
A Convergence on Two-Layer Nonlinear Networks

We consider the family of neural networks

f(x) = 1
√
p

p∑
r=1

βrψ(wᵀ
rx) = 1

√
p
β
ᵀ
ψ(Wx) (A.1)

where β ∈ Rp, W = (w1, ..., wp)ᵀ ∈ Rp×d, and ψ is an activation function. Given data, the loss
function is

L(W,β) = 1
2

n∑
i=1

(f(xi)− yi)2 = 1
2

n∑
i=1

( 1
√
p
β
ᵀ
ψ(Wxi)− y

)2
. (A.2)

The feedback alignment algorithm has updates

W (t+ 1) = W (t)− η 1
√
p

n∑
i=1

Di(t)bxᵀi ei(t)

β(t+ 1) = β(t)− η 1
√
p

n∑
i=1

ψ(W (t)xi)ei(t)
(A.3)

where Di(t) = diag(ψ′(W (t)xi)) and ei(t) = 1√
pβ(t)ᵀψ(W (t)xi) − yi. To help make the proof

more readable, we use c, C to denote the global constants whose values may vary from line to line.

A.1 Concentration Results

Lemma A.1 (Lemma A.7 in Gao & Lafferty, 2020). Assume x1, ..., xn
i.i.d.∼ N(0, Id/d). We define

matrix G̃ ∈ Rn×n with entries

G̃i,j = |Eψ′(Z)|2 xᵀi xj
‖xi‖‖xj‖

+ (E|ψ(Z)|2 − |Eψ′(Z)|2)I{i = j}

where Z ∼ N(0, 1). If d = Ω(logn), then with high probability, we have

‖G− G̃‖2 .
logn
d

+ n2

d2 .

Proof of Proposition 3.3. If ψ is sigmoid or tanh, for a standard Gaussian random variable Z, we
have

γ := 1
2(E|ψ(Z)|2 − |Eψ′(Z)|2) > 0.

From Lemma A.1, we know that with high probability λmin(G) ≥ λmin(G̃) − ‖G − G̃‖ ≥ 2γ −
C(
√

logn
d + n

d ) ≥ γ.

Lemma A.2. Assume W (0), β(0) and b have i.i.d. standard Gaussian entries. Given δ ∈ (0, 1), if
p = Ω(n/δ), then with probability 1− δ

1
p

p∑
r=1
|br| ≤ c, (A.4)

1
p

p∑
r=1
|brβr(0)| ≤ c, (A.5)

‖e(0)‖ ≤ c
√
n, (A.6)

max
r∈[p]

|br| ≤ 2
√

log p. (A.7)
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Proof. We will show each inequality holds with probability at least 1− δ
4 , then by a union bound, all

of them hold with probability at least 1 − δ. Since Var( 1
p

∑p
r=1 |br|) ≤

Var(|b0|)
p , by Chebyshev’s

inequality, we have

P(1
p

p∑
r=1
|br| > E(b1) + 1) ≤ Var(|b1|)

p
≤ δ/4

if p ≥ 4Var(|b1|)/δ, which gives (A.4). The proof for (A.5) is similar since
Var( 1

p

∑p
r=1 |brβr(0)|) = O(1/p). To prove (A.6), since |yi| and ‖xi‖ are bounded, it suffices

to show |ui(0)| ≤ c for all i ∈ [n]. Actually, by independence, we have

Var(ui(0)) = Var
(1
p

p∑
r=1

βr(0)ψ(wr(0)ᵀxi)
)

= 1
p
Var

(
β1(0)ψ(w1(0)ᵀxi)

)
= O(1/p).

By Chebyshev’s inequality, we have for each i ∈ [n]

P(|ui(0)| > c) ≤ Var(ui(0))
c2 ≤ δ

4n
where we require p = Ω(n/δ). With a union bound argument, we can show (A.6). Finally, (A.7)
followed from standard Gaussian tail bounds and union bound argument, yielding

P(max
r∈[p]

|br| > 2
√

log p) ≤
∑
r∈[p]

P(|br| > 2
√

log p) ≤ 2pe−2 log p = 2
p
≤ δ

4 .

Lemma A.3. Under the conditions of Theorem 3.2, we define matrices G(0), H(0) ∈ Rn×n with
entries

Gij(0) = 1
p
ψ(W (0)xi)ᵀψ(W (0)xj) = 1

p

p∑
r=1

ψ(wr(0)ᵀxi)ψ(wr(0)ᵀxj) (A.8)

and

Hij(0) = xᵀi xj
p

β(0)ᵀDi(0)Dj(0)b = 1
p

p∑
r=1

βr(0)brψ′(wr(0)ᵀxi)ψ′(wr(0)ᵀxj). (A.9)

For any δ ∈ (0, 1), if p = Ω( n
2

δγ2 ), then with probability at least 1 − δ, we have λmin(G(0)) ≥ 3
4γ

and ‖H(0)‖ ≤ γ
4 .

Proof. By independence and boundedness of ψ and ψ′, we have Var(Gij(0)) = O(1/p) and
Var(Hij(0)) = O(1/p). Since E(G(0)) = G, we have

E‖G(0)−G‖2 ≤ E‖G(0)−G‖2
F = O(n

2

p
).

By Markov’s inequality, when p = Ω( n
2

δγ2 )

P(‖G(0)−G‖ > γ

4 ) ≤ O( n
2

pγ2 ) ≤ δ

2 .

Similarly we have P(‖H(0)‖ > γ
4 ) ≤ δ

2 , since E(H(0)) = 0. Then with probability at least 1− δ,
λmin(G(0)) ≥ λmin(G)− γ/4 ≥ 3

4γ, and ‖H(0)‖ ≤ γ/4.

