
Proofs and Additional Numerical Experiments for
“Nonuniform Negative Sampling and Log Odds

Correction with Rare Events Data”

Before presenting the proof, we point out that Assumption 2 implies that E{v(x)ġ⊗2(x;θ)} is
positive definite for a positive function v(x) > 0 almost surely. This is because Assumption 2 means
that Pr{lTġ(x;θ) 6= 0} > 0 for any l 6= 0, and therefore Pr{v1/2(x)lTġ(x;θ) 6= 0} > 0 for any
l 6= 0, implying that E{v(x)ġ⊗2(x;θ)} is positive definite. We also point out that if a sequence is
oP (1) conditionally then it is also oP (1) unconditionally and vice versa [1, 2].

To facilitate the presentation, define aN =
√
Neα∗ . We notice that

N1 = NE
{

eα
∗+f(x;β∗)

1 + eα∗+f(x;β∗)

}
{1 + oP (1)} = a2NE{ef(x;β

∗)}{1 + oP (1)}, (S.1)

from the dominated convergence theorem. Thus the normalizing term
√
N1 for the asymptotic

normality in the paper can be replaced by aNE1/2{ef(x;β∗)}.

S.1 Proof of Theorem 1

The estimator θ̂f is the maximizer of

`(θ) =

N∑
i=1

[
yig(xi;θ)− log{1 + eg(xi;θ)}

]
,

so aN (θ̂ − θ∗) is the maximizer of

γ(u) = `(θ∗ + a−1N u)− `(θ∗).

By Taylor’s expansion,

γ(u) = a−1N uT ˙̀(θ∗) + 0.5a−2N

N∑
i=1

φ(xi;θ
∗){uTġ(xi;θ

∗)}2 + ∆` +R,

where

˙̀(θ) =
∂`(θ)

∂θ
=

N∑
i=1

{
yi − p(xi;θ)

}
ġ(xi;θ),

∆` =
1

2a2N

N∑
i=1

{
yi − p(xi;θ∗)

}
uTg̈(xi;θ

∗)u,

and R is the remainder term. By direct calculation,

R =
1

6a3N

N∑
i=1

φ(xi;θ
∗ + a−1N ú)

{
1− 2p(xi;θ

∗ + a−1N ú)
}
{uTġ(xi;θ

∗ + a−1N ú)}3
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+
1

6a3N

N∑
i=1

φ(xi;θ
∗ + a−1N ú){uTġ(xi;θ

∗ + a−1N ú)}{uTg̈(xi;θ
∗ + a−1N ú)u}

+
1

6a3N

N∑
i=1

[{
yi − p(xi;θ∗ + a−1N ú)

} d∑
j1,j2=1

uj1uj2
...
g j1j2(xi;θ

∗ + a−1N ú)u

]
,

where ...
g j1j2(x;θ) is the gradient of g̈j1j2(x,θ) and ú lies between 0 and u. We see that

|R| ≤ ‖u‖
3

6a3N

N∑
i=1

p(xi;θ
∗ + a−1N ú)C(xi,θ

∗ + a−1N ú) +
d‖u‖3

6a3N

N∑
i=1

yiB(xi)

≤ ‖u‖
3ea

−1
N ‖u‖

6NaN

N∑
i=1

exp{f(xi;β + a−1N ú(−1))}C(xi,θ
∗ + a−1N ú) +

d‖u‖3

6a3N

N∑
i=1

yiB(xi)

≤ d3‖u‖3ea
−1
N ‖u‖

6NaN

N∑
i=1

B(xi) +
d‖u‖3

6a3N

N∑
i=1

yiB(xi) ≡ ∆R1 + ∆R2, (S.2)

where C(x,θ) = ‖ġ(x,θ)‖3 + ‖ġ(x,θ)‖‖g̈(x,θ)‖+
∑d
j1j2
‖ ...
g j1j2(x,θ)‖ and ú(−1) is ú with the

first element removed. From Assumption 1, E(∆R1)→ 0 and

E(∆R2) ≤ d‖u‖3

6NaN

N∑
i=1

E
{
ef(xi;β

∗)B(xi)} =
d‖u‖3

6aN
E
{
ef(x;β

∗)B(x)
}
→ 0.

Since ∆R1 and ∆R2 are both positive, Markov’s inequality shows that they are both oP (1) so
R = oP (1). For ∆`, the mean E(∆`) = 0 and the variance satisfies that

V(∆`) ≤
‖u‖4

4a4N

N∑
i=1

E{p(xi;θ∗)‖g̈(xi;θ
∗)‖2} ≤ ‖u‖

4

4Na2N

N∑
i=1

E[ef(xi;β
∗)‖g̈(xi;θ

∗)‖2]

=
‖u‖4

4a2N
E[ef(x;β

∗)‖g̈(x,θ∗)‖2]→ 0,

so ∆` = oP (1).

If we can show that

a−1N
˙̀(θ∗) −→ N

(
0, Mf

)
, (S.3)

in distribution, and

a−2N

N∑
i=1

φ(xi;θ
∗)ġ⊗2(xi;θ

∗) −→Mf , (S.4)

in probability, then from the Basic Corollary in page 2 of [3], we know that aN (θ̂−θ∗), the maximizer
of γ(u), satisfies that

aN (θ̂ − θ∗) = M−1
f × a

−1
N

˙̀(θ∗) + oP (1). (S.5)
Slutsky’s theorem together with (S.3) and (S.5) implies the result in Theorem 1. We prove (S.3) and
(S.4) in the following.

Note that

˙̀(θ∗) =

N∑
i=1

{
yi − p(xi;θ∗)

}
ġ(xi;θ

∗)

is a summation of i.i.d. quantities. Since the distribution of {y − p(x;θ∗)}ġ(x;θ∗) depends on
N because α∗ → −∞ as N → ∞, we need to use the Lindeberg-Feller central limit theorem for
triangular arrays [see, Section ∗2.8 of 4].

We examine the mean and variance of a−1N ˙̀(θ∗). For the mean, from the fact that

E[{yi − p(xi;θ∗)}ġ(xi;θ
∗)] = E

[
E
{
yi − p(xi;θ∗)

∣∣ xi
}
ġ(xi;θ

∗)xi

]
= 0,
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we know that E{a−1N ˙̀(θ∗)} = 0.

For the variance,

V{a−1N ˙̀(θ∗)} = a−2N

N∑
i=1

V[{y − p(x;θ∗)}ġ(xi;θ
∗)] = a−2N NE{φ(θ∗)ġ⊗(x;θ∗)}

= a−2N NE
[

eα
∗+f(x;β∗)

{1 + eα∗+f(x;β∗)}2
ġ⊗(x;θ∗)

]
= E

[
ef(x;β

∗)

{1 + eα∗+f(x;β∗)}2
ġ⊗(x;θ∗)

]
.

We have

ef(x;β
∗)

{1 + eα∗+f(x;β∗)}2
ġ⊗(x;θ∗) −→ ef(x;β

∗)ġ⊗(x;θ∗) almost surely,

and

ef(x;β
∗)

{1 + eα∗+f(x;β∗)}2
‖ġ(x;θ∗)‖2 ≤ ef(x;β

∗)‖ġ(x;θ∗)‖2 with E{ef(x;β
∗)‖ġ(x;θ∗)‖2} ≤ ∞.

Note that ġ(x;θ∗) = {1, ḟT(xi;β
∗)}T does not depend on N . Thus, from the dominated conver-

gence theorem,

V{a−1N ˙̀(θ∗)} −→ E
{
ef(x;β

∗)ġ⊗(x;θ∗)
}
.

