A Convergence on Two-Layer Nonlinear Networks

We consider the family of neural networks

ZBT wlz) jﬁﬂw(m) (A1)

where 3 € R?, W = (w1, ...,w,)T € RP*?, and v is an activation function. Given data, the loss

function is
n

SO0 =5 D)~ = 5 3 (5 TVe) ). (A2
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The feedback alignment algorithm has updates

m

3

W(t+1) = W) - n\;ﬁ > Di(tbelet)
o (A3)
B(t+1) = B(t) — 77% ;¢(W(t)$i)€i(t)

?

where D;(t) = diag(y/ (W (t)z;)) and e;(t) = ﬁﬁ(t)Tw(W(t):vi) — ;. To help make the proof
more readable, we use ¢, C' to denote the global constants whose values may vary from line to line.

A.1 Concentration Results

Lemma A.1 (Lemma A.7 in Gao & Lafferty, 2020). Assume 1, ..., T, b N(0,14/d). We define
matrix G € R™*™ with entries

]z, .
Gij= |E¢'(Z)|Qm + EW(2) - B (2)){i = 5}
AlES;
where Z ~ N(0,1). If d = Q(logn), then with high probability, we have
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Proof of Proposition 3.3. 1If 1) is sigmoid or tanh, for a standard Gaussian random variable Z, we
have

= S @2 ~ By (2)P) > 0,

From Lemma A.1, we know that with high probability A, (G) > )\min(é) — |G - éH > 2y —
C(y/ 8" + 1) > . O

Lemma A.2. Assume W (0), 5(0) and b have i.i.d. standard Gaussian entries. Given ¢ € (0, 1), if
p = Q(n/d), then with probability 1 — ¢

1 P
= bl <, (A4)
pr:l
fZ 16-8,(0)] < ¢, (A.5)
[e(0)]| < ev/n, (A.6)
max|b | < 24/logp. (A7)

r€[p]



Proof. We will show each inequality holds with probability at least 1 — %, then by a union bound, all
of them hold with probability at least 1 — §. Since Var(% b lb) < w, by Chebyshev’s
inequality, we have

1 Var(|by)
> b > E(by) +1) < <9/

if p > 4Var(|b1])/d, which gives (A.4). The proof for (A.5) is similar since
Var(% D 16:8-(0)]) = O(1/p). To prove (A.6), since |y;| and ||z;|| are bounded, it suffices

to show |u;(0)| < ¢ for all ¢ € [n]. Actually, by independence, we have

Var (u; (0 Var( Zﬂr wy( 1)) = %Var(ﬁl (0)(wy (O)Tﬂ?z)) = O0(1/p).

By Chebyshev’s inequality, we have for each i € [n]

P(Ju;(0)| > ¢) < W < %

where we require p = (n/d). With a union bound argument, we can show (A.6). Finally, (A.7)
followed from standard Gaussian tail bounds and union bound argument, yielding

P(mzﬁ;\bJ > 2\/@) < Z P(|b,-| > 2+/logp) < 2pe~2loep —
rep
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Lemma A.3. Under the conditions of Theorem 3.2, we define matrices G(0), H(0) € R™*™ with

entries
P

Gus(0) = (W (O)) (W (O)ay) = = S dlwn (0w, (O)7z;)  (A8)
r=1
and
H5(0) = 50D (01D, (00 = £ 37 B0 (0 0) T2 wn 0T ). (A9
r=1

Forany d € (0,1), ifp = Q(%), then with probability at least 1 — §, we have Apin (G(0)) > %7
and [|H(0)|| < §

Proof. By independence and boundedness of 1 and ¢, we have Var(G,;(0)) = O(1/p) and
Var(H;;(0)) = O(1/p). Since E(G(0)) = G, we have

E|G(0) - G|* < E[IG(0) - GI% = O
By Markov’s inequality, when p = Q(%)
n2

— 0

_ < Z

RGO -Gl > D <o) < 5.
Similarly we have P(|| H(0)|| > ) < 2, since E(H(0)) = 0. Then with probability at least 1 — ,
Amin(G(0)) > )‘mln( ) — /4> 47’ and |H©O)] <~/4. O

A.2 Proof of Theorem 3.2

Lemma A.4. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 3.2, if the error bound (3.1) holds for all t = 1,2, ...,t' — 1, then the bounds (3.2) hold for all
t<t.