A.2 Proof of Theorem 3.2

Lemma A.4. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 3.2, if the error bound (3.1) holds for all t = 1, 2, ..., t′ − 1, then the bounds (3.2) hold for all
t ≤ t′.
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Proof. From the feedback alignment updates (A.3), we have for all t ≤ T

|βr(t)− βr(0)| ≤ η
√
p

t−1∑
s=0

n∑
i=1
|ψ(wr(t)xi)ei(t)|

≤ c η√
p

t−1∑
s=0

n∑
i=1
|ei(t)|

≤ cη
√
n

√
p

t−1∑
s=0
‖e(t)‖

≤ cη
√
n

√
p

t−1∑
s=0

(1− γη

4 )t‖e(0)‖

≤ c
√
n

γ
√
p
‖e(0)‖

≤ c n

γ
√
p

where we use the fact that ψ is bounded and (A.6). We also have

‖wr(t)− wr(0)‖ ≤ η
√
p

t−1∑
s=0

n∑
i=1
‖ψ′(wr(t)ᵀxi)brxiei(t)‖

≤ c η√
p

t−1∑
s=0

n∑
i=1
|br||ei(t)|

≤ c|br|
η
√
n

√
p

t−1∑
s=0
‖e(t)‖

≤ c|br|
√
n

γ
√
p
‖e(0)‖

≤ cn
√

log p
γ
√
p

where we use that ψ′ is bounded, (A.6) and (A.7).

Lemma A.5. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 3.2, if the bound for the weights difference (3.2) holds for all t ≤ t′ and error bound (3.1) holds
for all t ≤ t′ − 1, then (3.1) holds for t = t′.

Proof. We start with analyzing the error e(t) according to

ei(t+ 1) = 1
√
p
β(t+ 1)ᵀψ(W (t+ 1)xi)− yi

= 1
√
p
β(t+ 1)ᵀ(ψ(W (t+ 1)xi)− ψ(W (t)xi)) + 1

√
p

(β(t+ 1)− β(t))ᵀψ(W (t)xi)

+ 1
√
p
β(t)ᵀψ(W (t)xi)− yi

= ei(t)−
η

p
β(t+ 1)ᵀDi(t)

n∑
j=1

Dj(t)bxᵀj xiej(t)−
η

p

n∑
j=1

ψ(W (t)xj)ᵀψ(W (t)xi)ej(t)

+ vi(t)

= ei(t)− η
n∑
j=1

(
Hij(t) +Gij(t)

)
ej(t) + vi(t)
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where

Gij(t) = 1
p
ψ(W (t)xj)ᵀψ(W (t)xi)

Hij(t) = xᵀi xj
p

β(t+ 1)ᵀDi(t)Dj(t)b

and vi(t) is the residual term from the Taylor expansion

vi(t) = 1
2√p

p∑
r=1

βr(t+ 1)|(wr(t+ 1)− wr(t))ᵀxi|2ψ′′(ξri(t))

with ξri(t) between wr(t)ᵀxi and wr(t + 1)ᵀxi. We can also rewrite the above iteration in vector
form as

e(t+ 1) = e(t)− η(G(t) +H(t))e(t) + v(t). (A.10)

Now for t = t′− 1, we wish to show that both G(t) and H(t) are close to their initialization. Notice
that

|Gij(t)−Gij(0)| = 1
p

∣∣∣ψ(W (t)xj)ᵀψ(W (t)xi)− ψ(W (t)xj)ᵀψ(W (t)xi)
∣∣∣

≤ 1
p

p∑
r=1
|ψ(wr(t)ᵀxj)||ψ(wr(t)ᵀxi)− ψ(wr(0)ᵀxi)|

+ 1
p

p∑
r=1
|ψ(wr(0)ᵀxi)||ψ(wr(t)ᵀxj)− ψ(wr(0)ᵀxj)|

≤ c1
p

p∑
r=1
|wr(t)ᵀxi − wr(0)ᵀxi|+

1
p

p∑
r=1
|wr(t)ᵀxj − wr(0)ᵀxj |

≤ c0
n
√

log p
γ
√
p

(‖xi‖+ ‖xj‖)

where the second inequality is due to the boundedness of ψ and ψ′, and the last inequality is by
(3.2). Then we have

‖G(t)−G(0)‖ ≤ max
j∈[n]

n∑
i=1
|Gij(t)−Gij(0)| ≤ c0

n2√log p
γ
√
p

. (A.11)

For matrix H(t), we similarly have

|Hij(t)−Hij(0)| ≤ |x
ᵀ
i xj |
p

∣∣∣β(t+ 1)ᵀDi(t)Dj(t)b− β(0)ᵀDi(0)Dj(0)b
∣∣∣

≤ ‖xi‖‖xj‖
p

p∑
r=1

∣∣∣brβr(t+ 1)ψ′(wr(t)ᵀxi)ψ′(wr(t)ᵀxj)

− brβr(0)ψ′(wr(0)ᵀxi)ψ′(wr(0)ᵀxj)
∣∣∣

≤ |‖xi‖‖xj‖|
p

p∑
r=1

(
|br||βr(t+ 1)− βr(0)||ψ′(wr(t)ᵀxi)ψ′(wr(t)ᵀxj)|

+ |br||βr(0)||ψ′(wr(t)ᵀxi)− ψ′(wr(0)ᵀxi)||ψ′(wr(t)ᵀxj)|

+ |br||βr(0)||ψ′(wr(0)ᵀxi)||ψ′(wr(t)ᵀxj)− ψ′(wr(0)ᵀxj)|
)

≤ c‖xi‖‖xj‖
p

p∑
r=1

(
|br|

n

γ
√
p

+ |br||βr(0)|n
√

log p
γ
√
p

(‖xi‖+ ‖xj‖)
)

≤ c1
n

γ
√
p

+ c2
n
√

log p
γ
√
p

.
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It follows that

‖H(t)−H(0)‖ ≤ max
j∈[n]

n∑
i=1
|Hij(t)−Hij(0)| ≤ c1

n2

γ
√
p

+ c2
n2√log p
γ
√
p

. (A.12)

Next, we bound the residual term vi(t). Since ψ′′ is bounded, we have

|vi(t)| ≤ c
1
√
p

p∑
r=1
|βr(t+ 1)|‖wr(t+ 1)− wr(t)‖2

≤ c 1
√
p

η2

p

p∑
r=1
|βr(t+ 1)|

( n∑
i=1
‖ψ′(wr(t)ᵀxi)brxiei(t)‖

)2

≤ c 1
√
p

η2

p

p∑
r=1
|βr(t+ 1)||br|2

( n∑
i=1
|ei(t)|

)2

≤ cη
2n
√
p
‖e(t)‖2

≤ c3
η2n
√
n

√
p
‖e(t)‖.

