
When in Doubt: Neural Non-Parametric Uncertainty
Quantification for Epidemic Forecasting

Harshavardhan Kamarthi Lingkai Kong Alexander Rodríguez
Chao Zhang B. Aditya Prakash

College of Computing
Georgia Institute of Technology

{harsha.pk,lkkong,arodriguezc,chaozhang,badityap}@gatech.edu

Abstract

Accurate and trustworthy epidemic forecasting is an important problem for public
health planning and disease mitigation. Most existing epidemic forecasting models
disregard uncertainty quantification, resulting in mis-calibrated predictions. Recent
works in deep neural models for uncertainty-aware time-series forecasting also
have several limitations; e.g., it is difficult to specify proper priors in Bayesian
NNs, while methods like deep ensembling can be computationally expensive. In
this paper, we propose to use neural functional processes to fill this gap. We model
epidemic time-series with a probabilistic generative process and propose a func-
tional neural process model called EPIFNP, which directly models the probability
distribution of the forecast value in a non-parametric way. In EPIFNP, we use a
dynamic stochastic correlation graph to model the correlations between sequences,
and design different stochastic latent variables to capture functional uncertainty
from different perspectives. Our experiments in a real-time flu forecasting set-
ting show that EPIFNP significantly outperforms state-of-the-art models in both
accuracy and calibration metrics, up to 2.5x in accuracy and 2.4x in calibration.
Additionally, as EPIFNP learns the relations between the current season and similar
patterns of historical seasons, it enables interpretable forecasts. Beyond epidemic
forecasting, EPIFNP can be of independent interest for advancing uncertainty
quantification in deep sequential models for predictive analytics.

1 Introduction

Infectious diseases like seasonal influenza and COVID-19 are major global health issues, affecting
millions of people [14, 34]. Forecasting disease time-series (such as infected cases) at various
temporal and spatial resolutions is a non-trivial and important task [34]. Estimating various indicators
e.g. future incidence, peak time/intensity and onset, gives policy makers valuable lead time to plan
interventions and optimize supply chain decisions, as evidenced by various Centers for Disease
Control (CDC) prediction initiatives for diseases like dengue, influenza and COVID-19 [33, 16, 30].

Statistical approaches [5] for the forecasting problem are fairly new compared to more traditional
mechanistic approaches [13, 38]. While valuable for ‘what-if’ scenario generation, mechanistic
models have several issues in real-time forecasting. For example, they cannot easily leverage data
from multiple indicators or predict composite signals. In contrast, deep learning approaches in this
context are a novel direction and have become increasingly promising, as they can ingest numerous
data signals without laborious feature engineering [37, 33, 1, 8].

However, there are several challenges in designing such methods, primarily with the need to handle
uncertainty to give more reliable forecasts [14]. Decision makers need to understand the inherent
uncertainty in the forecasts so that they can make robust decisions [32]. Providing probabilistic

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



forecasts and interpreting what signals cause the model uncertain is also helpful to better communicate
the situation to the public. Due to the inherent complexity of the prediction problem, just like weather
forecasting, so-called ‘point’ forecasts without uncertainty are increasingly seen as not very useful
for planning for such high-stake decisions [14, 33].

Uncertainty quantification in purely statistical epidemic forecasting models is a little explored area.
Most traditional methods optimize for accuracy of ‘point-estimates’ only. Some approaches that
model the underlying generative distribution of the data naturally provide a probability distribution of
the outputs [4, 5, 44, 32], but they do not focus on producing calibrated distributions [12, 22] as well.
Another line of research addresses this problem with the use of simple methods such as an ensemble
of models to build a sample of forecasts/uncertainty bounds [34, 6]. Recent attempts for deep learning
forecasting models use ad-hoc methods such as bootstrap sampling [37]; while others disregard this
aspect [42, 36]. As a result these can produce wildly wrong predictions (especially in novel/atypical
scenarios) and can be even confident in their mistakes. In time-series analysis, while a large number
of deep learning models [1] have been proposed, little work has been done to quantify uncertainty
in their predictions. Bayesian deep learning [28, 3, 27] (and approximation methods [10, 25, 43])
and deep ensembling [24] are two directions that may mitigate this issue, but their applicability and
effectiveness are still largely limited by factors such as intractable exact model inference [3, 27],
difficulty of specifying proper parameter priors [26], and uncertainty underestimation [21, 19]. Neural
Process (NP) [11] and Functional Neural Process (FNP) [26] are recent frameworks developed to
incorporate stochastic processes with DNNs, but only for static data.