Proof. From the feedback alignment updates (A.3), we have forallt < T

18:() = Br(O)] < “= 37N [ (1) )es (1)
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i
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where we use that ¢’ is bounded, (A.6) and (A.7). O]

Lemma A.5. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 3.2, if the bound for the weights difference (3.2) holds for all t < t' and error bound (3.1) holds
forallt <t' —1, then (3.1) holds for t =t

Proof. We start with analyzing the error e(t) according to

eilt+1) = jﬁﬁ@ FO)THW(E+ D) — us

- ;ﬁm T+ D) —p(W (D) + \}ﬁ(ﬁ(t 1) - BEO)TV(W (D))
+ \}ﬁﬂ(t)Tw(W@)xz) _”

= eilt) — L3+ 1D S Dy(eheTare 1) ! in(t)z])w(W(t)an (t
+ui(t) "~ ~
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where )
Gi;(t) = EWW(t)xj)Tw(W(t)xi)

Hij(t) = ”ZT;J' B(t+1)TDy(t)D; ()b

and v, (t) is the residual term from the Taylor expansion
1 &
00) = 57 3 B4 DIt 1) = w0 60
r=1

with &,;(¢) between w, (t)Tz; and w, (¢ + 1)Tz;. We can also rewrite the above iteration in vector
form as

e(t+1) = e(t) — n(G(t) + H(t))e(t) + v(t). (A.10)

Now for ¢t = ' — 1, we wish to show that both G(¢) and H (t) are close to their initialization. Notice
that

Gua(1) ~ Guy0)] = £V (1) W (1)) — W (012, (1))
< ;iw(wr(t) ) 18w (8)T ) — (0, (0) )|
+;:21|w<wr<o> el ()T5) — (a0 (0) i)
sC;ima) 0)Ta| + = Zm Ty — we(0) |
_cO”f;?wmnHj)

where the second inequality is due to the boundedness of ¢ and v’, and the last inequality is by
(3.2). Then we have

n?y/logp
G(t < max Gi;(t) — <c¢ . A.11)
160 - GO = s 31640 = G 0] e (

For matrix H (t), we similarly have

50— #1,00) < 222|304 17 D0, (0~ 5(0)" D, 0)D; (O
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It follows that

< n? n?y/logp
H(t) — H(0)|| < max H;(t) — Hi; (0)] <e¢ + ¢ . (A.12)
[ H (t) — H(0)] _e[n];| 3(t) — Hi;(0)] N R

Next, we bound the residual term v;(¢). Since ¢ is bounded, we have

lvi(B)] < C\}I? D 1Bt + Dl (¢ + 1) = wi (81

r=1

<C‘“*Z]&t+1(E:Mﬂwﬁf%%mwﬁwy

Cifzmrwrl )lb.[? (Z'el )
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<o) *ny/n
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This leads to the bound
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ool = (3 oR) " < T e, (A13

Combining Eqgs. (A.10) to (A.13), we have
e + D < [[In — n(G(t) + H(@)lle(@)] + lv@)]|
< (IIIn —nGO)| +l|G(t) — GO)|| + 0l H(0)]|

+nllH () - H(O)II)He(t)II + @)l

3 n?y/lo n? n?y/lo n
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(1- *)ll @l
where we use Lemma A.3 and p = Q(%). O

Proof of Theorem 3.2. We prove the inequality (3.1) by induction. Suppose (3.1) and (3.2) hold for
allt = 1,2,...,t' — 1, by Lemma A.4 and Lemma A.5 we know (3.1) and (3.2) hold for ¢ = ¢,
which completes the proof. O

A.3 Proof of Theorem 4.2

Lemma A.6. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 4.2, if the error bound (4.2) holds for allt = 1,2, ...,t' — 1, then

IVBP (1 1 gy,

VP (A.14)
(1 + 1Sy
VP

||wr(t) - wr(O)H <

Iﬂr(t) - 6T(0)| <

hold for all t < t', where c1, co are constants.