This leads to the bound

‖v(t)‖ =
( n∑
i=1
|vi(t)|2

)1/2
≤ c3

η2n2
√
p
‖e(t)‖. (A.13)

Combining Eqs. (A.10) to (A.13), we have

‖e(t+ 1)‖ ≤ ‖In − η(G(t) +H(t))‖‖e(t)‖+ ‖v(t)‖

≤
(
‖In − ηG(0)‖+ η‖G(t)−G(0)‖+ η‖H(0)‖

+ η‖H(t)−H(0)‖
)
‖e(t)‖+ ‖v(t)‖

≤
(

1− 3ηγ
4 + c0

ηn2√log p
γ
√
p

+ ηγ

4 + c1
ηn2

γ
√
p

+ c2
ηn2√log p
γ
√
p

+ c3
η2n
√
n

√
p

)
‖e(t)‖

≤ (1− ηγ

4 )‖e(t)‖

where we use Lemma A.3 and p = Ω(n
4 log p
γ4 ).

Proof of Theorem 3.2. We prove the inequality (3.1) by induction. Suppose (3.1) and (3.2) hold for
all t = 1, 2, ..., t′ − 1, by Lemma A.4 and Lemma A.5 we know (3.1) and (3.2) hold for t = t′,
which completes the proof.

A.3 Proof of Theorem 4.2

Lemma A.6. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 4.2, if the error bound (4.2) holds for all t = 1, 2, ..., t′ − 1, then

‖wr(t)− wr(0)‖ ≤ c1
n
√

log p
γ
√
p

(1 + ηS̃λ),

|βr(t)− βr(0)| ≤ c2
n

γ
√
p

(1 + ηS̃λ)
(A.14)

hold for all t ≤ t′, where c1, c2 are constants.

Proof. For any k ≤ t′ − 1, we apply (4.2) repeatedly on the right hand side of itself to get

‖e(k)‖ ≤
k−1∏
i=0

(
1− ηγ

4 − ηλ(i)
)
‖e(0)‖+

k−1∑
i=0

ηλ(i)
∏

i<j<k

(
1− ηγ

4 − ηλ(j)
)
‖y‖.
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For t ≤ t′ − 1, we take the sum over k = 0, .., t on both sides of above inequality to obtain

t∑
k=0
‖e(k)‖ ≤

t∑
k=0

k−1∏
i=0

(
1− ηγ

4 − ηλ(i)
)
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
∏

i<j<k

(
1− ηγ

4 − ηλ(j)
)
‖y‖

≤
t∑

k=0

(
1− ηγ

4

)k−1
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
(

1− ηγ

4

)k−i−1
‖y‖

≤
t∑

k=0

(
1− ηγ

4

)k−1
‖e(0)‖+ η‖y‖

t−1∑
k=0

λ(i)
T∑

k=i+1

(
1− ηγ

4

)k−i−1

≤ 4
ηγ
‖e(0)‖+ 4

γ
S̃λ‖y‖

≤ c
√
n

γ
( 1
η

+ S̃λ)

where we use ‖e(0)‖ = O(
√
n) and ‖y‖ = O(

√
n). Then for all t ≤ t′, we have

|βr(t)− βr(0)| ≤ η
√
p

t−1∑
s=0

n∑
i=1
|ψ(wr(t)xi)ei(t)|

≤ c η√
p

t−1∑
s=0

n∑
i=1
|ei(t)|

≤ cη
√
n

√
p

t−1∑
s=0
‖e(t)‖

≤ cη
√
n

√
p

√
n

γ
( 1
η

+ S̃λ)

≤ c n

γ
√
p

(1 + ηS̃λ)

where we use ψ is bounded and (A.6). We also have

‖wr(t)− wr(0)‖ ≤ η
√
p

t−1∑
s=0

n∑
i=1
‖ψ′(wr(t)ᵀxi)brxiei(t)‖

≤ c η√
p

t−1∑
s=0

n∑
i=1
|br||ei(t)|

≤ c|br|
η
√
n

√
p

t−1∑
s=0
‖e(t)‖

≤ c|br|
η
√
n

√
p

√
n

γ
( 1
η

+ S̃λ)

≤ cn
√

log p
γ
√
p

(1 + ηS̃λ)

where we use the fact that ψ′ is bounded, (A.6) and (A.7).

Lemma A.7. Assume all the inequalities from Lemma A.2 hold. Under the conditions of Theo-
rem 4.2, if the bound for weights difference (A.14) holds for all t ≤ t′ and error bound (4.2) holds
for all t ≤ t′ − 1, then (4.2) holds for t = t′.
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Proof. We start by analyzing the error e(t) according to

ei(t+ 1) = 1
√
p
β(t+ 1)ᵀψ(W (t+ 1)xi)− yi

= 1
√
p
β(t+ 1)ᵀ(ψ(W (t+ 1)xi)− ψ(W (t)xi)) + 1

√
p

(β(t+ 1)− (1− ηλ(t))β(t))ᵀψ(W (t)xi)

+ (1− ηλ(t))
( 1
√
p
β(t)ᵀψ(W (t)xi)− yi

)
− ηλ(t)y

= (1− ηλ(t))ei(t)−
η

p
β(t+ 1)ᵀDi(t)

n∑
j=1

Dj(t)bxᵀj xiej(t)−
η

p

n∑
j=1

ψ(W (t)xj)ᵀψ(W (t)xi)ej(t)− ηλ(t)y

+ vi(t)

