition function using a scenario tree, leveraging
the technique developed in Jiang et al.| (2020Db), and in Section4.3] we discuss how to set the budget
that defines our acquisition function when the actual remaining budget is too large to be meaningfully
taken into account by a computationally feasible number of look-ahead steps.

4.1 Dynamic Programming on the Truncated Problem

Our derivation of B-MS-EI starts with applying Bellman recursion to (3)). To this end, we define the
one-step marginal value of a measurement at point x given an arbitrary set of observations D (i.e., a
state-action value function, or (Q-function) to be

Qi(z | D) =E,. [r(D,DU{(2,9,2)})1{s(D)+2<B}] = Ey,z [(y — (D))" Lspyr2<5] -
Proposition [I| below shows that, when f and In ¢ are drawn from independent GPs, (01 admits an
analytic expression similar to the one of constrained expected improvement (Schonlau et al.| [1998;
Gardner et al., 2014). The proof of this result can be found in Section [B] of the supplementary
material.

Proposition 1. Suppose that f and In c follow independent Gaussian process prior distributions and
that D is an arbitrary set of observations. Define u%(a@) = E[f(x)| D), pls¢(z) = Ellnc(z)| D),
ol (x) = Var[f(z) | D]*/2, and o8 () = Var[ln c(z) | D]'/2. Then,

Qi(z | D) = EIf(m | D) @(¢) 1ipy<By

where EI is the classical expected improvement computed with respect to f, = (In(B - s(D)) —
s e(x))/opc(x), and @ is the standard normal cdf.

In contrast with homogeneous-cost non-myopic formulations, the indicator 14p)<py truncates our
reward sequence at the random time before the budget is first depleted. Analogously, we can define
the n-step value function evaluated at x, Q,,(« | D), as the expected difference in utility after using
the optimal policy to evaluate n additional points, among which z is the first of them. Using the
Bellman recursion, one can write Q,(z | D) as

Qu(@ | D) = Qu(w | D) + B,z [max Qu-r (z | DU{(x,5.2)})].

which holds for all n. Our acquisition function B-MS-EI is defined as () 5, meaning that at every
step our sampling policy evaluates z,41 € argmax,cx Qn(x | D).

4.2 Optimizing B-MS-EI via Budgeted One-Shot Multi-Step Trees

Maximizing our acquisition function is challenging as, in principle, this requires nested stochastic
optimization over a continuous domain. We build upon the multi-step scenario tree approach of
Jiang et al.|(2020b) and devise an optimization method based on a sample average approximation of
maxzex @n (x| Dy). In our approach, each scenario is associated with its own decision variable,
allowing the problem to be cast as a single deterministic optimization problem over a higher-
dimensional domain instead of a sequence of nested stochastic optimization problems. We tackle
the higher-dimensional problem using modern tools of automatic differentiation and batched linear
algebra operations (Balandat et al., 2020). We begin by noting that, if we apply Bellman’s recursion
repeatedly, (Qy can be rewritten as

Qu(@ | D) = Qi | D) +Ey. | max{Qs (w2 | Dy) + By [max{Qu (s | Da) +--- 1]} .

Now we consider the Monte Carlo approximation of @y (z | D) given by

@n(z|D)
1 & . . 1 &2 . .
_ J1 | pJ J1d2 | i
= Qu(a|D)+ -3 [rggx{w; ORI [m{@( DY) }] }] ,
J1 2 J2 3
where m;, 1 = 1,..., N — 1, is the number of samples used in step ¢, and the sets of observations

are defined recursively by the equations DJ* = D U {(z,y/*,2/*) } and

«Dgljl — Dgl---ji—l U {(Izl---ji—l’yglw-ji ZJ1J7) }’

Eas 2
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with fantasy samples (i.e., samples drawn from the model) (yflj

4.3 Budget Scheduling via Rollout of Base Sampling Policy

Let B, = B— Y., z; be the remaining budget at time n. Since the number of look-ahead steps, N,
that can be performed in practice is relatively small due to computational limits, 5,, may be too large
to be taken into account by our acquisition function in a meaningful way, especially during the first
few evaluations (if the remaining budget is too large relative to the number of look-ahead steps, then
the evaluation costs have little effect in our sampling decisions). Therefore, instead of using the actual
remaining budget at step n, our acquisition function uses a fantasy budget set by a heuristic rule.