Proof. Forany k <t — 1, we apply (4.2) repeatedly on the right hand side of itself to get

H<HQf——n ) e H+Zm [T (1-2=m0)lyl.

i<j<k



Fort < t' — 1, we take the sum over k = 0, .., ¢ on both sides of above inequality to obtain

t t k—1 t k—1
S lle®)l < DT (1= 5 =m@)lle@+ 33" m6) TT (1= =m6)) Il
k=0 k=0 i=0 k=0 i=0 i<j<k
t At Lt S oy ki
<S (=T eI+ m@a (1= i
k=0 k=0 i=0
t _1 t—1 T i1
< (=Y e el Yohw Y (1"
k=0 k=0 k=i+1
< (0l + Sl
cy/n 1 ~
< T(; +Sy)

where we use ||e(0)|| = O(y/n) and ||y|| = O(y/n). Then for all ¢ < ¢, we have

where we use the fact that )’ is bounded, (A.6) and (A.7). O

Lemma A.7. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 4.2, if the bound for weights difference (A.14) holds for all t < t' and error bound (4.2) holds
SJorallt <t —1, then (4.2) holds fort = t'.



Proof. We start by analyzing the error e(t) according to

eift+1) = \}ﬁﬁ(t FO)THW(E+ D)) — v

= A DTV D) = 0OV () + (306 -+1) = (L= nA)B0) Y (1))
(= mAO) (JEBOT W () —3:) — Ay
= (L= nA)es(t) = ZA(E+1)TD,(0 ZD DbeTaie, (1) = 1 36V (1) WOV (O )ey (1) = A1)y
j=1
+’U,'(t)
= (1= MO)eilt) 1Y (Hi(6) + G (0) e5(0) + 0it) — A D)y

where i 1
Gij;(t) = EWW(t)lfj)Tw(W(t)xi)
Hyj(t) = T’i)xjﬁ(t +1)TD;(t)D; (1)

and v;(¢) is the residual term from a Taylor expansion
1 p
00) = 57 3 At DIt 1) = w0 60
r=1

with &, (t) between w,.(t)Tz; and w,.(t + 1)Tx;. We can also rewrite the above iteration in vector

form as

e(t+1) = (1= Xt))e(t) —n(G(t) + H(t))e(t) + v(t) — nA(t)y. (A.15)
Now for t = ¢’ — 1, we show that both G(t) and H (t) are close to their initialization. Using the
argument in Lemma A.5, we can obtain following bounds

[G(t) = G(O)]| < &1 "
n?y/logp
V\f
e (A.18)

(14nSy) (A.16)

IH(t) — HO)[| < e2™Y2P (14 38y) (A.17)

lo(®)]] < es”
Combining Egs. (A.15) to (A.18), we have
le(t + DI < (1 =nA@0)) In = n(G(@E) + H@))lle) [ + lo@)]]
< (H(l — A o = nGO)[[ + nlG(t) = G(O)I[ + nl H (0)]]
+allE @) = HO)) le®] + o)

< (1m0 - 2t -+ e B 1080 + 0 T et

< (=m0 - Te(®)]

~ 2
where we use Lemma A.3, p = Q(%) and Sy = O(ZT‘{L). O
nn2y/logp

Proof of Theorem 4.2. We prove the inequality (4.2) by induction. Suppose (4.2) holds for all ¢ =
1,2, ..., —1. Then by Lemma A.6 and Lemma A.7 we know (4.2) holds for ¢ = t’, which completes
the proof. O




B Alignment on Two-Layer Linear Networks

Now we assume ¢ (u) = u, so that f is a linear network. The loss function with regularization at
time ¢ is

L(t, W, ) = *|I*XWT5 ol + @81 (B.D)
The regularized feedback alignment algorithm gives

1
WEt+1)=W(t)—n—=be(t)TX
VP (B.2)

Bt +1) = (1—nA(1)B(E) - %W(twea)

where e(t) = ﬁXW(t)TB(t) — y is the error vector at time t.

Lemma B.1. Suppose the network is trained with the regularized feedback alignment algorithm
(B.2). Then the prediction error e(t) satisfies the recurrence

e(t+1) = [(1 — pA(E) T4 — 2ZXW(O)TW(O)XT — (A + () + J3<t>)] e(t) — nA(t)y

(B.3)
where
Ji( —bTB H (1—nA(i)XXT
Jo(t) = —]; (ETXTé(t)XXT FXXTs(t— 1)3TXT + Xos(t — 1)TXXT)
Ja(t) = Hb|| (SOHXXT+XXTs(t — st~ )TXXT)
and
v = LW(O)Tb
VP
t
s(t) = eli)
=0
5(t) = (1= nA(k))e(i)
i=0 i<k<t
. t i—1
S(t) = (1= nA(R)e(D)TXXT Y e(j).
i=0 i<k<t Jj=0
Proof. We first write W () in terms of W (0) and e(i), i € [t], so that
t—1
_ n N _n _N\T
W (t) = W(0) — ﬁb;e(z) X = w(0) \/ﬁbs(t 1)TX. (B.4)