= (1− ηλ(t))ei(t)− η
n∑
j=1

(
Hij(t) +Gij(t)

)
ej(t) + vi(t)− ηλ(t)y

where
Gij(t) = 1

p
ψ(W (t)xj)ᵀψ(W (t)xi)

Hij(t) = xᵀi xj
p

β(t+ 1)ᵀDi(t)Dj(t)b

and vi(t) is the residual term from a Taylor expansion

vi(t) = 1
2√p

p∑
r=1

βr(t+ 1)|(wr(t+ 1)− wr(t))ᵀxi|2ψ′′(ξri(t))

with ξri(t) between wr(t)ᵀxi and wr(t + 1)ᵀxi. We can also rewrite the above iteration in vector
form as

e(t+ 1) = (1− λ(t))e(t)− η(G(t) +H(t))e(t) + v(t)− ηλ(t)y. (A.15)
Now for t = t′ − 1, we show that both G(t) and H(t) are close to their initialization. Using the
argument in Lemma A.5, we can obtain following bounds

‖G(t)−G(0)‖ ≤ c1
n2√log p
γ
√
p

(1 + ηS̃λ) (A.16)

‖H(t)−H(0)‖ ≤ c2
n2√log p
γ
√
p

(1 + ηS̃λ) (A.17)

‖v(t)‖ ≤ c3
η2n2
√
p
‖e(t)‖. (A.18)

Combining Eqs. (A.15) to (A.18), we have

‖e(t+ 1)‖ ≤ ‖(1− ηλ(t))In − η(G(t) +H(t))‖‖e(t)‖+ ‖v(t)‖

≤
(
‖(1− ηλ(t))In − ηG(0)‖+ η‖G(t)−G(0)‖+ η‖H(0)‖

+ η‖H(t)−H(0)‖
)
‖e(t)‖+ ‖v(t)‖

≤
(

1− ηλ(t)− 3ηγ
4 + (c1 + c2)ηn

2√log p
γ
√
p

(1 + ηS̃λ) + c3
η2n
√
n

√
p

)
‖e(t)‖

≤ (1− ηλ(t)− ηγ

4 )‖e(t)‖

where we use Lemma A.3, p = Ω(n
4 log p
γ4 ) and S̃λ = O( γ2√p

ηn2
√

log p
).

Proof of Theorem 4.2. We prove the inequality (4.2) by induction. Suppose (4.2) holds for all t =
1, 2, ..., t′−1. Then by Lemma A.6 and Lemma A.7 we know (4.2) holds for t = t′, which completes
the proof.
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B Alignment on Two-Layer Linear Networks

Now we assume ψ(u) = u, so that f is a linear network. The loss function with regularization at
time t is

L(t,W, β) = 1
2
∥∥ 1
√
p
XW

ᵀ
β − y

∥∥2 + 1
2λ(t)‖β‖2. (B.1)

The regularized feedback alignment algorithm gives

W (t+ 1) = W (t)− η 1
√
p
be(t)ᵀX

β(t+ 1) = (1− ηλ(t))β(t)− η
√
p
W (t)Xᵀ

e(t)
(B.2)

where e(t) = 1√
pXW (t)ᵀβ(t)− y is the error vector at time t.

Lemma B.1. Suppose the network is trained with the regularized feedback alignment algorithm
(B.2). Then the prediction error e(t) satisfies the recurrence

e(t+ 1) =
[
(1− ηλ(t))Id −

η

p
XW (0)ᵀW (0)Xᵀ − η

(
J1(t) + J2(t) + J3(t)

)]
e(t)− ηλ(t)y

(B.3)
where

J1(t) = 1
p
b
ᵀ
β(0)

t∏
i=0

(1− ηλ(i))XXᵀ

J2(t) = −η
p

(
v̄
ᵀ
X

ᵀ
ŝ(t)XXᵀ +XX

ᵀ
s(t− 1)v̄ᵀXᵀ +Xv̄s(t− 1)ᵀXXᵀ

)
J3(t) = η2

p2 ‖b‖
2
(
Ŝ(t)XXᵀ +XX

ᵀ
s(t− 1)s(t− 1)ᵀXXᵀ)

and

v̄ = 1
√
p
W (0)ᵀb

s(t) =
t∑
i=0

e(i)

ŝ(t) =
t∑
i=0

∏
i<k≤t

(1− ηλ(k))e(i)

Ŝ(t) =
t∑
i=0

∏
i<k≤t

(1− ηλ(k))e(i)ᵀXXᵀ
i−1∑
j=0

e(j).

Proof. We first write W (t) in terms of W (0) and e(i), i ∈ [t], so that

W (t) = W (0)− η
√
p
b

t−1∑
i=0

e(i)ᵀX = W (0)− η
√
p
bs(t− 1)ᵀX. (B.4)
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Similarly, for β(t) we have

β(t) =
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))W (i)Xᵀ
e(i)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))
(
W (0)− η

√
p
b

i−1∑
j=0

e(j)ᵀX
)
X

ᵀ
e(i)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))W (0)Xᵀ
e(i)

+ η2

p
b

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))e(i)ᵀXXᵀ
i−1∑
j=0

e(j)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)Xᵀ

ŝ(t− 1) + η2

p
bŜ(t− 1).

(B.5)
We now study how the error e(t) changes after a single update step, writing

e(t+ 1) = 1
√
p
XW (t+ 1)ᵀβ(t+ 1)− y

= 1
√
p
X(W (t+ 1)−W (t)ᵀβ(t+ 1) + 1

√
p
XW (t)ᵀ(β(t+ 1)− (1− ηλ(t))β(t))

+ (1− ηλ(t))
( 1
√
p
XW (t)ᵀβ(t)− y

)
− ηλ(t)y

= (1− ηλ(t))e(t)− η

p
b
ᵀ
β(t+ 1)XXᵀ

e(t)− η

p
XW (t)ᵀW (t)Xᵀ

e(t)− ηλ(t)y

By plugging (B.4) and (B.5) into above equation, we have

e(t+ 1) = (1− ηλ(t))e(t)

− η

p
b
ᵀ
[ t∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)Xᵀ

ŝ(t) + η2

p
bŜ(t)

]
XX

ᵀ
e(t)

− η

p
X

[
W (0)− η

√
p
bs(t− 1)ᵀX

]ᵀ[
W (0)− η

√
p
bs(t− 1)ᵀX

]
X

ᵀ
e(t)

− ηλ(t)y
After expanding the brackets and rearranging the items, we can obtain (B.3).