Our work aims to close these crucial gaps from both viewpoints. We propose a non-parametric
model for epi-forecasting by ‘marrying’ deep sequential models with recent development of neural
stochastic processes. Our model, called EPIFNP, leverages the expressive power of deep sequential
models, while quantifying uncertainty for epidemic forecasting directly in the functional space. We
extend the idea of learning dependencies between data points [26] to sequential data, and introduce
additional latent representations for both local and global views of input sequences to improve model
calibration. We also find that the dependencies learned by EPIFNP enable reliable interpretation of
the model’s forecasts.
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Figure 1: EPIFNP (red) is the only model reacting reliably
for the atypical 3rd peak of 2019/20 season and whose 95%
confidence bounds completely encloses the ground truth.

Figure 1 shows an example of a well-
calibrated forecast due to EPIFNP in
flu forecasting. CDC is interested in
forecasting weighted Influenza-like-
illness (wILI) counts, where ILI is
defined as “fever and a cough and/or
a sore throat without a known cause
other than flu. Figure 1 (a) shows
the historical ILI data with abnormal
seasons highlighted; Figure (b) shows
how our method EPIFNP, in contrast
to others, is able to react well to a par-
ticularly novel event (in this case, in-
troduction of a symptomatically simi-
lar COVID-19 disease), giving both accurate and well-calibrated forecasts.

Our main contributions are:
• Probabilistic Deep Generative Model: We design a neural Gaussian processes model for epi-
demic forecasting, which automatically learns stochastic correlations between query sequences and
historical data sequences for non-parametic uncertainty quantification.
• Calibration and Explainability: EPIFNP models the output forecast distribution based on simi-
larity between the current season and the historical seasons in a latent space. We introduce additional
latent variables to capture global information of historical seasons and local views of sequences, and
show that this leads to better-calibrated forecasts. Further, the relations learned between the current
season and similar patterns from previous seasons enable explaining the predictions of EPIFNP.
• Empirical analysis of accurate well-calibrated forecasting: We perform rigorous benchmarking
on flu forecasting and show that EPIFNP significantly outperforms strong baselines, providing up
to 2.5x more accurate and 2.4x better calibrated forecasts. We also use outlier seasons to show the
uncertainty in EPIFNP makes it adapt well to unseen patterns compared with baselines.
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2 Problem and Background
We focus on epidemic disease forecasting in this paper. Our goal is to predict the disease incidence
few week into the future given the disease surveillance dataset containing incidence from the past
seasons as well as for the past weeks of the current season. This is formulated as a supervised
time-series forecasting problem as follows.

Epidemic Forecasting task: Let the incidence for season i at week t be x(t)i . During the current
season N + 1 and current week t, we first have the snippet of time-series values upto week t

denoted by x
(1...t)
N+1 = {x(1)N+1, . . . , x

(t)
N+1}. We are also provided with data from past historical

seasons 1 to N denoted by H = {x(1...T )
i }Ni=1 where T is number of weeks per season. In real-time

forecasting, intuitively our goal is to use all the currently available data, and predict the next few
future values (usually till 4 weeks in future). That is to predict the value y(t)N+1 = x

(t+k)
N+1 , k week

in future where k ∈ {1, 2, 3, 4} given x
(1...t)
N+1 and H . Formally, our task is: given (a) the dataset of

historical incidence sequences H and (b) snippet of incidence for current season N + 1 till week
t, x(1...t)N+1 , estimate an accurate prediction for y(t)N+1 and a well-calibrated probability distribution

p̂(y
(t)
N+1|x

(1...t)
N+1 , H). There are several ways to evaluate such forecasts [40], which we elaborate later

in our experiments.