Now we check the Lindeberg-Feller condition. For any ε > 0,

N∑
i=1

E
[
‖{yi − p(xi;θ∗)}ġ(xi;θ

∗)‖2I(‖{yi − p(xi;θ∗)}ġ(xi;θ
∗)‖ > aN ε)

]
= NE

[
‖{y − p(x;θ∗)}ġ(x;θ∗)‖2I(‖{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
= NE

[
p(x;θ∗){1− p(x;θ∗)}2‖ġ(x;θ∗)‖2I(‖{1− p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
+NE

[
{1− p(x;θ∗)}{p(x;θ∗)}2‖ġ(x;θ∗)‖2I(‖p(x;θ∗)ġ(x;θ∗)‖ > aN ε)

]
≤ NE

[
p(x;θ∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)

]
+NE

[
{p(x;θ∗)}2‖ġ(x;θ∗)‖2I(‖p(x;θ∗)ġ(x;θ∗)‖ > aN ε)

]
≤ a2NE{ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)}
+ a2NE{ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)}
= o(a2N ),

where the last step is from the dominated convergence theorem. Thus, applying the Lindeberg-Feller
central limit theorem [Section ∗2.8 of 4], we finish the proof of (S.3).

Now we prove (S.4). This is done by noting that

a−2N

N∑
i=1

φ(xi;θ
∗)ġ⊗2(xi;θ

∗)

=
1

Neα∗

N∑
i=1

eα
∗+f(xi;β

∗)

(1 + eα∗+f(xi;β∗))2
ġ⊗2(xi;θ

∗)

=
1

N

N∑
i=1

ef(xi;β
∗)

(1 + eα∗+f(xi;β∗))2
ġ⊗2(xi;θ

∗) = E{ef(x;β
∗)ġ⊗2(x;θ∗)}+ oP (1),

where the last step is from Lemma 28 of [5].
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S.2 Proof of Theorem 2

First, note that Vw can be written as

Vw = E(ef(x;β
∗))M−1

f MwM−1
f ,

where

Mw = E
[{

1 +
cef(x;β

∗)

ϕ(x)

}
ef(x;β

∗)ġ⊗2(x;θ∗)

]
.

We then point out that under assumptions 1 and 2 the condition E[{ϕ(x) + ϕ−1(x)}B2(x)] < ∞
implies the following:

E
[{
ϕ(x)ef(x;β

∗)
}
‖ġ(x;θ∗)‖2

]
<∞, (S.6)

E
[{

1 + ϕ−1(x)
}
e2f(x;β

∗)‖ġ(x;θ∗)‖4
]
<∞, (S.7)

E
{
ϕ−1(x)e2f(x;β

∗)‖g̈(x;θ∗)‖2
}
<∞. (S.8)

The estimator θ̂w is the maximizer of

`w(θ) =

N∑
i=1

δi
π(xi, yi)

[
yig(xi;θ)− log{1 + eg(xi;θ)}

]
,

so aN (θ̂w − θ∗) is the maximizer of γw(u) = `w(θ∗ + a−1N u)− `w(θ∗). By Taylor’s expansion,

γw(u) =
1

aN
uT ˙̀

w(θ∗) +
1

2a2N

N∑
i=1

δi
π(xi, yi)

φ(xi;θ
∗)(zTi u)2 + ∆`w +Rw,

where

˙̀
w(θ) =

∂`w(θ)

∂θ
=

N∑
i=1

δi
π(xi, yi)

{
yi − p(xi;θ)

}
ġ(xi,θ),

∆`w =
1

2a2N

N∑
i=1

δi
π(xi, yi)

{
yi − p(xi;θ∗)

}
uTg̈(xi,θ

∗)u,

and Rw is the remainder. Similarly to the proof of Theorem 1, we only need to show that

a−1N
˙̀
w(θ∗) −→ N(0, Mw), (S.9)

in distribution,

a−2N

N∑
i=1

δi
π(xi, yi)

φ(xi;θ
∗)ġ⊗2(xi;θ

∗) −→Mf , (S.10)

in probability for any u, and ∆`w = oP (1) and Rw = oP (1).

We prove (S.9) first. Let ηi = δi
π(xi,yi)

{yi − p(xi;θ∗)}ġ(xi;θ
∗), we know that ηi, i = 1, ..., N , are

i.i.d., with the underlying distribution of ηi being dependent on N . From direct calculation, we have
that E(ηi | xi) = 0 and

V(ηi | xi) = E
[
{yi − p(xi;θ∗)}2

{yi + (1− yi)ρϕ(xi)}

∣∣∣∣ xi

]
ġ⊗2(xi;θ

∗)

= p(xi;θ
∗){1− p(xi;θ∗)}2ġ⊗2(xi;θ

∗) + {1− p(xi;θ∗)}
p2(xi;θ

∗)

ρϕ(xi)
ġ⊗2(xi;θ

∗)

≤ eα
∗
ef(xi;β

∗)ġ⊗2(xi;θ
∗) + ρ−1e2α

∗ e2f(xi;β
∗)

ϕ(xi)
ġ⊗2(xi;θ

∗).
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Thus, by the dominated convergence theorem, we obtain that

V(ηi) = E{V(ηi | xi)} = eα
∗
E
[{

1 +
cef(xi;β

∗)

ϕ(xi)

}
ef(xi;β

∗)ġ⊗2(xi;θ
∗)

]
{1 + o(1)}.

Now we check the Lindeberg-Feller condition [Section ∗2.8 of 4]. Denote δ = y + (1− y)I{u ≤
ρϕ(x)} where u ∼ U(0, 1). For any ε > 0,
N∑
i=1

E
{
‖ηi‖2I(‖ηi‖ > aN ε)

}
= NE

[
‖π−1(x, y)δ{y − p(x;θ∗)}ġ(x;θ∗)‖2I(‖π−1(x, y)δ{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
= ρNE

[
ϕ(x)‖π−1(x, y){y − p(x;θ∗)}ġ(x;θ∗)‖2I(‖π−1(x, y){y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
+NE

[
{1− ρϕ(x)}‖π−1(x, y)y{y − p(x;θ∗)}ġ(x;θ∗)‖2

× I(‖π−1(x, y)y{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)
]

= ρNE
[
ϕ(x)p(x;θ∗)‖{1− p(x;θ∗)}ġ(x;θ∗)‖2I(‖{1− p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
+NE

[
{1− p(x;θ∗)}ρ−1ϕ−1(x)‖p(x;θ∗)ġ(x;θ∗)‖2

× I(‖ρ−1ϕ−1(x){y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)
]

+NE
[
{1− ρϕ(x)}p(x;θ∗)‖{1− p(x;θ∗)}ġ(x;θ∗)‖2I(‖{1− p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
≤ ρNeα

∗
E
[
ϕ(x)ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)
]

+Ne2α
∗
ρ−1E

[
ϕ−1(x)‖ef(x;β

∗)ġ(x;θ∗)‖2I(‖ρ−1ϕ−1(x){y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)
]

+Neα
∗
E
[
ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)
]

= o(Neα
∗
),

where the last step is due to Assumptions 1, (S.6)-(S.8), the dominated convergence theorem, and the
facts that aN →∞ and limN→∞ eα/ρ = c <∞. Thus, applying the Lindeberg-Feller central limit
theorem [Section ∗2.8 of 4] finishes the proof of (S.9).

Now we prove (S.10). Let

Hw ≡ a−2N
N∑
i=1

δi
π(xi, yi)

φ(xi;θ
∗)ġ⊗2(xi;θ

∗)

=
1

n

N∑
i=1

δi
π(xi, yi)

ef(xi;β
∗)

(1 + eα∗+f(xi;β∗))2
ġ⊗2(xi;θ

∗)

=
1

n

N∑
i=1

yi + (1− yi)I{ui ≤ ρϕ(xi)}
yi + (1− yi)ρϕ(xi)

ef(xi;β
∗)

(1 + eα∗+f(xi;β∗))2
ġ⊗2(xi;θ

∗).