Lemma B.2. Given δ ∈ (0, 1) and ε > 0 , if p = Ω( 1
ε log d

δ + d
ε log 1

ε ), the following inequalities
hold with probability at least 1− δ

|bᵀβ(0)|
√
p
≤ c
√

log 1
δ

(B.6)

‖bᵀW (0)‖
√
p

≤ c
√
d log d

δ
(B.7)

∣∣∣‖b‖2

p
− 1
∣∣∣ ≤ c
√
p

√
log 1

δ
(B.8)∥∥∥1

p
W (0)ᵀW (0)− Id

∥∥∥ ≤ ε (B.9)

where c is a constant.

Proof. (B.6) is derived from Lemma C.4. (B.7) is by (B.6) and a union bound argument. (B.8) is by
Lemma C.3. (B.9) is by Corollary C.2
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Proof of Theorem 4.3. We show (4.3) by induction. Assume (4.3) holds for all t = 0, 1, ..., t′, we
will show it hold for t = t′ + 1. For any k ≤ t′, we apply (4.3) repeatedly on the right hand side of
itself to get

‖e(k)‖ ≤
k−1∏
i=0

(
1− ηγ

2 − ηλ(i)
)
‖e(0)‖+

k−1∑
i=0

ηλ(i)
∏

i<j<k

(
1− ηγ

2 − ηλ(j)
)
‖y‖

For t ≤ t′, we take the sum over k = 0, .., t on both sides of above inequality
t∑

k=0
‖e(k)‖ ≤

t∑
k=0

k−1∏
i=0

(
1− ηγ

2 − ηλ(i)
)
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
∏

i<j<k

(
1− ηγ

2 − ηλ(j)
)
‖y‖

≤
t∑

k=0

(
1− ηγ

2

)k−1
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
(

1− ηγ

2

)k−i−1
‖y‖

≤
t∑

k=0

(
1− ηγ

2

)k−1
‖e(0)‖+ η‖y‖

t−1∑
k=0

λ(i)
T∑

k=i+1

(
1− ηγ

2

)k−i−1

≤ 2
ηγ
‖e(0)‖+ 2

γ
Sλ‖y‖

≤ c
√
n

γ
( 1
η

+ Sλ)

where we use ‖e(0)‖ = O(
√
n) and ‖y‖ = O(

√
n). With this bound and the inequalities from

Lemma B.2, we can bound the norms of J1(t), J2(t) and J3(t) from Lemma B.1. It follows that

‖J1(t)‖ ≤ 1
p
|bᵀβ(0)|‖XXᵀ‖ ≤ cM

√
log δ−1
√
p

≤ γ

16 , (B.10)

‖J2(t)‖ ≤ η

p
‖X‖‖XXᵀ‖‖v̄‖(2‖s(t− 1)‖+ ‖ŝ(t)‖) ≤ cη

p
M3/2

√
d log d

δ

√
n

γ
( 1
η

+ Sλ) ≤ γ

16
(B.11)

and

‖J3(t)‖ ≤ η2

p2 ‖b‖
2(‖XXᵀ‖|Ŝ(t)|+ ‖XXᵀ‖2‖s(t− 1)‖2) ≤ cη

2

p
M2 n

γ2 ( 1
η

+Sλ)2 ≤ γ

16 (B.12)

hold for all t ≤ t′ if p = Ω(Md log(d/δ)
γ ) and Sλ = O( γ

√
γp

η
√
nM

). Furthermore, since ‖ 1
pW (0)W (0)ᵀ−

Id‖ ≤ ε0 with high probability when p = Ω(d), we have

‖1
p
XW (0)ᵀW (0)Xᵀ − γId‖ ≤ ‖

1
p
XW (0)ᵀW (0)Xᵀ −XXᵀ‖+ ‖XXᵀ − γId‖

≤ (1 + ε)ε0γ + εγ ≤ γ

16

(B.13)

Therefore, combining (B.10), (B.11), (B.12) and (B.3), we have

‖e(t′ + 1)‖ ≤
(

1− ηλ(t′)− ηγ
)
‖e(t′)‖+ η

∥∥∥η
p
XW (0)ᵀW (0)Xᵀ − γId

∥∥∥‖e(t′)‖
+ η(‖J1(t′)‖+ ‖J2(t′)‖+ ‖J3(t′)‖)‖e(t′)‖+ ηλ(t′)‖y‖

≤
(

1− ηλ(t′)− ηγ
)
‖e(t′)‖+ 1

16ηγ‖e(t
′)‖+ 3

16ηγ‖e(t
′)‖+ ηλ(t′)‖y‖

≤
(

1− ηλ(t′)− ηγ

2

)
‖e(t′)‖+ ηλ(t′)‖y‖

which completes the proof.

Proof of Proposition 4.5. By Corollary C.2, if d = Ω( 1
ε log n

δ + n
ε log 1

ε ), we have

‖XXᵀ − In‖ ≤ ε
It follows that λmin(XXᵀ) ≥ 1− ε and λmax(XXᵀ) ≤ 1 + ε ≤ (1 + 4ε)(1− ε) for ε < 1/2.
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Lemma B.3. Recall from Lemma B.1 that

β(t) =
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)Xᵀ

ŝ(t− 1) + η2

p
bŜ(t− 1)

with ŝ(t) =
∑t
i=0
∏
i<k≤t(1 − ηλ(k))e(i) and Ŝ(t) =

∑t
i=0
∏
i<k≤t(1 −

ηλ(k))e(i)ᵀXXᵀ∑i−1
j=0 e(j). Under the conditions of Theorem 4.6, if t > C1

log(p/η)
ηλ and

Ŝ(t) ≥ max(C2
√
pγ

η ‖ŝ(t)‖, 1) for some positive constants C1 and C2, then cos∠(b, β(t)) ≥ c for
some constant c = cδ .

