
A Broader Impact

Offline RL will have societal impact by enabling new applications for reinforcement learning which
can benefit from offline logged data such as robotics or healthcare applications, where collecting data
is difficult, time-gated, expensive, etc. This may include potentially negative applications such as
enforcing addictive behavior on social media. Another limitation to offline RL is that it is subject to
any biases contained in the data set and can influenced by the data-generating policy.

For our specific algorithm, TD3+BC, given the performance gain over existing state-of-the-art
methods is minimal, it would be surprising to see our paper result in significant impact in these
contexts. However, where we might see impact is in enabling new users access to offline RL by
reducing the computational cost, or burden of implementation, from having a simpler approach to
offline RL. In other words, we foresee the impact our work is in accessibility and ease-of-use, and
not through changing the scope of possible applications.

B Experimental Details

Software. We use the following software versions:

• Python 3.6
• Pytorch 1.4.0 [Paszke et al., 2019]
• Tensorflow 2.4.0 [Abadi et al., 2016]
• Gym 0.17.0 [Brockman et al., 2016]
• MuJoCo 1.501 [Todorov et al., 2012]
• mujoco-py 1.50.1.1

All D4RL datasets [Fu et al., 2020] use the v0 version.

Hyperparameters. Our implementations of TD32 [Fujimoto et al., 2018], CQL3 [Kumar et al.,
2020], and Fisher-BRC4 [Kostrikov et al., 2021] are based off of their respective author-provided
implementations from GitHub. For TD3+BC, only α was tuned in the range (1, 2, 2.5, 3, 4) on
Hopper-medium-v0 and Hopper-expert-v0 on a single seed which was unused in final reported results.
We use default hyperparameters according to each GitHub whenever possible. For CQL we modify
the GitHub defaults for the actor learning rate and use a fixed α rather than the Lagrange variant,
matching the hyperparameters defined in their paper (which differs from the GitHub), as we found
the original hyperparameters performed better. Our re-implementation of Fisher-BRC (in PyTorch
rather than Tensorflow) is used only for run time experiments.

We outline the hyperparameters used by TD3+BC in Table 1, CQL in Table 2, and Fisher-BRC in
Table 3.

Heuristics for selecting λ. While we find a single setting of λ works across all datasets, some
practitioners may be interested in guidelines in choosing λ, such as setting it to a fixed constant. Note
the aim in our heuristic of normalizing by the average absolute value is to balance the importance of
value maximization and behavior cloning. With domain knowledge, this heuristic can be circumvented
by selecting λ roughly equal to α over the expected average value. We can also choose λ by
considering the value estimate of the agent– if we see divergence in the value function due to
extrapolation error [Fujimoto et al., 2019], then we need to decrease λ such that the BC term is
weighted more highly. Alternatively, if the performance resembles the performance of the behavior
agent, then higher values of λ should be considered.

1License information: https://www.roboti.us/license.html
2https://github.com/sfujim/TD3, commit 6a9f76101058d674518018ffbb532f5a652c1d37
3https://github.com/aviralkumar2907/CQL, commit d67dbe9cf5d2b96e3b462b6146f249b3d6569796
4https://github.com/google-research/google-research/tree/master/fisher_brc, commit

9898bb462a79e727ca5f413dba0ac3c4ee48d6c0

1

https://www.roboti.us/license.html
https://github.com/sfujim/TD3
https://github.com/aviralkumar2907/CQL
https://github.com/google-research/google-research/tree/master/fisher_brc

Hyperparameter Value

TD3 Hyperparameters

Optimizer Adam [Kingma and Ba, 2014]
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters α 2.5

Table 1: TD3+BC Hyperparameters. Recall the form of λ = α
1
N

∑
(s,a) |Q(s,a)| . The hyperparameters of TD3

are not modified from the TD3 GitHub.