We notice that

E(Hw) =E
{

ef(x;β
∗)

(1 + eα∗+f(x;β∗))2
ġ⊗2(x;θ∗)

}
= E

{
ef(x;β

∗)ġ⊗2(x;θ∗)
}

+ o(1), (S.11)

where the last step is by the dominated convergence theorem. In addition, the variance of each
component of Hw is bounded by

1

N
E
{

δ

π2(x, y)
e2f(x;β

∗)‖ġ(x;θ∗)‖4
}

≤ 1

N
E
{

1

π(x, y)
e2f(x;β

∗)‖ġ(x;θ∗)‖4
}
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≤ 1

Nρ
E
[{
ρ+

1

ϕ(x)

}
e2f(x;β

∗)‖ġ(x;θ∗)‖4
]

= o(1). (S.12)

where the last step is because of (S.7) and the fact that Neα
∗ → ∞ and eα

∗
/ρ → c < ∞

imply that Nρ → ∞. From (S.11) and (S.12), Chebyshev’s inequality implies that Hw →
E
{
ef(x;β

∗)ġ⊗2(x;θ∗)
}

in probability.

In the following we finish the proof by showing that ∆`w = oP (1) and Rw = oP (1). For ∆`w , the
mean E(∆`w) = 0 and the variance satisfies that

V(∆`w) ≤ ‖u‖
4N

4a4N
E
[
{y − p(x;θ∗)}2‖g̈(x;θ∗)‖2

y + (1− y)ρϕ(x)

]
≤ ‖u‖

4N

4a4N
E
[{

1 +
p(x;θ∗)

ρϕ(x)

}
p(x;θ∗)‖g̈(x;θ∗)‖2

]
≤ ‖u‖

4

4a2N
E
[{

1 +
eα

∗
ef(x;β

∗)

ρϕ(x)

}
ef(x;β

∗)‖g̈(x;θ∗)‖2
]

= oP (1),

so ∆`w = oP (1). For the remainder term Rw. By direct calculation,

Rw =
1

6a3N

N∑
i=1

δi
π(xi, yi)

φ(xi;θ
∗ + a−1N ú)

{
1− 2p(xi;θ

∗ + a−1N ú)
}
{uTġ(xi;θ

∗ + a−1N ú)}3

+
1

6a3N

N∑
i=1

δi
π(xi, yi)

φ(xi;θ
∗ + a−1N ú){uTġ(xi;θ

∗ + a−1N ú)}{uTg̈(xi;θ
∗ + a−1N ú)u}

+
1

6a3N

N∑
i=1

δi
π(xi, yi)

[{
yi − p(xi;θ∗ + a−1N ú)

} d∑
j1j2

uj1uj2
...
g j1j2(xi;θ

∗ + a−1N ú)u

]
,

where ú lies between 0 and u. We see that

|Rw| ≤
‖u‖3

6a3N

N∑
i=1

δi
π(xi, yi)

p(xi;θ
∗ + a−1N ú)C(xi,θ

∗ + a−1N ú) +
d‖u‖3

6a3N

N∑
i=1

δi
π(xi, yi)

yiB(xi)

≤ ‖u‖
3ea

−1
N ‖u‖

6NaN

N∑
i=1

δi
π(xi, yi)

exp{f(xi;β + a−1N ú(−1))}C(xi,θ
∗ + a−1N ú)

+
d‖u‖3

6a3N

N∑
i=1

δi
π(xi, yi)

yiB(xi)

≤ d3‖u‖3ea
−1
N ‖u‖

6NaN

N∑
i=1

δi
π(xi, yi)

B(xi) +
d‖u‖3

6a3N

N∑
i=1

δi
π(xi, yi)

yiB(xi)

≡ ∆Rw1 + ∆Rw2,

where C(x,θ) is defined in (S.2) and ú(−1) is ú with the first element removed. From Assumption 1,
E(∆Rw1)→ 0 and

E(∆Rw2) ≤ d‖u‖3

6aN
E
[
ef(x;β

∗)B(x)
]
→ 0.

Since ∆Rw1 and ∆Rw2 are both positive, Markov’s inequality shows that they are both oP (1) so
Rw = oP (1).

S.3 Proof of Theorem 3

Since only Vsub in Vw is affect by subsampling, the probability that minimizes tr(Vsub) also
minimizes tr(Vw). Let Λsub = E{ϕ−1(x)e2f(x;β

∗)ġ⊗2(x;θ∗)}. We notice that

Vsub = cE(ef(x;β
∗))M−1

f ΛsubM−1
f
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= cE(ef(x;β
∗))e−2α

∗
{1 + oP (1)}M−1

f E{ϕ−1(x)p2(x;θ∗)ġ⊗2(x;θ∗)}M−1
f ,

where the term cE(ef(x;β
∗))e−2α

∗
does not depend on ϕ(x). Thus we can focus on minimizing the

term M−1
f E{ϕ−1(x)p2(x;θ∗)ġ⊗2(x;θ∗)}M−1

f .

Note that

tr[p2(x;θ∗)M−1
f ġ⊗2(x;θ∗)M−1

f ] = ‖p(x;θ)M−1
f ġ(x;θ)‖2 = t2(x;θ∗).

Thus the problem is to find ϕ(x) that minimizes

E
{
t2(x;θ∗)

ϕ(x)

}
, subject to 0 < ϕ(x) ≤ ρ−1 and E{ϕ(x)} = 1.

To facilitate the presentation, denote

ζ =
1

E[min{t(x;θ∗), T}]
,

which is non-random. We notice that

E
{
ζ2t2(x;θ∗)

ϕ(x)

}
= E

(
ζ2[min{t(x;θ∗), T}]2

ϕ(x)

)
+ E

[
ζ2{t2(x;θ∗)− T 2}

ϕ(x)
I{t(x;θ∗) > T}

]
= E

([√
ϕ(x)− ζ min{t(x;θ∗), T}√

ϕ(x)

]2)
− E{ϕ(x)}+ 2E

[
ζ min{t(x;θ∗), T}

]
+ E

[
ζ2{t2(x;θ∗)− T 2}

ϕ(x)
I{t(x;θ∗) > T}

]
= E

([√
ϕ(x)− ζ min{t(x;θ∗), T}√

ϕ(x)

]2)
+ E

[
ζ2{t2(x;θ∗)− T 2}

ϕ(x)
I{t(x;θ∗) > T}

]
+ 1

≡ E1 + E2 + 1,

where I(·) is the indicator function. Note that Ei’s are non-negative and E1 = 0 if and only if

ϕ(x) = ζ min{t(x;θ∗), T} =
min{t(x;θ∗), T}

E[min{t(x;θ∗), T}]
,

which is attainable because

ρmin{t(x;θ∗), T} ≤ E[min{t(x;θ∗), T}], almost surely. (S.13)

If t(x;θ∗) ≤ T almost surely, then E2 = 0 and the proof finishes. If Pr{t(x;θ∗) > T} > 0 then

ρT

E[min{t(x;θ∗), T}]
= 1,

because if this is not true then we can find a larger T that satisfies (S.13). This means that if
t(x;θ∗) > T , then

ϕ(x) =
min{t(x;θ∗), T}

E[min{t(x;θ∗), T}]
= ρ−1,

which minimizes E2 as well since ϕ(x) is in the denominator. This finishes the proof.

S.4 Derivation of corrected model (4)

Note that π(x, 1) = 1 and π(x, 0) = π(x). By direct calculation, we have

Pr(y = 1 | x, δ = 1)

=
Pr(y = 1, δ = 1 | x)

Pr(δ = 1 | x)
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=
Pr(y = 1, δ = 1 | x)

Pr(y = 1, δ = 1 | x) + Pr(y = 0, δ = 1 | x)

=
Pr(y = 1 | x) Pr(δ = 1 | x, y = 1)

Pr(y = 1 | x) Pr(δ = 1 | x, y = 1) + Pr(y = 0 | x) Pr(δ = 1 | x, y = 0)

=
p(x;θ∗)π(x, 1)

p(x;θ∗)π(x, 1) + {1− p(x;θ∗)}π(x, 0)

=
eg(x;θ

∗)

eg(x;θ∗) + π(x)

=
eg(x;θ

∗)+l

1 + eg(x;θ∗)+l
.

S.5 Proof of Theorem 4

The estimator θ̂lik is the maximizer of `lik(θ), so uN = aN (θ̂lik − θ) is the maximizer of

γlik(u) = `lik(θ + a−1N u)− `lik(θ).