Proof. We compute the cosine of the angle between β(t) and b. With probability 1− δ,

cos∠(b, β(t)) = bᵀβ(t)
‖b‖‖β(t)‖ =

b
‖b‖

ᵀ
β(t)

‖β(t)‖

≥
η2

p ‖b‖Ŝ(t− 1)− (1− ηλ)t‖β(0)‖ − η√
p‖

b
‖b‖

ᵀ
W (0)‖‖X‖‖ŝ(t− 1)‖

η2

p ‖b‖Ŝ(t− 1) + (1− ηλ)t‖β(0)‖+ η√
p‖W (0)‖‖X‖‖ŝ(t− 1)‖

≥
c′1

η2
√
p Ŝ(t− 1)− c′2

√
p(1− ηλ)t − c′3η

√
dγ
p ‖ŝ(t− 1)‖

c′1
η2
√
p Ŝ(t− 1) + c′2

√
p(1− ηλ)t + c′4η

√
γ‖ŝ(t− 1)‖

where we use (B.8), (B.9) and the tail bound for standard Gaussian vectors, and c′i are constants that
only depend on δ. Notice that if t = Ω( log(p/η)

ηλ ), we have c′2
√
p(1− ηλ)t = O( η

2
√
p ). It follows that

cos∠(b, β(t)) ≥ c if Ŝ(t− 1) = Ω(
√
pγ

η ‖ŝ(t− 1)‖+ 1).

Lemma B.4. Consider the orthogonal decomposition e(t) = a(t)ȳ+ ξ(t), where ȳ = −y/‖y‖ and
ξ(t) ⊥ y. Under the conditions of Theorem 4.6, there exists a constant Cτ > 0 such that for any
t ∈ [τ, T ] with τ = Cτ

ηλ , we have

a(t) ≥ λ− γ
λ+ γ

‖y‖ (B.14)

and
‖ξ(t)‖ ≤ γ

λ+ γ
‖y‖. (B.15)

Proof. By Theorem 4.3, we have for all t ≤ T , ‖e(t)‖ ≤ (1 − ηλ − ηγ/2)‖e(t)‖ + ηλ‖y‖. By
rearranging the terms, we have

‖e(t+ 1)‖ − λ

λ− γ/2‖y‖ ≤ (1− ηλ− ηγ

2 )
(
‖e(t)‖ − λ

λ− γ/2‖y‖
)

or

‖e(t)‖ − λ

λ− γ/2‖y‖ ≤ (1− ηλ− ηγ

2 )t
(
‖e0‖ −

λ

λ− γ/2‖y‖
)
≤ (1− ηλ)t(‖e0‖+ ‖y‖).

Notice that ‖y‖ and ‖e(0)‖ are of the same order, so when t ∈ [τ1, T ] with τ1 = c1
ηλ and some

constant c1, we have

‖e(t)‖ ≤ λ+ γ/2
λ− γ/2‖y‖. (B.16)

In order to get a lower bound for a(t), we multiply ȳᵀ on both sides of (B.3). It follows that for
t ∈ [τ1, T ]

a(t+ 1) ≥ ȳᵀ
(

1− ηλ− ηγ
)
e(t)− η‖1

p
XW (0)ᵀW (0)Xᵀ − γId‖‖e(t)‖

− η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖+ ηλ‖y‖

≥ (1− ηλ− ηγ)a(t)− 1
4ηγ‖e(t)‖+ ηλ‖y‖

≥ (1− ηλ− ηγ)a(t) + 1
2ηγ‖y‖.
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In the second inequality, we use the bounds (B.10), (B.11), (B.12) and (B.13). The last inequality is
by (B.16) and λ ≥ 3γ. Following a similar derivation, we have

a(t)− λ− γ/2
λ+ γ

‖y‖ ≥ (1−ηλ−ηγ)t−τ1
(
a(τ1)− λ− γ/2

λ+ γ
‖y‖
)
≥ −(1−ηλ)t−τ1(‖e(τ1)‖+‖y‖).

The bound (B.14) holds when t ∈ [τ1+τ2, T ] with τ2 = c2
ηλ and some constant c2. Then we multiply

ξ(t+1)ᵀ

‖ξ(t+1)‖ on both sides of (B.3). This establishes that for t ∈ [τ1, T ]

‖ξ(t+ 1)‖ ≤ ξ(t+ 1)ᵀ

‖ξ(t+ 1)‖

(
1− ηλ− ηγ

)
e(t) + η‖1

p
XW (0)ᵀW (0)Xᵀ − γId‖‖e(t)‖

+ η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖+ ηλ‖y‖

≤ (1− ηλ− ηγ)‖ξ(t)‖+ ηγ

4 ‖e(t)‖

≤ (1− ηλ− ηγ)‖ξ(t)‖+ ηγ

2 ηγ‖y‖.

The first inequality is by ξ(t + 1)ᵀy = 0 and in the second inequality we use ξ(t + 1)ᵀe(t) =
ξ(t+ 1)ᵀξ(t) ≤ ‖ξ(t+ 1)‖‖ξ(t)‖. It follows that

‖ξ(t)‖ − γ/2
λ+ γ

‖y‖ ≤ (1− ηλ− ηγ)t−τ1
(
‖ξ(0)‖ − γ/2

λ+ γ
‖y‖
)
≤ (1− ηλ)t−τ1(‖e(τ1)‖+ ‖y‖).

The bound (B.15) holds when t ∈ [τ1 + τ3, T ] with τ3 = c3
ηλ for a constant c3. Finally, the bounds

(B.14) and (B.15) hold when t ∈ [τ, T ] with τ = τ1 + max(τ2, τ3).