3 Our Methodology

Overview: EPIFNP aims to produce calibrated forecasting probabilistic distribution. One popular
choice is to use BNNs [3, 9] which impose probability distributions for weight parameters. However,
as Deep Sequential Models (DSMs) have an enormous number of uninterpretable parameters, it
is impractical to specify proper prior distributions in the parameter space. Existing works usually
adopt simple distributions [3, 35], e.g., independent Gaussian distribution, which could severely
under-estimate the true uncertainty [21]. To solve this issue, we propose EpiFNP, which combines (1)
the power of DSMs in representation learning and capturing temporal correlations; and (2) the power
of Gaussian processes (GPs) in non-parametric uncertainty estimation directly in the functional space
similar to [26], instead of learning probability distributions for model parameters.

During training phase of our supervised learning task, EPIFNP is trained to predict x(t+k)i given
x
(1...t)
i as input for i ≤ N . Therefore, we define the training set M as set of partial sequences and

their forecast ground truths from historical data H , i.e, M = {(x(1...t)
i , y

(t)
i ) : i ≤ N, t + k ≤

T, y
(t)
i = x

(t+k)
i }. For simplicity, let XM be set of the partial sequences in M and yM the set of

ground truth labels. Following GPs for non-parametric uncertainty quantification, EPIFNP constructs
the forecasting distribution on the historical sequences. Since the number of possible sequences that
can be extracted from H is prohibitively large, we narrow down the set of candidates into a set of
sequences that comprehensively represents H , called the reference set R. We choose the set of full
sequences of T incidence values for each season as reference set, i.e, R = {x(1...T )

i }NRi=1. We refer
elements of M as {xMi , yMi }

NM
i=1 and R as {xMi }

NR
i=1 when we don’t need to specify the week and

season. Also let XD = {xMi }
NM
i=1 ∪ {xRi }

NR
i=1, the union of reference and training sequences.

The generative process of EPIFNP includes three key steps (also see Figure 2 and Eq. 1):

(a) Probabilistic neural sequence encoding (Section 4.2). The first step of the generative process
is to use a DSM to encode the sequence xi ∈ XD into a variational latent embedding ui ∈ UD. The
representation power of DSM helps us to model complex temporal patterns within sequences, while
the probabilistic encoding framework enables us to capture the uncertainty in sequence embedding.
(b) Stochastic correlation graph construction (Section 4.3). The second step is to capture the
correlations between reference (UR) and training (UM ) data points in the latent embedding space
(i.e. seasonal similarity between epidemic curves). We use a stochastic data correlation graph G,
which plays a similar role to the covariance matrix in classic GPs. It encodes the dependencies
between reference and training sequences, enabling non-parametric uncertainty estimation.
(c) Final predictive distribution parameterization (Section 4.4). Finally, we parameterize the
predictive distribution with three stochastic latent variables: (1) The global stochastic latent variable
v, which is shared by all the sequences. This variable captures the overall information of the
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Figure 2: Pipeline of proposed EPIFNP model. (i) Three main components (a), (b) and (c) correspond
to the terms in Equation 1. (ii) Variables highlighted in Red correspond to steps specific to inference
of sequence xM3 .

underlying function based on all the reference points. (2) The local stochastic latent variables
ZM = {zMi }

NM
i=1 . This term captures the data correlation uncertainty based on the stochastic data

correlation graph G. (3) The stochastic sequence embeddings UM = {uMi }
NM
i=1 . This term captures

the embedding uncertainty and provide additional information beyond the reference set.