We propose a heuristic budgeting rule based on the use of a base sampling policy that can be computed
quickly. We fantasize N sequential evaluations under this base sampling policy. More specifically, for
each of the NV steps, we draw fantasy objective and cost values at the point recommended by this policy
using the (joint) posterior distribution, then we update the posterior distribution by incorporating these
fantasy evaluations, and repeat. The sum of the resulting /N fantasy costs determines a cumulative
cost incurred by the base sampling policy. Our acquisition function then sets the budget to be the
minimum between this cumulative cost and the true remaining budget. This budget is used by our
method as if it were the actual budget until depletion, and then the heuristic rule is used again to
compute a new fantasy budget. The intuition behind this heuristic is that our acquisition function will
try to find the best non-myopic decision using the same budget as the base sampling policy, and thus
should perform evaluations that are better or at least as good as those of the base sampling policy. In
our experiments, we use EI-PUC-CC as the base policy.

5 Experiments

We demonstrate the efficacy of B-MS-EI on four synthetic and four real-world experiments. We
report the performance of two variants of our acquisition function, the main variant that uses multiple
fantasy samples per step, and the multi-step path variant (Jiang et al.,[2020b)), which is based on a
degenerate tree with one fantasy sample per step. For each of these variants, we consider both N = 2
and NV = 4 look-ahead steps. We denote the multi-step path variant with N steps as IN-B-MS-EI,
and the former simply as N-B-MS-EL

In addition, we report the performance of three baseline acquisition functions from the literature:
expected improvement (EI), expected improvement per unit of cost (EI-PUC) (Snoek et al., 2012} Lee
et al.,[2020b), and expected improvement per unit of cost with cost cooling (EI-PUC-CC) (Lee et al.|
2020b)). EI-PUC and EI-PUC-CC are currently the de-facto standard approach to cost-aware BO.
Since|Lee et al.| (2020b) assumes that the cost is known (while our experiments are run in the setting
of unknown costs), we also integrate with respect to the uncertainty on the cost when computing

“Note that since we employ Monte Carlo sampling to approximate @y (z | Dy,), the independence assump-
tion between f and ¢ in Proposition [I]is not necessary for our approach, and one can jointly model f and ¢
(e.g. with a multi-task GP) if there is reason to believe that these functions are correlated, as is often the case in
practice. For instance, randomness in training jobs based on variations in test-train splits or weight initialization
may interact with adaptive learning rate scheduling and thus affect both model performance and training time.
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Figure 4: Log-regret of our non-myopic budget-aware BO method (4-B-MS-EI) compared with
baseline acquisition functions on a range of problems.

these acquisition functions. Closed form analytical expressions for these acquisition functions can be
found in Section [C| of the supplementary material.

5.1 Description of Benchmark Problems

Synthetic Test Problems. The first four problems use synthetic objective functions commonly
found in the literature: Dropwave, Alpinel, Ackley, and Shekel5 (defined in Section |D| of the
supplementary material). Each objective function is accompanied by a cost function of the form
c(z) = exp[% Z?zl cos(B(x; — «f + 7))], where x* is the objective function’s maximizer. In
each replication we use a different cost function, obtained by sampling «, 3, and ~ uniformly at
random over appropriate intervals. Our results thus average over a variety of cost functions. As these
parameters vary, cost functions with different characteristics arise. More concretely, o controls the
magnitude of the difference between the minimum and maximum costs; 8 controls the variability of
the cost; and ~y controls the cost at the optimum. In particular, if v = 0, then x* is the most expensive
point, whereas if v = 7, then z* is the cheapest point. This family of cost functions emulates a wide
range of possible scenarios.

AutoML Benchmarks. We consider three AutoML benchmark problems: LDA, CNN, and RF-
Boston. The LDA and CNN problems use publicly available data sets from the HPOLib (The HPOlib
authors, [2014) and HPOLib1.5 (The HPOIib1.5 authors}, 2017) hyperparameter optimization libraries.
Following [Eggensperger et al.|(2018)), we use surrogates of the underlying objective and cost functions
to emulate the computationally expensive process of training the corresponding models. Details on
the construction of the surrogates can be found in Section [E]of the supplementary material.

The first data set, originally introduced by [Hoffman et al.| (2010), was obtained by evaluating an
online latent Dirichlet allocation algorithm for topic modeling with 3 hyperparameters: mini-batch
size S € [1,16384] (on a log2 scale), and learning rate parameters « € [0.5, 1.0] (controls speed at
which information is forgotten) and 7o € [1,1024] (on a log2 scale, downweights early iterations).
These evaluations are expensive and heterogeneous, ranging from 2 to 10 hours each (see Figure [I).