By Taylor’s expansion,

γlik(u) = a−1N uT ˙̀
lik(θ∗) + 0.5a−2N

N∑
i=1

φπ(xi;θ
∗){uTġ(xi;θ

∗)}2 + ∆`lik +Rlik,

where φπ(x;θ) = pπ(x;θ){1− pπ(x;θ)},

pπ(x;θ) =
eg(x;θ)+l

1 + eg(x;θ)+l
with l = − log{ρϕ(x)}, (S.14)

˙̀
lik(θ) =

∂`lik(θ)

∂θ
=

N∑
i=1

δi
{
yi − pπ(xi;θ)

}
ġ(xi;θ),

∆`lik =
1

2a2N

N∑
i=1

δi
{
yi − pπ(xi;θ

∗)
}
uTg̈(xi;θ

∗)u,

and Rlik is the remainder term. By direct calculation,

Rlik =
1

6a3N

N∑
i=1

δiφπ(xi;θ
∗ + a−1N ú)

{
1− 2pπ(xi;θ

∗ + a−1N ú)
}
{uTġ(xi;θ

∗ + a−1N ú)}3

+
1

6a3N

N∑
i=1

δiφπ(xi;θ
∗ + a−1N ú){uTġ(xi;θ

∗ + a−1N ú)}{uTg̈(xi;θ
∗ + a−1N ú)u}

+
1

6a3N

N∑
i=1

δi

[{
yi − pπ(xi;θ

∗ + a−1N ú)
} d∑
j1,j2=1

uj1uj2
...
g j1j2(xi;θ

∗ + a−1N ú)u

]
,

where ú lies between 0 and u. We see that

|Rlik| ≤
‖u‖3

6a3N

N∑
i=1

δipπ(xi;θ
∗ + a−1N ú)C(xi,θ

∗ + a−1N ú) +
d‖u‖3

6a3N

N∑
i=1

δiyiB(xi)

≤ ‖u‖
3ea

−1
N ‖u‖

6NaN

N∑
i=1

δi exp[f(xi;β + a−1N ú(−1))− log{ρϕ(xi)}]C(xi,θ
∗ + a−1N ú)

+
d‖u‖3

6a3N

N∑
i=1

δiyiB(xi)

=
‖u‖3ea

−1
N ‖u‖

6NaNρ

N∑
i=1

δiϕ
−1(xi) exp[f(xi;β + a−1N ú(−1))]C(xi,θ

∗ + a−1N ú)
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+
d‖u‖3

6a3N

N∑
i=1

δiyiB(xi)

≤ d3‖u‖3ea
−1
N ‖u‖

6NaNρ

N∑
i=1

δiϕ
−1(xi)B(xi) +

d‖u‖3

6a3N

N∑
i=1

yiB(xi)

≡ ∆Rlik1 + ∆R2 = ∆Rlik1 + oP (1),

where ú(−1) is ú with the first element removed, C(x,θ) and ∆R2 = oP (1) are defined in (S.2). For
∆Rlik1, we see that

E
{

(Nρ)−1
N∑
i=1

δiϕ
−1(xi)B(xi)

}
= ρ−1E

(
[{p(xi;θ∗)ϕ−1(x) + ρ{1− p(xi;θ∗)}]B(x)

)
≤ eα

∗
ρ−1E{ef(x;β

∗)ϕ−1(x)B(x)}+ E{B(x)}.

Therefore, E(∆Rlik1)→ 0. Since ∆Rlik1 is positive, Markov’s inequality shows that ∆Rlik1 = oP (1)
and thus Rlik = oP (1).

For ∆`lik , the mean E(∆`lik) = 0 and the variance satisfies that

V(∆`lik) ≤ ‖u‖
4

4a4N

N∑
i=1

E{δipπ(xi;θ
∗)‖g̈(xi;θ

∗)‖2} ≤ ‖u‖
4

4a2N
E[ef(x;β

∗)‖g̈(x,θ∗)‖2]→ 0,

where the last step is because Assumption 1 implies that ef(x;β
∗)‖g̈(x,θ∗)‖2 is integrable, so

∆`lik = oP (1).

If we can show that

a−1N
˙̀
lik(θ∗) −→ N

(
0, Λlik

)
, (S.15)

in distribution, and

a−2N

N∑
i=1

δiφπ(xi;θ
∗)ġ⊗2(xi;θ

∗) −→ Λlik, (S.16)

in probability, then from the Basic Corollary in page 2 of [3], we know that aN (θ̂lik − θ∗), the
maximizer of γlik(u), satisfies that

aN (θ̂lik − θ∗) = Λ−1lik × a
−1
N

˙̀
lik(θ∗) + oP (1). (S.17)

Slutsky’s theorem together with (S.15) and (S.17) implies the result in Theorem 1. We prove (S.15)
and (S.16) in the following.

Note that ˙̀
lik(θ∗) is a summation of i.i.d. quantities, δi

{
yi − pπ(xi;θ

∗)
}
ġ(xi;θ

∗)’s, whose distri-
bution depends on N . Note that

E[δ{y − pπ(x;θ∗)}ġ(x;θ∗)]

= E[π(x, y){y − pπ(x;θ∗)}ġ(x;θ∗)]

= E
([
p(x;θ∗){1− pπ(x;θ∗)} − {1− p(x;θ∗)}ρϕ(x)pπ(x;θ∗)

]
ġ(x;θ∗)

)
= 0, (S.18)

where the last step is by a direct calculation from (S.14) to obtain the following equality

p(x;θ∗){1− pπ(x;θ∗)} = {1− p(x;θ∗)}ρϕ(x)pπ(x;θ∗). (S.19)

Thus we know that E{a−1N ˙̀
lik(θ∗)} = 0. The variance of a−1N ˙̀

lik(θ∗) satisfies that

V{a−1N ˙̀
lik(θ∗)}

= a−2N NE
[
δ{y − pπ(x;θ∗)}2ġ⊗2(x;θ∗)

]
= e−α

∗
E
[
{y + (1− y)ρϕ(x)}{y − pπ(x;θ∗)}2ġ⊗2(x;θ∗)

]
= e−α

∗
E
([
p(x;θ∗){1− pπ(x;θ∗)}2 + {1− p(x;θ∗)}ρϕ(x)p2π(x;θ∗)

]
ġ⊗2(x;θ∗)

)
(S.20)
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= e−α
∗
E
([
p(x;θ∗){1− pπ(x;θ∗)}2 + p(x;θ∗){1− pπ(x;θ∗)}pπ(x;θ∗)

]
ġ⊗2(x;θ∗)

)
(S.21)

= e−α
∗
E
([
{1− pπ(x;θ∗)}2 + {1− pπ(x;θ∗)}pπ(x;θ∗)

]
p(x;θ∗)ġ⊗2(x;θ∗)

)
(S.22)

= e−α
∗
E
([
{1− pπ(x;θ∗)}2 + φπ(x;θ∗)

]
p(x;θ∗)ġ⊗2(x;θ∗)

)
(S.23)

= E
([
{1− pπ(x;θ∗)}2 + φπ(x;θ∗)

]
{1− p(x;θ∗)}ef(x;β

∗)ġ⊗2(x;θ∗)
)

(S.24)

where the forth equality uses (S.19). Note that elements of the term in the expectation of (S.24) are all
bounded by integrable random variable ef(x;β

∗)‖ġ(x;θ∗)‖2. Thus, from the dominated convergence
theorem and the fact that[

{1− pπ(x;θ∗)}2 + φπ(x;θ∗)
]
{1− p(x;θ∗)}

= 1− pπ(x;θ∗) + oP (1) =
1

1 + cϕ−1(x)ef(x;β∗)
+ oP (1),

we have

V{a−1N ˙̀
lik(θ∗)} −→E

[
ef(x;β

∗)ġ⊗2(x;θ∗)

1 + cϕ−1(x)ef(x;β∗)

]
= Λlik. (S.25)

Now we check the Lindeberg-Feller condition. For any ε > 0,

N∑
i=1

E
[
‖δi{yi − pπ(xi;θ

∗)}ġ(xi;θ
∗)‖2I(‖δi{yi − pπ(xi;θ

∗)}ġ(xi;θ
∗)‖ > aN ε)