Hence, putting it all together from the generative process, we factorize the predictive distribution of
the training sequences into three corresponding parts (θ is the union of the parameters in EPIFNP):

p(yM |XM , R) =
∑
G

∫
pθ(UD|XD)︸ ︷︷ ︸

(a)

p(G|UD)︸ ︷︷ ︸
(b)

pθ(ZM , |G,UR)pθ(v|UR)pθ(yM |UM ,ZM ,v)︸ ︷︷ ︸
(c)

dUDdZMdv.
(1)

Compared to existing recurrent neural process (RNP) [31] for sequential data (and its related prede-
cessors [11, 17]), our EPIFNP process has stronger representation power and is more interpretable.
Specifically, RNP uses a single global stochastic latent variable to capture the functional uncertainty,
which is not flexible enough to represent a complicated underlying distribution. In contrast, EPIFNP
constructs three stochastic latent variables to capture the uncertainty from different perspectives and
can interpret the prediction based on the correlated reference sequences.

3.1 Probabilistic Neural Sequence Encoder
The probabilistic neural sequence encoder pθ(UD|XD) aims to model the complex temporal correla-
tions of the sequence for accurate predictions of y, while capturing the uncertainty in the sequence
embedding process. To this end, we design the sequence encoder as a RNN and stack a self-attention
layer to capture long-term correlations. Moreover, following Variational auto-encoder (VAE) [18],
we model the latent embedding ui as a Gaussian random variable to capture embedding uncertainty.

We encode all the sequences, including reference sequences and training sequences, independently.
Taking one sequence xi as an example, we first feed xi into a Gated Recurrent Unit (GRU) [7]:

{h(1)
i . . . ,h

(t)
i } = GRU({x(1)i . . . , x

(t)
i }). (2)

where h(t)
i denotes the hidden state at time step t. To obtain the embedding of xi, the simplest way is

to directly use the last step hidden state, h(t). However, using the last step embedding is inadequate
for epidemic forecasting as the estimates for ILI surveillance data are often delayed and revised
multiple times before they stabilize [1]. Over-reliance over the last step hidden state would harm the
predictive ability of the model. Therefore, we choose to use a self-attention layer [41] to aggregate
the information of the hidden states across all the time steps:

{α(1)
i . . . , α

(t)
i } = Self-Atten({h(1)

i . . . ,h
(t)
i }), h̄i =

t∑
t′=1

α
(t′)
i h

(t′)
i , (3)
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where h̄i is the summarized hidden state vector. Compared with the vanilla attention mechanism [2],
self-attention is better at capturing long-term temporal correlations [41]. Though h̄i has encoded the
temporal correlations, it is deterministic and cannot represent embedding uncertainty. Inspired by
VAE, we parameterize each dimension of the latent embedding ui as a Gaussian random variable:

pθ([ui]k|xi) = N ([g1(h̄i)]k, exp([g2(h̄i)]k)), (4)

where g1 and g2 are two multi-layer perceptrons (MLPs), [·]k is the k-th dimension of the variable.

3.2 Stochastic Data Correlation Graph
The stochastic graph G is used to model the correlations among sequences, which is central to the
non-parametric uncertainty estimation ability of EPIFNP. It is realized by constructing a bipartite
graph from the reference set R to the training set M based on the similarity between their sequence
embeddings. With this graph, we aim to model the dynamic similarity among epidemic curves as in
[1] but in a stochastic manner, which allows us to further quantify the uncertainty coming from our
latent representations of the sequences. Note that the similarity with reference sequence embeddings
dynamically changes across the current season since different periods of the season may be similar to
different sets of reference sequences (as we illustrate in Section 4.4).

We first construct a complete weighted bipartite graph Gc from R to M , where the nodes are
the sequences. The weight of each edge is calculated as similarity between two sequences in the
embedding space using the radial basis function kernel κ(uRi ,u

M
j ) = exp(−γ||uRi − uMj ||2).

Modeling such a similarity in the embedding space is more accurate than in the input space by
leveraging the representation power of the neural sequence encoder.