Lemma B.5. Under the conditions of Theorem 4.6, suppose T = bSλ

λ c = CT
√
p

η
√
nγ . Then we have

Ŝ(T ) ≥ c̃
√
pγ

η ‖ŝ(T )‖, where CT and c̃ are positive constants.

Proof. Notice that

e(i)ᵀXXᵀ
e(j) ≥ γe(i)ᵀe(j)− ‖e(i)‖‖e(j)‖‖XXᵀ − γI‖ ≥ γe(i)ᵀe(j)− εγ‖e(i)‖‖e(j)‖.

For i ∈ [T/2, T ] and τ defined in Lemma B.4, we have

e(i)ᵀXXᵀ
∑
j<i

e(j) = e(i)ᵀXXᵀ
∑
τ≤j<i

e(j) + e(i)ᵀXXᵀ
∑
j<τ

e(j)

≥
∑
τ≤j<i

(
γe(i)ᵀe(j)− εγ‖e(i)‖‖e(j)‖

)
− 2γ

∑
j<τ

‖e(i)‖‖e(j)‖

≥
∑
τ≤j<i

γ
(
a(i)a(j)− ‖ξ(i)‖‖ξ(j)‖ − ε‖e(i)‖‖e(j)‖

)
− 2cτγ‖y‖2

≥ (i− τ)γ
[(λ− γ
λ+ γ

)2
‖y‖2 −

( γ

λ+ γ

)2
‖y‖2 − ε

(λ+ γ/2
λ− γ/2

)2
‖y‖2 − 2cτ

i− τ
‖y‖2

]
≥ T

8 γ‖y‖
2 = CT

8

√
p

η
√
nγ
γ‖y‖2

≥ c
√
pγ

η
‖y‖.

(B.17)
The second inequality is the orthogonal decomposition of e(i) and ‖e(i)‖ ≤ c‖y‖ given by (4.3).
The third inequality is by (B.14), (B.15) and (B.16) from Lemma B.4. The fourth inequality is by
λ = Ω(γ), i − τ ≥ T/4 and the fact that τ/(i − τ) is small (p = Ω(n)). The last inequality is by
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‖y‖ = Θ(
√
n). Therefore,

Ŝ(T ) =
T∑
i=0

(1− ηλ)T−ie(i)ᵀXXᵀ
∑
j<i

e(j)

=
T∑

i=T/2

(1− ηλ)T−ie(i)ᵀXXᵀ
∑
j<i

e(j) + (1− ηλ)T/2
T/2∑
i=0

(1− ηλ)T/2−ie(i)ᵀXXᵀ
∑
j<i

e(j)

≥
T∑

i=T/2

(1− ηλ)T−ic
√
pγ

η
‖y‖+ (1− ηλ)T/2

T/2∑
i=0

(1− ηλ)T/2−ic′Tγ‖y‖2

≥ c

2

√
pγ

η

‖y‖
ηλ
− (1− ηλ)T/2 c

′Tγ‖y‖2

ηλ

≥ c

4

√
pγ

η

‖y‖
ηλ

where the last inequality is by (1− ηλ)T/2 � 1 when p = Ω(n). On the other hand,

‖ŝ(T )‖ ≤
T∑
i=0

(1− ηλ)T−i‖e(i)‖ ≤ c

ηλ
‖y‖.

Combining the above inequalities gives the proof.

Proof of Theorem 4.6. First, notice that λ(t) = 0 when t > T . By Theorem 4.3 we have that the
prediction error converges to zero exponentially fast, or ‖e(t+ 1)‖ ≤ (1− ηγ/2)‖e(t)‖. It follows
that Ŝ(t) → Ŝ(∞) and ŝ(t) → ŝ(∞) as t → ∞. By Lemma B.3, we know it suffices to show
Ŝ(∞) ≥ C

√
pγ

η ‖ŝ(∞)‖ with some constant C. Since

Ŝ(∞) =
∞∑
i=0

(1− ηλ)(T−i)+e(i)ᵀXXᵀ
∑
j<i

e(j) = Ŝ(T ) +
∑
i>T

e(i)ᵀXXᵀ
∑
j<i

e(j)

and

ŝ(∞) =
∞∑
i=0

(1− ηλ)(T−i)+e(i) = ŝ(T ) +
∑
i>T

e(i),

by Lemma B.5, it suffices to show∑
i>T

e(i)ᵀXXᵀ
∑
j<i

e(j) ≥ C
√
pγ

η

∑
i>T

‖e(i)‖. (B.18)

We write g = XXᵀ∑
j<T e(j). Then we have

‖g‖ ≥ λmin(XXᵀ)
[∥∥∥ ∑

τ≥j<T

e(j)
∥∥∥−∑

j<τ

‖e(j)‖
]

≥ λmin(XXᵀ)
[ ∑
τ≥j<T

a(j)−
∑
j<τ

‖e(j)‖
]

≥ γ
[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖

]
(B.19)

and
‖g‖ ≤ ‖XXᵀ‖

(∑
j<τ

‖e(j)‖+
∑

τ≥j<T

‖e(j)‖
)

≤ (1 + ε)γ
[
τc‖y‖+ (T − τ)

(λ+ γ/2
λ− γ/2

)
‖y‖
] (B.20)
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where we use the bounds (B.14) and (B.16) from Lemma B.4. We further denote α(t) = ḡᵀe(t)
where ḡ = g/‖g‖. Following the same calculation in (B.17), we have

g
ᵀ
e(T ) = e(T )ᵀXXᵀ

∑
j<T

e(j)

≥ (T − τ)γ
[(λ− γ
λ+ γ

)2
‖y‖2 −

( γ

λ+ γ

)2
‖y‖2 − ε

(λ+ γ/2
λ− γ/2

)2
‖y‖2 − 2cτ

T − τ
‖y‖2

]
.