]
= NE

[
δ‖{y − pπ(x;θ∗)}ġ(x;θ∗)‖2I(δ‖{y − pπ(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

]
= NE

[
p(x;θ∗){1− pπ(x;θ∗)}2‖ġ(x;θ∗)‖2I({1− pπ(x;θ∗)}‖ġ(x;θ∗)‖ > aN ε)

]
+NE

[
{1− p(x;θ∗)}ρϕ(x){pπ(x;θ∗)}2‖ġ(x;θ∗)‖2I(ρϕ(x)pπ(x;θ∗)‖ġ(x;θ∗)‖ > aN ε)

]
≤ NE

[
eα

∗+f(x;β∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)
]

+NE
[
eα

∗+f(x;β∗)pπ(x;θ∗)‖ġ(x;θ∗)‖2I(eα
∗+f(x;β∗)‖ġ(x;θ∗)‖ > aN ε)

]
≤ a2NE

[
ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)
]

+ a2NE
[
ef(x;β

∗)‖ġ(x;θ∗)‖2I(eα
∗+f(x;β∗)‖ġ(x;θ∗)‖ > aN ε)

]
= o(a2N ),

where the inequality in the third step uses the following fact derived from (S.14)

ρϕ(x)pπ(x;θ∗) = eα
∗+f(x;β∗){1− pπ(x;θ∗)} ≤ eα

∗+f(x;β∗), (S.26)

and the last step is from the dominated convergence theorem. Thus, applying the Lindeberg-Feller
central limit theorem [Section ∗2.8 of 4], we finish the proof of (S.15).

Now we prove (S.16). Denote

Hlik = a−2N

N∑
i=1

δiφπ(xi;θ
∗)ġ⊗2(xi;θ

∗).

We notice that

E(Hlik) = Na−2N E[{y + (1− y)ρϕ(x)}φπ(x;θ∗)ġ⊗2(x;θ∗)]

= e−α
∗
E[{1− p(x;θ∗)}ρϕ(x)pπ(x;θ∗){1− pπ(x;θ∗)}ġ⊗2(x;θ∗)]

+ e−α
∗
E[p(x;θ∗)pπ(x;θ∗){1− pπ(x;θ∗)}ġ⊗2(x;θ∗)]

= e−α
∗
E[p(x;θ∗){1− pπ(x;θ∗)}2ġ⊗2(x;θ∗)]

+ e−α
∗
E[{1− p(x;θ∗)}ρϕ(x)p2π(x;θ∗)ġ⊗2(x;θ∗)]

= V{a−1N ˙̀
lik(θ∗)} = Λlik + o(1), (S.27)
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where the third equality is obtained by applying (S.19) and the forth equality is from (S.20). In
addition, the variance of each component of Hlik is bounded by

a−4N NE{δφ2π(xi;θ
∗)‖ġ(xi;θ

∗)‖4}
≤ a−4N NE[{y + (1− y)ρϕ(x)}pπ(xi;θ

∗)‖ġ(xi;θ
∗)‖4]

≤ a−4N NE[{p(x;θ∗) + ρϕ(x)}pπ(xi;θ
∗)‖ġ(xi;θ

∗)‖4]

≤ 2a−4N Neα
∗
E{ef(x;β

∗)‖ġ(xi;θ
∗)‖4} = o(1), (S.28)

where the last inequality is because of (S.26) and the last step if because Assumption 1 implies
that ef(x;β

∗)‖ġ(xi;θ
∗)‖4 is integrable. From (S.27) and (S.28), Chebyshev’s inequality implies that

Hlik → Λlik in probability.

S.6 Proof of Theorem 5

Let κ(x) = 1 + cϕ−1(x)ef(x;β
∗). We first notice that

[E{ef(x;β
∗)}]−1Vw = M−1

f MfM
−1
f + M−1

f cΛsubM−1
f

= M−1
f E[κ(x)ef(x;β

∗)ġ⊗2(x;θ∗)]M−1
f ,

and
[E{ef(x;β

∗)}]−1Vlik = Λ−1lik =
[
E
{
κ−1(x)ef(x;β

∗)ġ⊗2(x;θ∗)
}]−1

We only need to show that
[E{ef(x;β

∗)}]−1Vw ≥ Λ−1lik .

This is proved by the following calculation

0 ≤E
([
{κ1/2(x)M−1

f − κ
−1/2(x)Λ−1lik }e

f(x;β∗)/2ġ(x;θ∗)
]⊗2)

=E
{

M−1
f κ(x)ef(x;β

∗)ġ⊗2(x;θ∗)M−1
f

}
+ E

{
Λ−1lik κ

−1(x)ef(x;β
∗)ġ⊗2(x;θ∗)Λ−1lik

}
− 2E

{
M−1

f ef(x;β
∗)ġ⊗2(x;θ∗)Λ−1lik

}
=[E{ef(x;β

∗)}]−1Vw + Λ−1lik − 2Λ−1lik = [E{ef(x;β
∗)}]−1Vw −Λ−1lik .

If c = 0 then κ(x) = 1, and we can directly verify that

[E{ef(x;β
∗)}]−1Vw = Λ−1lik = M−1

f . (S.29)

S.7 Proof of Theorem 6

For sampled data, (5) tell us that the joint density w.r.t. the product counting measure of the responses
given the features is exp

{
`lik(θ) +

∑N
i=1 δiyili

}
, whose support has a finite number of possible

values. Thus the expectation E{U(θ;Dδ) | X} is a sum of finite number of elements, and therefore
the partial derivatives w.r.t. θ can be passed under the integration sign in E{U(θ;Dδ) | X}. Therefore
we have

I =
∂

∂θT
E{U(θ;Dδ) | X}

=
∂

∂θT

∫
U(θ;Dδ) exp

{
`lik(θ) +

N∑
i=1

δiyili

}
dy

=

∫
U̇(θ;Dδ) exp

{
`lik(θ) +

N∑
i=1

δiyili

}
dy

+

∫
U(θ;Dδ) exp

{
`lik(θ) +

N∑
i=1

δiyili

}
˙̀T
lik(θ)dy

= E{U̇(θ;Dδ) | X}+ E{U(θ;Dδ) ˙̀T
lik(θ) | X},
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where dy = dy×dy× ...dy is a product measure and dy is the counting measure. This gives us that

E{U(θ;Dδ) ˙̀T
lik(θ) | X} = I (S.30)

Hence we have

V
{
U(θ;Dδ)− a−2N Λ−1lik

˙̀
lik(θ)

∣∣ X
}
≥ 0

= V{U(θ;Dδ) | X}+ V
{
a−2N Λ−1lik

˙̀
lik(θ)

∣∣ X
}
− 2a−2N E{U(θ;Dδ) ˙̀T

lik(θ) | X}Λ−1lik

= V{U(θ;Dδ) | X}+ a−2N Λ−1likV{a
−1
N

˙̀
lik(θ)

∣∣ X}Λ−1lik − 2a−2N Λ−1lik .

Taking expectation of the above conditional variance and using (S.25), we have

E[V{U(θ;Dδ) | X}] + a−2N Λ−1lik E[a−1N V{ ˙̀
lik(θ)

∣∣ X}]Λ−1lik − 2a−2N Λ−1lik

= V{U(θ;Dδ)}+ a−2N Λ−1lik {1 + oP (1)} − 2a−2N Λ−1lik

= V{U(θ;Dδ)} − a−2N Λ−1lik {1 + oP (1)}
= V{U(θ;Dδ)} −N−11 Vlik{1 + oP (1)} ≥ 0,

where the last equality is because (S.1) implies that a−2N = N−11 E{ef(x;β∗)}{1 + oP (1)}. This
finishes the proof.