Hyperparameter Value

SAC Hyperparameters

Optimizer Adam [Kingma and Ba, 2014]
Critic learning rate 3e-4
Actor learning rate 3e-5†
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim
Entropy in Q target False†

Architecture

Critic hidden dim 256
Critic hidden layers 3†
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3†
Actor activation function ReLU

CQL Hyperparameters

Lagrange False
α 10
Pre-training steps 40e3
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10

Table 2: CQL Hyperparameters. We use the hyperparameters defined in the CQL paper rather than the default
settings in the CQL GitHub as we found those settings performed poorly. † denotes hyperparameters which
deviate from the original SAC hyperparameters.

2

Hyperparameter Value

SAC Hyperparameters

Optimizer Adam [Kingma and Ba, 2014]
Critic Learning Rate 3e-4
Actor Learning Rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1 · Action Dim
Entropy in Q target False†

Architecture

Critic hidden dim 256
Critic hidden layers 3†
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3†
Actor activation function ReLU

Generative Model
Hyperparameters

Num Gaussians 5
Optimizer Adam [Kingma and Ba, 2014]
Learning rate (1e-3, 1e-4, 1e-5)
Learning rate schedule Piecewise linear (0, 8e5, 9e5)
Target entropy -1 · Action Dim

Generative Model Architecture
Hidden dim 256
Hidden layers 2
Activation function ReLU

Fisher-BRC Hyperparameters Gradient penalty λ 0.1
Reward bonus 5

Table 3: Fisher-BRC Hyperparameters. We use the default hyperparameters in the Fisher-BRC GitHub. †

denotes hyperparameters which deviate from the original SAC hyperparameters.

3

C Additional Experiments

C.1 Additional Datasets

A concern of TD3+BC is the poor performance on random data. In Table 4 we mix the random and
expert datasets from D4RL [Fu et al., 2020], by randomly selecting half the transitions from each
dataset and concatenating. We find that TD3+BC performs comparatively to Fisher-BRC. However,
both algorithms underperform CQL on Walker2d. One hypothesis for this performance gap is due to
the poor performance of BC on the Walker2d expert dataset (see Table 2 and Figure 4 in the main
body). For completeness we also report the performance of TD3+BC on the D4RL AntMaze datasets.
For this domain we found that state feature normalization was harmful to performance and was not
included. All other hyperparameters remain unchanged.

CQL Fisher-BRC TD3+BC

HalfCheetah 73.3±6.9 105.8±2.5 101.9±7.6
Hopper 110.8±2.4 111.9±0.9 112.2±0.3
Walker2d 100.3±8.5 32.0±37.3 28.8±23.4

Table 4: Average normalized score over the final 10 evaluations and 5 seeds on a mixture of 50% of the random
D4RL dataset and 50% of the expert D4Rl dataset. CQL and Fisher-BRC are re-run using author-provided
implementations to ensure an identical evaluation process. ± captures the standard deviation over seeds.

TD3+BC

AntMaze-Umaze 78.6±33.3
AntMaze-Umaze-Diverse 71.4±20.7
AntMaze-Medium-Diverse 10.6±10.1
AntMaze-Medium-Play 3.0±4.8
AntMaze-Large-Diverse 0.2±0.4
AntMaze-Large-Play 0.0±0.0

Table 5: Average normalized score over the final 10 evaluations and 5 seeds on the AntMaze environments. ±
captures the standard deviation over seeds.

C.2 State Feature Normalization with Other Algorithms

To better understand the effectiveness of state feature normalization, we apply it to both CQL and
Fisher-BRC. We report the percent difference of including this technique in Figure 1. We find that
this generally has minimal impact on performance.

H
C

-r
H

C
-m

H
C

-m
r

H
C

-m
e

H
C

-e
H

op
-r

H
op

-m
H

op
-m

r
H

op
-m

e
H

op
-e

W
-r

W
-m

W
-m

r
W

-m
e

W
-e

100

50

0

50

100

Pe
rc

en
t D

iff
er

en
ce

CQL

H
C

-r
H

C
-m

H
C

-m
r

H
C

-m
e

H
C

-e
H

op
-r

H
op

-m
H

op
-m

r
H

op
-m

e
H

op
-e

W
-r

W
-m

W
-m

r
W

-m
e

W
-e

Fisher-BRC

Figure 1: Percent difference of performance of offline RL algorithms when adding normalization to state
features. HC = HalfCheetah, Hop = Hopper, W = Walker, r = random, m = medium, mr = medium-replay,
me = medium-expert, e = expert.