Though we can directly use Gc to encode the data correlations, such a dense complete graph
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Figure 3: We sample the (sparse) binary graph G
from the complete weighted (dense) graph Gc.

requires heavy computations and does not scale
to a large dataset. Therefore, we choose to fur-
ther sample from this complete graph to obtain a
stochastic binary bipartite graph G as shown in
Figure 3. This graph can be represented as a ran-
dom binary adjacency matrix, where Gi,j = 1
means the reference sequence xRi is a parent of
the training sequence xMj . We then parameter-
ize this binary adjacency matrix using Bernoulli
distributions:

p(G|UD) =
∏
i∈R

∏
j∈M

Bernoulli(Gi,j |κ(uRi ,u
M
j )). (5)

Intuitively, the edges in Gc with higher weights are more likely to be kept after sampling. This
sampling process leads to sparse correlations for each sampled graph, which can speed up training
due to sparsity.

3.3 Parameterizing Predictive Distribution
Here we introduce how to parameterize the final prediction based on the three latent variables
mentioned in Section 4.1, which capture the functional uncertainty from different perspectives.

Local latent variable zMi : It summarizes the information of the correlated reference points for
each training point and captures the uncertainty of data correlations. We generate zMi based on the
structure of the data correlation graph, and each dimension k follows a Gaussian distribution:

zMi,k ∼ N (Ci
∑

j:Gj,i=1

h1(uRj )k, exp(Ci
∑

j:Gj,i=1

h2(uRj )k)), (6)

where h1 & h2 are two MLPs andCi =
∑
jGi,j is for normalization. As we can see from Equation 6,

if the sequence has lower probability to be connected with the reference sequences, zMi becomes
a standard Gaussian distribution which is an uninformative prior. This property imposes a similar
inductive bias as in the GPs with RBF kernel.

Global latent variable v. It encodes the information in all the reference points, computed as:

β1, . . . , βNR = Self-Atten(uR1 , . . . ,u
R
NR), v =

NR∑
i=1

βiu
R
i . (7)
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In contrast with the local variable zMi , the global latent variable vi summarizes the overall information
of the underlying function. It is shared by all the training sequences which allows us to capture the
functional uncertainty from a global level.

Sequence embedding uMi : The above two latent variables are both constructed from the embeddings
of the reference sequences, which may lose novel information present in the training sequences.
Therefore, we add a direct path from the latent embedding uMi of the training sequence to the
final prediction to enable the neural network to extrapolate beyond the distribution of the reference
sequences. This is useful in novel/unprecedented patterns where the input sequence can not rely only
on reference sequences from historical data for prediction.

We concatenate the three variables together into a single vector ei and obtain the final predictive
distribution (where d1 and d2 are MLPs):

ei = concat(zi,vi,ui), p(yi|zMi ,v,uMi ) = N (d1(ei), exp(d2(ei))). (8)

3.4 Learning the distribution
We now introduce how to learn the model parameters efficiently during training and forecast for a
new unseen sequence at test time. Directly maximizing the data likelihood is intractable due to the
summation and integral in Equation 1. Therefore, we choose to use the amortized variational inference
and approximate the true posterior p(UD,G,ZM ,v|R,M) with qφ(UD,G,ZM ,v|R,M), similar
to [26], as

qφ(UD,G,ZM ,v|R,M) = pθ(UD|XD)p(G|UD)p(v|UR)qφ(ZM |M). (9)

We design qφ as a single layer of neural network parameterized by φ, which outputs mean and
variance of the Gaussian distribution qφ(ZM |XM ).

We then use a gradient-based method, such as Adam [18], to maximize the evidence lower bound
(ELBO) of the log likelihood. After canceling redundant terms, the ELBO can be written as:

L = −EZM ,G,UD,v∼qφ(ZM |XM )pθ(G,UD,v|D)[logP (yM |ZM ,UM ,v)

+ logP (ZM |G,UR)− qφ(ZM |XM )].
(10)

We use the reparameterization trick to make the sampling procedure from the Gaussian distribution
differentiable. Moreover, as sampling from the Bernoulli distribution in Equation 7 leads to discrete
correlated data points, we make use of the Gumbel softmax trick [15] to make the model differentiable.