Similarly, for 5(t) we have

t—1

—A(4))B(0) — L oAk
B(t) = H)(l n \/ﬁgmlltl nA(k))W (i) X Te(i)
_t_l _ _i _ ii_le'T Te(q
—1HO<1 nA(0) ﬁzﬂl (k) (W(0) - ﬁbjzo ()T X) XTe(d)
t—1
_ _ _i _
—H}(l nA(i) ﬁ;z};[dl (k)W (0) X Te(i)
9 t—1 i—1
+L03 IT (- mA®)e@ X XS )
p 1=0 i<k<t 7=0
_til _ i _n Ta(t — i S+ _
—g(l n\(i))3(0) \/ﬁW(O)X (t—1)+ ’ bS(t—1).

(B.5)
We now study how the error e(t) changes after a single update step, writing

e(t+1)= \jﬁXW(t—k D'BE+1)—y

1 T L T _ —
= %X(W(IH H-=Ww@®)'B+1)+ \/ﬁXW(t) (B(t+1) = (1 =nA(1))B(1))

=) (EXWOTA0 —y) ~ 0y

— (1= nA(t))e(t) — Zb%’(t +1)XXTe(t) - ]%XW(t)TW(t)XTe(w — Aty

By plugging (B.4) and (B.5) into above equation, we have

e(t+1) = (1 —nA(t))e(t)

t

A {H(l —A6))B0) — “LW(0)XT5(t) + Zjbﬁ(t)]XXTe(t)

r L VP
1 1 ! U
— =X W) - —=bs(t—1 TX] [WO — —bs(t—1 TX}XTet
L[ = bs(e =17 [ w(0) = st~ 17| ety
—nA(t)y
After expanding the brackets and rearranging the items, we can obtain (B.3). O

Lemma B.2. Given§ € (0,1)and e > 0, ifp = Q(% log% + glog 1), the following inequalities
hold with probability at least 1 — §

bT5(0)] 1
7 < cy/log 3 (B.6)
[BTW(0)] [ d
7 < cy/dlog 5 (B.7)
6] c 1
’ — 1‘ < 7 log 5 (B.8)
1
H;W(O)TW(O) - IdH <e (B.9)

where c is a constant.

Proof. (B.6) is derived from Lemma C.4. (B.7) is by (B.6) and a union bound argument. (B.8) is by
Lemma C.3. (B.9) is by Corollary C.2 O



Proof of Theorem 4.3. We show (4.3) by induction. Assume (4.3) holds for all ¢ = 0,1, ...,t', we
will show it hold for ¢ = ¢’ + 1. For any k < t/, we apply (4.3) repeatedly on the right hand side of
itself to get

||<H(1———nx) H+Z77A ) I (1= =)l

i<j<k

For t < t/, we take the sum over k = 0, .., ¢ on both sides of above inequality

t k-1 t k-1
m .
Z DI <Y T (=5 =m@) el +> > me) TT (1=% =m6) sl
k=0 i=0 k=0 i=0 i<j<k
t Y\ k- 1 t kol k—i—1
<S (=) @I+ o (1-5) sl
k=0 k=0 i=0
¢ vy k-1 =1 T ny\ k—ie1
<SS (=T e +alyl oA > (1-1)
2 - 2
k=0 k=0 k=i+1
2 2
< 5 eI+ Z 5Kyl
1
< C\f( +5x)
n
where we use ||e(0)|] = O(y/n) and ||y|| = O(y/n). With this bound and the inequalities from
Lemma B.2, we can bound the norms of J; (t), J2(t) and J5(¢) from Lemma B.1. It follows that
1 log§—1
R @] < ST BO)IXXT] < 2B < L (B.10)
P - 16’
Ui _ n f 1 ~
[J2()] < Z;||X||||XXT||||U||(2||5(75* DI+ 3@ < e M2 [dlog (77 +5)) < 36
B.11)
and
e T & T2 2 o an 1 27
s ()l < 5 IPIPAXXTHS@I+ XX s = 17 < e =M75 (04507 < 36 B.12)

hold forall ¢ < ¢'if p = QUL and Sy = O
14]] < €o with high probability when p = Q(d), we have