4

C.3 Benchmarking against the Decision Transformer

The Decision Transformer (DT) is concurrent work which examines the use of the transformer archi-
tecture in offline RL, by framing the problem as sequence modeling [Chen et al., 2021]. The authors
use the D4RL -v2 datasets, which non-trivially affects performance and make direct comparison to
results on the -v0 datasets inaccurate. To compare against this approach, we re-run TD3+BC on
the -v2 datasets. Results are reported in Table 6. Although DT uses state of the art techniques from
language modeling, and some per-environment hyperparameters, we find TD3+BC achieves a similar
performance without any additional hyperparameter tuning. Furthermore, we benchmark the training
time of DT against TD3+BC, using the author-provided implementation5 in Figure 2, using the same
experimental setup; a single GeForce GTX 1080 GPU and an Intel Core i7-6700K CPU at 4.00GHz.
Unsurprisingly, TD3+BC trains significantly faster as it does not rely on the expensive transformer
architecture.

Dataset Environment DT TD3+BC

Random
HalfCheetah - 11.0 ±1.1
Hopper - 8.5 ±0.6
Walker2d - 1.6 ±1.7

Medium
HalfCheetah 42.6 ±0.1 48.3 ±0.3
Hopper 67.6 ±1 59.3 ±4.2
Walker2d 74.0 ±1.4 83.7 ±2.1

Medium-Replay
HalfCheetah 36.6 ±0.8 44.6 ±0.5
Hopper 82.7 ±7 60.9 ±18.8
Walker2d 66.6 ±3 81.8 ±5.5

Medium-Expert
HalfCheetah 86.8 ±1.3 90.7 ±4.3
Hopper 107.6 ±1.8 98.0 ±9.4
Walker2d 108.1 ±0.2 110.1 ±0.5

Expert
HalfCheetah - 96.7 ±1.1
Hopper - 107.8 ±7
Walker2d - 110.2 ±0.3

Total (DT) 672.6 ±16.6 677.4 ±45.6

Total - 1013.2 ±57.4

Table 6: Average normalized score using the D4RL -v2 datasets. The highest performing scores are highlighted.
± captures the standard deviation over seeds. Total (DT) sums scores over the subset of tasks with DT results.
TD3+BC results are taken following the same experimental procedure as the -v0 datasets, averaging over the
final 10 evaluations and 5 seeds. No additional hyperparameter tuning was performed. DT results are taken
directly from the paper and uses 3 seeds. TD3+BC and DT achieve a comparable performance.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.
5https://github.com/kzl/decision-transformer, commit 5fc73c19f1a89cb17e83aa656b6bba1986e9da59

5

https://github.com/kzl/decision-transformer

DT DT (100k) TD3+BC

16h 21m

1h 38m
39m

Run Time

Figure 2: Benchmarking wall-clock training time of DT and TD3+BC over 1 million steps. Does not include
evaluation costs. We remark that the DT was trained with only 100k time steps, which reduces the computational
cost substantially, but even with this reduction, the DT takes over twice as long as TD3+BC to train. For many of
the D4RL tasks the performance of TD3+BC converges before 100k time steps (see the learning curves in Figure
4 of the main body), but unlike the DT, we can let TD3+BC run for the full 1 million steps without incurring
significant computational costs.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, volume 80, pages 1587–1596.
PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pages 2052–2062, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033.
IEEE, 2012.

6

	Broader Impact
	Experimental Details
	Additional Experiments
	Additional Datasets
	State Feature Normalization with Other Algorithms
	Benchmarking against the Decision Transformer