At test time, with the optimal parameter θopt, we base the predictive distribution of a new unseen
partial sequence x∗ on the reference set as:

p(y∗|R,x∗) =pθopt(UR,u
∗|XM ,x

∗)p(a∗|UR,u
∗)

pθopt
(z∗|a∗,UR,u

∗)pθopt(y
∗|u∗, z∗,v)dURdz

∗dv,
(11)

where a∗ is the binary vector that denotes which reference sequences are the parents of the new
sequence. u∗ and z∗ are latent embedding and local latent variable for the new sequence, respectively.

4 Experiments
All experiments were done on an Intel i5 4.8 GHz CPU with Nvidia GTX 1650 GPU. The model
typically takes around 20 minutes to train. The code is implemented using Pytorch and will be released
for research purposes. Supplementary contains additional details and results (e.g. hyperparameters,
results on additional metrics (MAPE), additional case and ablation studies).

Dataset: In our experiments, we focus on flu forecasting. The CDC uses the ILINet surveillance
system to gather flu information from public health labs and clinical institutions across the US.
It releases weekly estimates of weighted influenza-like illness (wILI)1: out-patients with flu-like
symptoms aggregated for US national and 10 different regions (called HHS regions). Each flu season
begins at week 21 and ends on week 20 of the next year e.g. Season 2003/04 begins on week 21
of 2003 and ends on week 20 of 2004. Following the guidelines of CDC flu challenge [1, 34], we
predict from week 40 till the end of season next year. We evaluate our approach using wILI data of
17 seasons from 2003/04 to 2019/20 .

1https://www.cdc.gov/flu/weekly/flusight/index.html
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Goals: Our experiments were designed evaluate the following. Q1: Accuracy and calibration of
EPIFNP’s forecasts. Q2: Importance of different components of EPIFNP. Q3: Utility of uncertainty
estimates for other related tasks?. Q4: Adaptability of EPIFNP to novel behaviors during real-time
forecasting. Q5: Explainability of predictions.

Evaluation metrics: Let x1...tN+1 be a given partial wILI test sequence with observed ground truth
y
(t)
N+1 i.e., for a k-week-ahead task y(t)N+1 is just x(t+k)N+1 . For a model/method M let p̂(t)N+1,M (Y ) be

the output distribution of the forecast with mean ŷ(1...t)N+1,M . To measure the predictive accuracy, we use
Root Mean Sq. Error (RMSE), Mean Abs. Per. Error (MAPE) and Log Score (LS) which are
commonly used in CDC challenges [1, 34]). To evaluate the calibration of the predictive distribution
we introduce a new metric called Calibration Score (CS). For a model M we define a function
kM : [0, 1]→ [0, 1] as follows. For each value of confidence c ∈ [0, 1], let kM (c) denote the fraction
of observed ground truth that lies inside the c confidence interval of predicted output distributions of
M . For a perfectly calibrated model M∗ we would expect kM∗(c) = c. CS measures the deviation
of kM from kM∗ . Formally, we define CS as:

CS(M) =

∫ 1

0

|kM (c)− c|dc ≈ 0.01
∑

c∈{0,0.01,...,1}

|kM (c)− c|. (12)

For all metrics, lower is better. We also define the Calibration Plot (CP) as the profile of kM (c) vs
c for all c ∈ [0, 1].

Baselines: We compare EPIFNP with standard and state-of-art models used for flu forecasting before,
as well as methods typically used for learning calibrated uncertainty quantification.
Flu forecasting related: • SARIMA: Seasonal Autoregressive Integrated Moving-Average is a auto-
regressive time series model used as baseline for forecasting tasks [1, 44]. • Gated Recurrent Unit
(GRU): A popular deep learning sequence encoder, used before as a baseline for this problem [1].
• Empirical Bayes (EB): Utilizes a bayes framework and has won few epidemic forecasting compe-
titions in past [4]. • Delta Density (DD): A probabilistic modelling approach that learns distribution
of change in successive wILI values given changes from past weeks [5]. • Epideep (ED) [1]: Recent
state-of-the-art NN flu prediction model based on learning similarity between seasons. • Gaussian
Process (GP) [44]: Recently proposed statistical flu prediction model using GPs. Note that ED,
SARIMA and GRU can only output point estimates and we use the ensemble approach to obtain their
uncertainty estimates following [34, 6].
General ML Uncertainty related: •Monte Carlo Dropout (MCDP) [10]: MCDP applies dropout at
testing time for multiple times to measure the uncertainty. We use MCDP on a GRU as a baseline. •
Bayesian neural network (BNN) [3]: BNN imposes and learns from probability distributions over
model parameters. We used LSTM as the architecture for BNN • Recurrent Neural Process (RNP)
[31]: This method builds on Neural Process framework to learn from sequential data.