S.8 Proof of Theorem 7

The outline of the proof is similar to that of the proof of Theorem 2. Write πos
% (x, y; ϑ̃) = y + (1−

y)πos
% (x; ϑ̃) and δϑ̃ = y + (1 − y)I{u ≤ πos

% (x; ϑ̃)} where u ∼ U(0, 1). The estimator θ̂ϑ̃w is the
maximizer of

`ϑ̃w(θ) =

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

[
yig(xi;θ)− log{1 + eg(xi;θ)}

]
,

so aN (θ̂ϑ̃w − θ∗) is the maximizer of γϑ̃w(u) = `ϑ̃w(θ∗ + a−1N u)− `ϑ̃w(θ∗). By Taylor’s expansion,

γϑ̃w(u) =
1

aN
uT ˙̀ϑ̃

w(θ∗) +
1

2a2N

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

φ(xi;θ
∗)(zTi u)2 + ∆ϑ̃

`w +Rϑ̃w,

where

˙̀ϑ̃
w(θ) =

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

{
yi − p(xi;θ)

}
ġ(xi,θ),

∆ϑ̃
`w =

1

2a2N

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

{
yi − p(xi;θ∗)

}
uTg̈(xi,θ

∗)u,

and Rϑ̃w is the remainder. Similarly to the proof of Theorem 2, we only need to show that

a−1N
˙̀ϑ̃
w(θ∗) −→ N(0, Λplt

w ), (S.31)

in distribution with

Λplt
w = E

[
ef(xi;β

∗)ġ⊗2(xi;θ
∗) +

ce2f(xi;β
∗)

max{ϕplt(x), cl}
ġ⊗2(xi;θ

∗)

]
,

and for any u,

Hϑ̃w := a−2N

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

φ(xi;θ
∗)ġ⊗2(xi;θ

∗) −→Mf , (S.32)

in probability, and ∆ϑ̃
`w

= oP (1) and Rϑ̃w = oP (1).
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We prove (S.31) first. Let ηϑ̃i =
δϑ̃i

πos
% (x,y;ϑ̃)

{yi − p(xi;θ∗)}ġ(xi;θ
∗). Given ϑ̃, ηϑ̃i , i = 1, ..., N , are

i.i.d. with mean zero, and the variance satisfies that

V(ηϑ̃i | ϑ̃)

= E
[

{yi − p(xi;θ∗)}2

{yi + (1− yi)πos
% (xi; ϑ̃)}

ġ⊗2(xi;θ
∗)

∣∣∣∣ ϑ̃]
= E

[
p(xi;θ

∗){1− p(xi;θ∗)}2ġ⊗2(xi;θ
∗) + {1− p(xi;θ∗)}

p2(xi;θ
∗)

πos
% (xi; ϑ̃)

ġ⊗2(xi;θ
∗)

∣∣∣∣ ϑ̃]
≤ E

{
p(xi;θ

∗)ġ⊗2(xi;θ
∗) + %−1p2(xi;θ

∗)ġ⊗2(xi;θ
∗)
∣∣ ϑ̃}

≤ eα
∗
E
{
ef(xi;β

∗)ġ⊗2(xi;θ
∗) + (%−1eα

∗
)e2f(xi;β

∗)ġ⊗2(xi;θ
∗)
}

Since ρ−1%→ cl > 0, for large enough N ,

V{a−1N ˙̀ϑ̃
w(θ∗) | ϑ̃} ≤ E

{
ef(xi;β

∗)ġ⊗2(xi;θ
∗) + (1 + c−1l c)e2f(xi;β

∗)ġ⊗2(xi;θ
∗)
}
.

Thus, we know that

V{a−1N ˙̀ϑ̃
w(θ∗)} → Λplt

w

Now we check the Lindeberg-Feller condition [Section ∗2.8 of 4] given ϑ̃. For any ε > 0,
N∑
i=1

E
{
‖ηϑ̃i ‖2I(‖ηϑ̃i ‖ > aN ε)

∣∣ ϑ̃}
= NE

[
‖{πos

% (x, y; ϑ̃)}−1δϑ̃{y − p(x;θ∗)}ġ(x;θ∗)‖2

× I(‖{πos
% (x, y; ϑ̃)}−1δϑ̃{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
= NE

[
{πos

% (x, y; ϑ̃)}−1‖{y − p(x;θ∗)}ġ(x;θ∗)‖2

× I(‖{πos
% (x, y; ϑ̃)}−1{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
+NE

[
{1− πos

% (x, y; ϑ̃)}‖{πos
% (x, y; ϑ̃)}−1y{y − p(x;θ∗)}ġ(x;θ∗)‖2

× I(‖{πos
% (x, y; ϑ̃)}−1y{y − p(x;θ∗)}ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
≤ NE

[
p(x;θ∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)

]
+NE

[
%−1‖p(x;θ∗)ġ(x;θ∗)‖2I(‖%−1p(x;θ∗)ġ(x;θ∗)‖ > aN ε)

]
+NE

[
p(x;θ∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)

]
≤ 2a2NE

[
ef(xi;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)
]

+ a2Ne
α∗
%−1E

[
e2f(xi;β

∗)‖ġ(x;θ∗)‖2I(%−1eα
∗
‖ef(xi;β

∗)ġ(x;θ∗)‖ > aN ε)
]

= o(a2N ),

where the last step is due to Assumptions 1, the dominated convergence theorem, and the facts
that aN → ∞ and limN→∞ eα/% = c/cl < ∞. Thus, applying the Lindeberg-Feller central limit
theorem [Section ∗2.8 of 4] finishes the proof of (S.31).

Now we prove (S.32). We notice that

E(Hϑ̃w | ϑ̃) =E
{

ef(x;β
∗)

(1 + eα∗+f(x;β∗))2
ġ⊗2(x;θ∗)

}
= Mf + o(1), (S.33)

where the last step is by the dominated convergence theorem. In addition, the conditional variance of
each component of Hϑ̃w is bounded by

1

N
E
{
e2f(x;β

∗)‖ġ(x;θ∗)‖4

πos
% (x, y; ϑ̃)

∣∣∣∣ ϑ̃} ≤ 1

N%
E{e2f(x;β

∗)‖ġ(x;θ∗)‖4} = o(1). (S.34)
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where the last step is because of Assumption 1 and the fact that Neα
∗ →∞, eα

∗
/ρ→ c <∞, and

ρ−1% → cl > 0 imply that N% → ∞. From (S.33) and (S.34), applying Chebyshev’s inequality
finishes the proof of (S.32).

In the following we finish the proof by showing that given ϑ̃, ∆ϑ̃
`w

= oP (1) and Rϑ̃w = oP (1).

For ∆ϑ̃
`w

, the conditional mean E(∆ϑ̃
`w
| ϑ̃) = 0 and the conditional variance satisfies that

V(∆ϑ̃
`w | ϑ̃) ≤ ‖u‖

4N

4a4N
E
[
{y − p(x;θ∗)}2‖g̈(x;θ∗)‖2

y + (1− y)πos
% (x, y; ϑ̃)

∣∣∣∣ ϑ̃]
≤ ‖u‖

4N

4a4N
E
[
{1 + %−1p(x;θ∗)}p(x;θ∗)‖g̈(x;θ∗)‖2

]
≤ ‖u‖

4

4a2N
E
[
{1 + %−1eα

∗
ef(x;β

∗)}ef(x;β
∗)‖g̈(x;θ∗)‖2

]
= o(1),

so ∆ϑ̃
`w

= oP (1).

For the remainder term Rϑ̃w. By direct calculations similar to those used for the proof of Theorem 2,
we know that

|Rϑ̃w| ≤
d3‖u‖3ea

−1
N ‖u‖

6NaN

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

B(xi) +
d‖u‖3

6a3N

N∑
i=1

δϑ̃i
πos
% (x, y; ϑ̃)

yiB(xi)

≡ ∆ϑ̃
Rw1 + ∆ϑ̃

Rw2.

From Assumption 1, E(∆ϑ̃
Rw1)→ 0 and E(∆ϑ̃

Rw2)→ 0. Since ∆ϑ̃
Rw1 and ∆ϑ̃

Rw2 are both positive,
Markov’s inequality shows that they are both oP (1) so Rϑ̃w = oP (1).