Then

α(T )
‖e(T )‖ ≥

gᵀe(T )
‖g‖‖e(T )‖

≥
(T − τ)γ

[(
λ−γ
λ+γ

)2
‖y‖2 −

(
γ

λ+γ

)2
‖y‖2 − ε

(
λ+γ/2
λ−γ/2

)2
‖y‖2 − 2cτ

T−τ ‖y‖
2
]

(1 + ε)γ
[
τc‖y‖+ (T − τ)

(
λ+γ/2
λ−γ/2

)
‖y‖
]
×
(
λ+γ/2
λ−γ/2

)
‖y‖

≥

[(
λ−γ
λ+γ

)2
−
(

γ
λ+γ

)2
− ε
(
λ+γ/2
λ−γ/2

)2
− 2cτ

T−τ

]
(1 + ε)

[
τc
T−τ +

(
λ+γ/2
λ−γ/2

)]
×
(
λ+γ/2
λ−γ/2

) .

Notice that T/τ = Ω(
√
p/n), so that when p/n, λ/γ are large and ε is small, we have

α(T ) ≥ 3
4‖e(T )‖. (B.21)

In order to obtain the lower bound on α(t) for all t ≥ T , we multiply ḡᵀ on both sides of (B.3).
Notice λ(t) = 0 and apply the bounds (B.10), (B.11), (B.12) and (B.13). We have that

α(t+ 1) ≥ (1− ηγ)ḡᵀe(t)− η‖1
p
XW (0)ᵀW (0)Xᵀ − γId‖‖e(t)‖

− η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖

≥ (1− ηγ)α(t)− ηγ

4 ‖e(t)‖

or for t ≥ T ,

α(t) ≥ (1− ηγ)t−Tα(T )− ηγ

4

t−1∑
i=T

(1− ηγ)t−i‖e(i)‖. (B.22)

Taking the sum over t > T , we have

∑
t>T

α(t) ≥
∑
t>T

(1− ηγ)t−Tα(T )− ηγ

4
∑
t>T

t−1∑
i=T

(1− ηγ)t−i‖e(i)‖

≥ 1− ηγ
ηγ

α(T )− ηγ

4
∑
i>T

‖e(i)‖
∑
t>i

(1− ηγ)t−i

≥ 1− ηγ
ηγ

(
α(T )− ηγ

4
∑
i>T

‖e(i)‖
)

≥ 1− ηγ
ηγ

(α(T )− 1
2‖e(T )‖)

≥ 1− ηγ
4ηγ ‖e(T )‖.

(B.23)

The second inequality follows from switching the order of sums. The fourth inequality is by expo-
nential convergence after T steps. The last inequality is by (B.21). With the above inequalities, we
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are ready to bound the left hand side of (B.18), obtaining∑
i>T

e(i)ᵀXXᵀ
∑
j<i

e(j) =
∑
i>T

e(i)ᵀXXᵀ
∑
j<T

e(j) +
∑
i>T

e(i)ᵀXXᵀ
∑
j≥T

e(j)

≥
∑
t>T

α(t)‖g‖ − 2γ
(∑
i≥t

‖e(i)‖
)2

≥ 1− ηγ
4ηγ ‖e(T )‖γ

[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖

]
− 2γ 4

η2γ2 ‖e(T )‖2

≥ 1− ηγ
4ηγ ‖e(T )‖γ

[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖ − 64

ηγ(1− ηγ)‖y‖
]

≥ 1− ηγ
4ηγ ‖e(T )‖γ T2 ‖y‖ = 1− ηγ

4ηγ ‖e(T )‖γCT2

√
p

η
√
nγ
‖y‖

≥ C 1− ηγ
4ηγ

√
pγ

η
‖e(T )‖.

(B.24)
The second inequality is by (B.23) and (B.19). The third inequality is by ‖e(T )‖ ≤ 2‖y‖. The last
inequality is by ‖y‖ = Θ(

√
n). On the other hand,∑

i>T

‖e(i)‖ ≤
∑
i>T

(1− ηγ/2)i−T ‖e(T )‖ = 1− ηγ/2
ηγ/2 ‖e(T )‖ (B.25)

Combining (B.24) and (B.25) implies (B.18), as desired.

C Technical Lemmas

In this section, we list technical lemmas that are used in our proofs, with references. The first is
a variant of the Restricted Isometry Property that bounds the spectral norm of a random Gaussian
matrix around 1 with high probability.

Lemma C.1 (Hand & Voroninski, 2018). Let A ∈ Rm×n has i.i.d.N(0, 1/m) entries. Fix 0 < ε <
1, k < m, and a subspace T ⊆ Rn of dimension k, then there exists universal constants c1 and γ1,
such that with probability at least 1− (c1/ε)ke−γ1εm,

(1− ε)‖v‖2
2 ≤ ‖Av‖2

2 ≤ (1 + ε)‖v‖2
2, ∀v ∈ T.

Let us take k = n in Lemma C.1 to get the following corollary.

Corollary C.2. Let A ∈ Rm×n has i.i.d. N(0, 1/m) entries. For any 0 < ε < 1, there exists
universal constants c2 and γ2, such that with probability at least 1− (c2/ε)de−γ2εm,

‖Aᵀ
A− Im‖ ≤ ε

Then following lemma gives tail bounds for χ2 random variables.

Lemma C.3 (Laurent & Massart, 2000). Suppose X ∼ χ2
p, then for all t ≥ 0 it holds

P{X − p ≥ 2
√
pt+ 2t} ≤ e−t

and

P{X − p ≤ −2
√
pt} ≤ e−t.

For two independent random Gaussian vectors, their inner product can be controlled with the fol-
lowing tail bound.

Lemma C.4 (Gao & Lafferty, 2020). Let X,Y ∈ Rp be independent random Gaussian vectors
where Xr ∼ N(0, 1) and Yr ∼ N(0, 1) for all r ∈ [p], then it holds

P(|Xᵀ
Y | ≥

√
2pt+ 2t) ≤ 2et.
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