) Furthermore, since H W)W (0)T—

1 1
||§XW(0)TW(0)XT — | < ||*XW(0)TW(0)XT = XXT|| + | XXT = L4

(B.13)
< (1+e€ey+ey < %
Therefore, combining (B.10), (B.11), (B.12) and (B.3), we have
e + )l < (1= M) =)l + X WO WO XT =T le(t)
+ (@) + 1172 + HJs( DIDle)N + ?7>\(t’)Hy||
< (1= M) = m) Il + gl + sl + mA )l
< (1=mA@) = ) et >||+nA<t>Hy||
which completes the proof. O

Proof of Proposition 4.5. By Corollary C.2,if d = Q(2 log 2 + 2 log 1), we have
I XXT -1, <e
It follows that Apin (X XT) > 1 — eand Apax (X XT) <1+e<(14+4€)(1 —¢€) fore<1/2. O

10



Lemma B.3. Recall from Lemma B.I that

— - _ 7 _ £ Ts(t — 12 G(+ —
Bt) = g(l nA(2))5(0) \/ﬁW(O)X (t—1)+ ’ bS(t —1)
with  3(t) = Zf:o Hi<k§t(1 — nA(k))e(i) and S(t) = ZZ:O Hi<k§t(1

nA(k))e(i)TXXT E;;g e(j). Under the conditions of Theorem 4.6, if t > C’llogf]# and

S(t) > max(CQ@ 15()|l, 1) for some positive constants Cy and Cs, then cos Z(b, 5(t)) > ¢ for
some constant ¢ = cs.

Proof. We compute the cosine of the angle between 3(¢) and b. With probability 1 — 6,

_ vsw g B0
cos 20, 5D = BN = 16@1
208 - 1)~ (1= I IS0 = sl WO XIS~ 1)

(
BIS(E = 1) + (L= BO)]| + W O X[[13(t - 1))

2 A
ey IS (t —1) = chy/BL =) = chiy [ PUIS(E = 1)
2 A A
) 55 (t = 1) + co/P(1 = nA) + chny/All3(E = 1|
where we use (B.8), (B.9) and the tail bound for standard Gaussian vectors, and ¢} are constants that

only depend on 4. Notice that if £ = Q(logi)%), we have cb,/p(1 —n\)" = O(\%) It follows that

cos Z(b, B(t)) > cif S(t — 1) = Q(LT||5(t — )] + 1). O

Lemma B.4. Consider the orthogonal decomposition e(t) = a(t)y + £(t), where § = —y/||y|| and
&(t) L y. Under the conditions of Theorem 4.6, there exists a constant C;, > 0 such that for any

te[r,T| witht = % we have
A=y
t)y > —— B.14
ot) 2 321 (B.14)
and N
)| < ——yll- B.15
1E@ < )\+7Hy|| (B.15)

Proof. By Theorem 4.3, we have for all ¢t < T,
rearranging the terms, we have

e[ < (1 —=nA—my/2)lle®)ll + nAllyll. By

A ! A
t+ 1)) - —— <1—)\——(t—7)
Je(t+ D)l = 5= ol < (1= mA = T (e = 575
or
A Y ¢ A :

- —2 <1—)\——( - )<1—)\ .
lle@)ll A_V/QHyllf( A = <7)"lleol )\_,y/QllyH < (@ =nA)"(leoll + Il
Notice that [|y|| and [|e(0)]| are of the same order, so when ¢ € [r1,T] with 71 = 7 and some

constant ¢;, we have
A+7/2
t)] < . B.16
le(o)] < 3225 o) (B.16)

In order to get a lower bound for a(t), we multiply 7 on both sides of (B.3). It follows that for
t S [Tl, T}

aft+1) 2 57 (1= 1A= )e(t) = 1]l XWOTWOXT = Lale(t)]
= aA W+ 1B+ 15O D] + a7l
> (1= A~ malt) — mlle®] +mAl

1
> (I=nX=ny)a(t) + §mllyl\~

11



In the second inequality, we use the bounds (B.10), (B.11), (B.12) and (B.13). The last inequality is
by (B.16) and A > 3~. Following a similar derivation, we have