The second data set was obtained by training a 3-layer convolutional neural network on the CIFAR-10
dataset with 5 hyperparameters: “initial learning rate” € [10~%,1.0] (on a log10 scale), “batch size”
€ [32,512], and “number of units in layer k” € [16, 256] (on a log2 scale), for k = 1,2,3. T

Finally, the RF-Boston problem considers optimization of the 5-fold cross validation error when
using a random forest (RF) regressor on the Boston dataset, both of which are from sklearn
(Pedregosa et al., 2011). We tune the following hyperparameters of the RF regressor: “n_estimators”
€ [1, 256] (rounded to the nearest integer), “max_depth” € [1, 64] (rounded to nearest integer), and
“max_features” € [0.1, 1] (on a log10 scale). The cost of each is evaluation is proportional to the



training time of the model under the evaluated set of hyperparameters (we scale it by training time of
a single initial evaluation).

Energy-Aware Robot Pushing. We consider a version of the robot pushing problem introduced
by Wang and Jegelkal (2017, where a robot pushes an object from its origin, winix = (0,0), to a
target Wiarger € R*. In the our version, we draw 20 different target locations uniformly at random
over {(wy,wsz) € R? : 1 < |wy|,|wz| < 5}, which are distributed equally across the replications
performed. The parameters to be optimized are the location of the robot, z € [—5,5]?, and the
duration of the push, ¢ € [1, 30]. The objective to minimize is the distance from the object’s location
after being pushed, wpush (2, t), and the target location, i.e., f(2,t) = ||Wearget — Wpush (2, t)||2. The
cost function is given by ¢(z,t) = ||wpusn(2,t)|| + €, where € is a constant, and represents the energy
spent by the robot by pushing the object.

5.2 Results and Discussion

Figure ] plots a 95% confidence interval on mean log-regret versus the budget used thus far. We
perform experiments using a single budget in each problem; the goal is to minimize regret at the
point when the budget is fully exhausted at the right-hand edge of each plot. To focus attention
on these budgets, we plot results over the range from 20% to 100% of this overall budget. The
results for NV = 2 look-ahead steps are deferred Section[G]to the supplementary material to improve
readability and also because they are outperformed by the N = 4 counterparts for most problems.
All implementations use BoTorch (Balandat et al.,|2020). The objective and log-cost functions are
modeled using independent GPs. Additional details and runtimes can also be found in Section [G]of
the supplementary material. An implementation of our algorithms and numerical experiments can be
found at https://github.com/RaulAstudillo06/BudgetedB0.

B-MS-EI (red and purple lines) performs favorably compared to existing methods. In some cases
(Dropwave and CNN) EI performs worst, while in other cases (Alpine, Shekel, LDA), one of the value-
to-cost ratio methods (EI-PUC or EI-PUC-CC) performs worst. B-MS-EI is more computationally
intensive to optimize than the standard approaches. The average walltime per acquisition of 4-B-
MS-EI, the most expensive variant of our algorithm, ranges from 42 seconds to 7 minutes across
the problems, whereas the average walltimes for EI, EI-PUC, and EI-PUC-CC, range from 1 to 30
seconds. However, optimization times on the order of minute are acceptable when the acquisition
function is applied to real-world problems where the function evaluation often takes much longer
(e.g., in Figure[I] LDA evaluations require up to 10 hours). In such settings, extra computational time
spent optimizing the acquisition function more than pays for itself with improved query efficiency and
the savings in objective function evaluation time that results. Nevertheless, there are opportunities to
reduce the computational requirements of B-MS-EI; possibilities include re-using the optimized tree
for multiple steps or devising better initial conditions for optimization. We leave these for future work.

6 Conclusion

We introduced the problem of budgeted BO under unknown and potentially heterogeneous evaluation
costs. This arises in a wide range of practical settings where BO is applied. However, the most
common paradigm for cost-aware BO, the value-to-cost ratio, fails to account for uncertainty in the
cost function as well as the presence of the budget constraint as part of the exploration-exploitation
trade-off in a principled way, as we show in Theorem 1. In this work, we provided a dynamic pro-
gramming formulation of this problem, along with a non-myopic acquisition function that addresses
the shortcomings of the existing methods. Our acquisition function is derived by truncating the
aforementioned dynamic program, and is approximately maximized following a one-shot multi-step
tree approach. Our experiments show that our acquisition function outperforms existing methods on
a number of synthetic and real-world examples that exhibit heterogeneity in evaluation costs. In the
future, we hope to extend our approach to the multi-fidelity setting, where evaluation costs play an
even larger role.

3These times are not unusual for advanced BO methods; see, e. g., Section 4 of Wu and Frazier| (2019).
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