S.9 Proof of Theorem 8

The outline of the proof is similar to that of the proof of Theorem 4. The estimator θ̂ϑ̃lik is the
maximizer of `ϑ̃lik(θ), so uϑ̃N = a−1N (θ̂ϑ̃lik − θ) is the maximizer of

γϑ̃lik(u) = `ϑ̃lik(θ + a−1N u)− `ϑ̃lik(θ).

By Taylor’s expansion,

γϑ̃lik(u) = a−1N uT ˙̀ϑ̃
lik(θ∗) + 0.5a−2N

N∑
i=1

φπ(xi;θ
∗){uTġ(xi;θ

∗)}2 + ∆ϑ̃
`lik

+Rϑ̃lik, (S.35)

where φϑ̃π (x;θ) = pϑ̃π (x;θ){1− pϑ̃π (x;θ)},

pϑ̃π (x;θ) =
eg(x;θ)+l̃

1 + eg(x;θ)+l̃
, with l̃i = − log{πos

% (x; ϑ̃)}, (S.36)

˙̀ϑ̃
lik(θ) =

N∑
i=1

δϑ̃i
{
yi − pϑ̃π (xi;θ)

}
ġ(xi;θ),

∆ϑ̃
`lik

=
1

2a2N

N∑
i=1

δϑ̃i
{
yi − pϑ̃π (xi;θ

∗)
}
uTg̈(xi;θ

∗)u, (S.37)

andRϑ̃lik is the remainder term. By direct calculations similar to those used for the proof of Theorem 4,
we know that

|Rϑ̃lik| ≤
‖u‖3

6a3N

N∑
i=1

δϑ̃i C(xi,θ
∗ + a−1N ú) +

d‖u‖3

6a3N

N∑
i=1

δϑ̃i yiB(xi) ≤
(d+ 1)‖u‖3

6a3N

N∑
i=1

δϑ̃i B(xi),
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where ú lies between 0 and u.

Since % = o(ρ), we know that for large enough N ,

E
{
a−3N

N∑
i=1

δϑ̃i B(xi)
∣∣∣ ϑ̃}

= Na−3N E
{

[y + (1− y)πos
% (x; ϑ̃)]B(x)

∣∣∣ ϑ̃}
≤ Na−3N E

{
[eα

∗
ef(x;β

∗) + ω̃−1ρt(x; θ̃)]B(x)
∣∣∣ ϑ̃}

≤ a−1N E
{
ef(x;β

∗)B(x)
}

+ a−1N λ̃−1min(e−α
∗
ρ)(eα̃ω̃)−1E

{
ef(x;θ̃)‖ġ(x; θ̃)‖B(x)

∣∣ ϑ̃}
≤ a−1N E

{
ef(x;β

∗)B(x)
}

+ a−1N λ̃−1min(e−α
∗
ρ)(eα̃ω̃)−1E{B2(x)} = oP (1),

where λ̃min is the minimum eigenvalue of M̃f . Thus, Markov’s inequality shows that Rϑ̃lik = oP (1).
For ∆ϑ̃

`lik
, the conditional mean E(∆ϑ̃

`lik
| ϑ̃) = 0 and the conditional variance satisfies that

V(∆ϑ̃
`lik
| ϑ̃) ≤ ‖u‖

4

4a4N

N∑
i=1

E{δϑ̃i pϑ̃π (xi;θ
∗)‖g̈(xi;θ

∗)‖2 | ϑ̃}

≤ ‖u‖
4

4a2N
E[ef(x;β

∗)‖g̈(x,θ∗)‖2]→ 0,

so ∆ϑ̃
`lik

= oP (1).

Now we need to show that given ϑ̃

a−1N
˙̀ϑ̃
lik(θ∗) −→ N

(
0, Λplt

lik

)
, (S.38)

in distribution, with

Λplt
lik = E

[
ef(x;β

∗)ġ⊗2(x;θ∗)

1 + cϕ−1plt(x)ef(x;β∗)

]
,

and

Hϑ̃lik := a−2N

N∑
i=1

δϑ̃i φ
ϑ̃
π (xi;θ

∗)ġ⊗2(xi;θ
∗) −→ Λplt

lik , (S.39)

in probability, then from the Basic Corollary in page 2 of [3], we know that aN (θ̂ϑ̃lik − θ∗), the
maximizer of γϑ̃lik(u), satisfies that

aN (θ̂ϑ̃lik − θ∗) = (Λplt
lik )−1 × a−1N ˙̀ϑ̃

lik(θ∗) + oP (1). (S.40)

Slutsky’s theorem together with (S.38) and (S.40) implies the result in Theorem 1. We prove (S.38)
and (S.39) in the following.

Given ϑ̃, ˙̀ϑ̃
lik(θ∗) is a summation of i.i.d. quantities, δϑ̃i

{
yi − pϑ̃π (xi;θ

∗)
}
ġ(xi;θ

∗)’s. Using a
similar approach to obtain (S.18) we know that E{a−1N ˙̀ϑ̃

lik(θ∗) | ϑ̃} = 0. The conditional variance
of a−1N ˙̀ϑ̃

lik(θ∗) satisfies that

V{a−1N ˙̀ϑ̃
lik(θ∗) | ϑ̃}

= e−α
∗
E
[
{y + (1− y)πos

% (x; ϑ̃)}{y − pϑ̃π (x;θ∗)}2ġ⊗2(x;θ∗)
∣∣ ϑ̃]

= e−α
∗
E
(
[p(x;θ∗){1− pϑ̃π (x;θ∗)}2 + πos

% (x; ϑ̃){1− p(x;θ∗)}p2π(x;θ∗)]ġ⊗2(x;θ∗)
∣∣∣ ϑ̃)

= e−α
∗
E
(
[{1− pϑ̃π (x;θ∗)}2 + φϑ̃π (x;θ∗){1− p(x;θ∗)}2]p(x;θ∗)ġ⊗2(x;θ∗)

∣∣ ϑ̃)
= E

(
[{1− pϑ̃π (x;θ∗)}2 + φϑ̃π (x;θ∗){1− p(x;θ∗)}2]{1− p(x;θ∗)}ef(x;β

∗)ġ⊗2(x;θ∗)
∣∣ ϑ̃).
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The elements of the term on the right hand side of the above equation are bounded by an integrable
random variable ef(x;β

∗)‖ġ(x;θ∗)‖2, so if % = o(ρ) then

V{a−1N ˙̀ϑ̃
lik(θ∗)} −→ Λplt

lik . (S.41)

Using an similar approach as in checking the Lindeberg-Feller condition in the proof of Theorem 4,
we obtain that for any ε > 0,

N∑
i=1

E
[
‖δϑ̃i {yi − pϑ̃π (xi;θ

∗)}ġ(xi;θ
∗)‖2I(‖δϑ̃i {yi − pϑ̃π (xi;θ

∗)}ġ(xi;θ
∗)‖ > aN ε)

∣∣∣ ϑ̃]
= NE

[
δϑ̃‖{y − pϑ̃π (x;θ∗)}ġ(x;θ∗)‖2I(δϑ̃‖{y − pϑ̃π (x;θ∗)}ġ(x;θ∗)‖ > aN ε)

∣∣∣ ϑ̃]
= NE

[
p(x;θ∗){1− pϑ̃π (x;θ∗)}2‖ġ(x;θ∗)‖2I({1− pϑ̃π (x;θ∗)}‖ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
+NE

[
{1− p(x;θ∗)}πos

% (x; ϑ̃){pϑ̃π (x;θ∗)}2‖ġ(x;θ∗)‖2

× I(πos
% (x; ϑ̃)pϑ̃π (x;θ∗)‖ġ(x;θ∗)‖ > aN ε)

∣∣∣ ϑ̃]
≤ NE

[
p(x;θ∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
+NE

[
eα

∗+f(x;β∗)pϑ̃π (x;θ∗)‖ġ(x;θ∗)‖2I(eα
∗+f(x;β∗)‖ġ(x;θ∗)‖ > aN ε)

∣∣ ϑ̃]
≤ a2NE{ef(x;β

∗)‖ġ(x;θ∗)‖2I(‖ġ(x;θ∗)‖ > aN ε)}
+ a2NE

[
ef(x;β

∗)‖ġ(x;θ∗)‖2I(eα
∗+f(x;β∗)‖ġ(x;θ∗)‖ > aN ε)

]
= o(a2N ),

where the last step is from the dominated convergence theorem. Thus, applying the Lindeberg-Feller
central limit theorem [Section ∗2.8 of 4], we finish the proof of (S.38).