A—7/2

alt) - A+

Il > (1A=~ (a(m) - 25 7/2” 1) = =@=n2)"" (le(m) |+ Iyl)-

The bound (B.14) holds when ¢ € [11+72,T] with 7o = ;—i and some constant co. Then we multiply

0401 o4 both sides of (B.3). This establishes that for t € [1, 7]
e+ e b

et + DI < L (1= A = )elt) 4 0l XW O WO)XT =Tl e(0)]
FalA@] + 1200 + 1O e ]+ n ]

< (1 —m—m)le@)l + m||e<t>||

< (1= —m)lle@)) + 7wHyII

The first inequality is by £(¢ + 1)Ty = 0 and in the second inequality we use £(¢ + 1)Te(t) =
EX+1D)TER) < [IEE+ DINIE@)]- It follows that

7/

e = 32 ol < (1= =)™ ()] - el lyl) < (=) el + ).

The bound (B.15) holds when ¢t € [r; + 73, T] with 73 = ;—i for a constant c3. Finally, the bounds
(B.14) and (B.15) hold when ¢ € |7, T] with 7 = 71 + max(72, 3). O

Lemma B.5. Under the conditions of Theorem 4.6, suppose T = LT*J Cr—2 F

S(T) > c% [3(T)]|, where Cr and ¢ are positive constants.

Proof. Notice that

e())T XX Te(j) 2 ve(@)Te(d) — le@lle@DNIXXT =TIl = ve()Te(F) — evlle(@ ()]

Fori € [T/2,T] and 7 defined in Lemma B.4, we have

e(i)TXXT Ze(j) =e(i)TXXT Z e(4) +e(i)TXXT Ze(j)

> 37 (vel@)Tel@) = evlle@lllell) = 2v 3 et
> 3 A(alal) ~ IEDIIED] - elle@leG]) — 277l

V

> (i (F2 ) vl = (5= ) lyll? - (“1@) Iyl = = llyl1?]
I = Gy

v

Y

VP
=y Il

(B.17)
The second inequality is the orthogonal decomposition of e(¢) and ||e(i)|| < c|ly|| given by (4.3).
The third inequality is by (B.14), (B.15) and (B.16) from Lemma B.4. The fourth inequality is by
A= Q(v),i—7 > T/4 and the fact that 7/(i — 7) is small (p = Q(n)). The last inequality is by
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llyll = ©(y/n). Therefore,

T
S(T)=> 1=\ e(()TXXT> e(j)
=0 j<t
T T/2
= > (=) e(()TXXTY e(i) + (1 =N (1 =T Te(i)TXXTY e())
i=T/2 j<i i=0 j<i
T T/2
> ) (A=) IIyH +(1—nA T/QZ N2 Ty )12
i=T/2
/ 2
> VoY llyll (1= nA)T/2¢ Tyl
2 n 9 nA
> VP |lyll
4 n 9\

where the last inequality is by (1 — n)\)7/? < 1 when p = Q(n). On the other hand,

T
(1—nA)T-i <l
= 30 =@ <

Combining the above inequalities gives the proof. O

Proof of Theorem 4.6. First, notice that A(t) = 0 when ¢ > T. By Theorem 4.3 we have that the
prediction error converges to zero exponentially fast, or ||e(t + 1)|| < (1 — ny/2)|le(t)]]. It follows

that S(t) — S(co) and 8(t) — §(co) as t — co. By Lemma B.3, we know it suffices to show
S(0) > C"/Tpi’yH(é(oo)H with some constant C'. Since

o0

S(o0) = 2(1 — AT =D e(i)TXXT Ze(j) = 5(T) + Z e(i)TXXT Ze(j)
and
8(00) =Y (1= T Dve(i) = 3(T) + > _ (i),
=0 i>T

by Lemma B.5, it suffices to show

D e@TXXTY e \nﬁz lle()]|. (B.18)
i>T j<t 1>T

We write g = X XT3 . 7 e(j). Then we have

9l = Auan(XXD]|| D et = D lleti]
>i<T j<r
> Aan(XXT) |2 ali) = D el (B.19)

T>3<T <t

> [ =) (352 Il = el

lall < 12X XTI (X @l + 3= llell)

i<t T>5<T

< 1+ o frelall + (= ) (3222 ) o]

and

(B.20)
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where we use the bounds (B.14) and (B.16) from Lemma B.4. We further denote «(t) = gTe(t)
where g = g/||g||. Following the same calculation in (B.17), we have

gTe(T) = e(T)TXXT Y e())

i<T
A=V 2 YN A+7/2N\% o 2cT 2
> (T — 7 —(—— - - .
> (T =7 (5) Wl = (55) Il = (52 5) Il = = vl
Then
o(T) _ _g"e(T)

[e(™)T = Talle()]
2 2 2
= [(G2) W - (55) Il - «(557) Il - 25 lo?)
- (1+ ey [rellyll + (T = 7 (3223 ) Iwll] x (5223 ) Il
62) - () -28) -]
T ol (3E)) < (G24)

Notice that T/ = Q(4/p/n), so that when p/n, A/~ are large and € is small, we have

oT) = 2je(T)]. (B21)

In order to obtain the lower bound on «(t) for all ¢ > T, we multiply g7 on both sides of (B.3).
Notice A(t) = 0 and apply the bounds (B.10), (B.11), (B.12) and (B.13). We have that

alt+1) = (1= )g"e(®) = il XWO WOXT =12 [e(0)]
= (A @+ 101 + 1@ DIl
> (1= ma(t) = L le(®)]

orfort > T,

a(t) = (1 - Ta(T) - 1 > =m) el (B.22)

Taking the sum over ¢ > T, we have

S )2 S0 m)Ta(m) - T Y@ - ) e

t>T t>T t>T =T
L—ny m , i
> o(T) = LS e > (1 =)
m 1>T t>1
1—ny ny . (B.23)
> _ .
e R > leG))
> L2 a1y = Lye)))
> « — —|le
ny 2
L—ny
> e(T)]l.
> =)

The second inequality follows from switching the order of sums. The fourth inequality is by expo-
nential convergence after 1" steps. The last inequality is by (B.21). With the above inequalities, we
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are ready to bound the left hand side of (B.18), obtaining

DTe()TXXTY e() =) e(i)TXXTY (i) + > e())TXXTY e(j

i>T 7<i i>T j<T i>T j>T
2
> Zau)ngn =29( Y lei)l)
t>T i>t
A—7 4 9
> 4m @)l [T = 1) (552 ) Il = ellyll] = 2755 le(T)]
1—ny A 64
> )|y |(T — ) (= — —
> = e (T =) (370 ) Il = eyl = =Sl
L=y L=y \f
> e(T)||y= =
> S el gl = (T e il
L —ny /Py
>C————/|le(T)].
Pl

(B.24)
The second inequality is by (B.23) and (B.19). The third inequality is by ||e(T)|| < 2||y||. The last
inequality is by |ly|| = ©(y/n). On the other hand,

- 1—ny/2
Do lle@l <> (0 —ny/2) " le(T )II— /2 lle(T)]l (B.25)
i>T i>T my
Combining (B.24) and (B.25) implies (B.18), as desired. O]

C Technical Lemmas

In this section, we list technical lemmas that are used in our proofs, with references. The first is
a variant of the Restricted Isometry Property that bounds the spectral norm of a random Gaussian
matrix around 1 with high probability.

Lemma C.1 (Hand & Voroninski, 2018). Let A € R™*™ has i.i.d. N(0,1/m) entries. Fix0 < € <
1, k < m, and a subspace T C R™ of dimension k, then there exists universal constants ¢, and 71,
such that with probability at least 1 — (¢ /e)Fe= 1™,

(1 —e)llvll3 < [Av]3 < (L +e)|oll3, Vv eT.

Let us take £ = n in Lemma C.1 to get the following corollary.

Corollary C.2. Let A € R™*™ has i.i.d. N(0,1/m) entries. For any 0 < & < 1, there exists
universal constants co and 7y, such that with probability at least 1 — (co/g)%e ™2™,

|ATA —I,|| <e
Then following lemma gives tail bounds for x? random variables.
Lemma C.3 (Laurent & Massart, 2000). Suppose X ~ va then for all t > 0 it holds
P{X —p>2ypt+2t} <e’?
and

P{X —p< —2Vpt} <e’

For two independent random Gaussian vectors, their inner product can be controlled with the fol-
lowing tail bound.

Lemma C.4 (Gao & Lafferty, 2020). Let X, Y € RP be independent random Gaussian vectors
where X, ~ N(0,1) and Y, ~ N(0,1) for all v € [p], then it holds

P(|XTY| > \/2pt + 2t) < 2¢t.
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