Now we prove (S.39). By similar derivations in (S.27), we know that

E(Hϑ̃lik | ϑ̃) = V{a−1N ˙̀ϑ̃
lik(θ∗) | ϑ̃} = Λplt

lik + oP (1). (S.42)

where the second equality is from (S.41). In addition, the conditional variance of each component of
Hϑ̃lik is bounded by

a−4N NE{δϑ̃{φϑ̃π (xi;θ
∗)}2‖ġ(xi;θ

∗)‖4 | ϑ̃}

≤ a−4N NE[{y + (1− y)πos
% (x; ϑ̃)}pϑ̃π (xi;θ

∗)‖ġ(xi;θ
∗)‖4 | ϑ̃]

≤ a−4N NE[{p(x;θ∗) + πos
% (x; ϑ̃)}pϑ̃π (xi;θ

∗)‖ġ(xi;θ
∗)‖4 | ϑ̃]

≤ 2a−4N Neα
∗
E{ef(x;β

∗)‖ġ(xi;θ
∗)‖4} = 2a−2N E{ef(x;β

∗)‖ġ(xi;θ
∗)‖4} = o(1). (S.43)

From (S.42) and (S.43), Chebyshev’s inequality implies that Hϑ̃lik → Λplt
lik in probability.

S.10 Experiments on Pilot Mis-specification

This section complements Section 6.1 in the main text. We generate all data with a logistic regression
model with g(x;θ) = α+ xTβ. The total number of data is N = 5× 105 with N0 negative samples
and N1 positive samples. When generating data, we tune the bias α to force N0/N1 ≈ 400. In
order to test the robustness of our methods, we add an artificial biased to the pilot model, which will
produce skewed sampling probabilities through the equation

πos
% (x; ϑ̃) = min[max{ρϕ̃os(x), %}, 1], where ϕ̃os(x) = ω̃−1t(x; θ̃). (S.44)

We try two types of biases: one on the intercept term α and the other on weights β.
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S.10.1 Perturb the pilot intercept α̃.

We perturb α̃← α̃+ ξ ×U(0, 1)× log(N0/N1), where ξ is a hyperparameter controlling the degree
of perturbation. We try ξ = {0.1, 0.5, 1.0}. As the result will show, perturbing the intercept will not
affect the relative performance for various types of sampling algorithms.

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.1: Degree of perturbation ξ = 0.1. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.2: Degree of perturbation ξ = 0.5. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.3: Degree of perturbation ξ = 1.0. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

S.10.2 Perturb the pilot weights β.

We perturb β̃ ← β̃ + ξ ×N (0, I), where ξ is a hyperparameter to control the degree of perturbation.
We try ξ = {0.1, 0.5, 1.0}. As the result shows, the IPW estimator is pretty sensitive to the perturba-
tion, and optW can be even worse than uniLik when the perturbation is significant (Figure S.6). uniLik
may exceed optLik when the perturbation is too large such that the optimal sampling probability is
significatly mis-calculated (Figure S.6(d)).
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(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.4: Degree of perturbation ξ = 0.1. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.5: Degree of perturbation ξ = 0.5. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.6: Degree of perturbation ξ = 1.0. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

S.11 Experiments on Model Mis-specification

This section studies the case when model is mis-specified. That is, the ground truth model fall out
of the domain of linear logistic regression model. We design the ground truth model as a two-layer
neural network with non-linear activations:

g(x;θ) = α+
1

ξ
tanh(ξ · xTW)β, (S.45)

where ξ is a constant to control the “cut-off" threshold of the non-linear activation tanh. Note that as
ξ → 0, the scaled tanh function 1

ξ · tanh(ξ · x) ≈ x as shown in Figure S.7. Thus, by tuning ξ we
have the control of the deviation of scaled tanh function from a linear, identity transformation.
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Figure S.7: Scaled tanh function approximates identity transformation when ξ → 0.

We also generate W to be an approximately identity matrix, by setting the diagonal elements of W
to be 1, and draw off diagonal terms to be i.i.d. Normal distribution scaled by a factor ξw. Clearly,
the operator norm ‖W − I‖2→2 is controlled by ξw. When ξw = 0, W = I .

When perturbing the ground-truth model by setting ξ and ξw (thus W), we need to reset the intercept
α to match the pos/neg proportion to be 1/400. For each experiment setup, we record the tuned α in
the caption for reproducible research.

S.11.1 Ablation study.

When ξ and ξw are extremely small, g(x;θ) ≈ α + xTβ. Empirical results shown in Figure S.8
match results without model mis-specification.

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.8: Degree of non-linearity ξ = 10−3, ξw = 10−3. Ground-truth intercepts: (a) α = −7.65,
(b) α = −0.5, (c) α = −7, (d) α = −1.8. Log (MSEs) of subsample estimators for different sample
sizes (the smaller the better).

S.11.2 Tune the degree of activation function non-linearity by trying different ξ.

We fix ξw = 10−3 and tune ξ to study the effect of non-linear activation. Note that when ξ → 0,
1
ξ tanh(ξx) ≈ x and when ξ →∞, 1

ξ tanh(ξx) ≈ 0. As we shall see, the value ξ significantly affect
the non-linearity of the model. In Figure S.9, we choose a relatively small ξ = 0.1 and observe an
almost indistinguishable loss in log(MSE). In Figure S.10 we study the case when ξ = 0.5 and find
that it significantly affect the model estimation when x has long tails (Figure S.10(b), (d)). When
ξ = 1, all method crash since the true (non-linear) model deviate from the tractable domain (linear).
In order to avoid this happen, we suggest to re-scale and centering the data before feeding them to
the model. Note that when models are not crashed, optLik still achieves best performance among all
methods.
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(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.9: Degree of non-linearity ξ = 10−1, ξw = 10−3. Ground-truth intercepts: (a) α = −7.7,
(b) α = −0.6, (c) α = −6.9, (d) α = −1.9. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.10: Degree of non-linearity ξ = 5·10−1, ξw = 10−3. Ground-truth intercepts: (a) α = −7.4,
(b) α = −0.95, (c) α = −6.7, (d) α = −2.15. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.11: Degree of non-linearity ξ = 1.0, ξw = 10−3. Ground-truth intercepts: (a) α = −7.05,
(b) α = −1.75, (c) α = −6.4, (d) α = −2.85. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).

S.11.3 Tune ‖W − I‖2→2 by trying different ξw.

We fix ξ = 10−3 and focus on studying the effect of generative process of W to the estimation error.
In Figure S.12, we set ξw = 2 ·10−2 to be a relatively small number such that ‖W−I‖2→2 ≈ 0.20 <
1. In this case, each sampling method suffers from model mis-specification with higher log(MSE).
Still optLik is the best among all generative processes of x. In Figure S.13, we set ξw = 10−1 and
‖W − I‖2→2 ≈ 1. In this case, the noise level is comparable to the ground-truth. All sampling
models crash such that the estimated models deviate significantly from the ground-truth.

(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.12: Degree of non-linearity ξ = 10−3, ξw = 2·10−2. Ground-truth intercepts: (a) α = −7.7,
(b) α = −0.5, (c) α = −6.9, (d) α = −1.9. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).
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(a). x’s are normal (b) x’s are lognormal (c) x’s are t3 (d) x’s are exponential

Figure S.13: Degree of non-linearity ξ = 10−3, ξw = 10−1. Ground-truth intercepts: (a) α = −8.25,
(b) α = −0.25, (c) α = −6.6, (d) α = −2.4. Log (MSEs) of subsample estimators for different
sample sizes (the smaller the better).
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