Note: We need to train EPIFNP only once at start of a season using data from all past seasons unlike
some baselines (ED, EB, GP, SARIMA, DD) which require retraining each week.

4.1 Q1 & Q2: Forecast Accuracy, Calibration and Model Ablation

Table 1: Average US National Performance: k week ahead forecasting for seasons 2014/15-2019/20.
RMSE MAPE LS CS

Model k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
ED 0.73 1.13 1.81 0.14 0.23 0.33 4.26 6.37 8.75 0.24 0.15 0.42
GRU 1.72 1.87 2.12 0.28 0.31 0.356 7.98 8.21 8.95 0.16 0.2 0.22
MCDP 2.24 2.41 2.61 0.46 0.51 0.6 9.62 10 10 0.24 0.32 0.34
GP 1.28 1.36 1.45 0.21 0.22 0.26 2.02 2.12 2.27 0.24 0.25 0.28
BNN 1.89 2.05 2.43 0.34 0.46 0.51 6.92 7.56 8.03 0.18 0.22 0.25
SARIMA 1.43 1.81 2.12 0.28 0.35 0.42 3.11 3.4 3.81 0.43 0.38 0.34
RNP 0.61 0.98 1.18 0.13 0.22 0.29 3.34 3.61 3.89 0.43 0.46 0.45
EB 1.21 1.23 1.25 0.57 0.58 0.58 6.92 7 7.12 0.07 0.082 0.085
DD 0.6 0.79 0.94 0.35 0.41 0.45 3.56 3.87 4.02 0.12 0.12 0.13
EPIFNP 0.48 0.79 0.78 0.089 0.128 0.123 0.56 0.84 0.89 0.068 0.081 0.035

Prediction Accuracy: We first compare the accuracy of EPIFNP against all baselines for real-time
forecasting in Table 1. EPIFNP significantly outperforms all other baselines for RMSE, MAPE, LS
(which measure forecast accuracy). We notice around 13% and 42% improvement over the second
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best baseline in RMSE and MAPE respectively. Impressively LS of EPIFNP is 2.5 to 3.5 times less
than closest baseline2. This is because the intervals y(t)i ± 0.5 of ground truth consistently fall inside
high probability regions of our forecast distribution due to better accuracy (of mean) in general. Even
during weeks of uncertainty (like around the peaks) most baselines badly calibrated forecasts don’t
sufficiently cover the interval, EPIFNP’s distribution are wide enough to capture this interval thanks
to its superior representation power. We also observed similar results for the 10 HHS regions as well
where EPIFNP outperforms the baselines where we show 16% and 7% improvements in RMSE ans
LS respectively showing EPIFNP’s proficiency over large variety different regions and seasons.
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Figure 4: Forecasts and 95%
confidence bounds on 2017/18
season.
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Figure 5: CPs for EPIFNP
and next 3 accurate base-
lines, k=4

Calibration Quality: We measure
how well-calibrated EPIFNP’s uncer-
tainty bounds (Figure 4) are via CS.
EPIFNP was again the clear winner
both for national forecasts (Table 1)
and regional forecasts. Calibration
Plots (CPs) (Figure 5) show EPIFNP
is much closer to the diagonal line
(ideal calibration) compared to even
the most competitive baselines. We
also observed that applying post-hoc
calibration methods [23, 39] doesn’t
effect the significance of EPIFNP’s

calibration performance (Appendix Table 4). EPIFNP is clearly significantly superior to all other
baselines in predicting both a better calibrated and more accurate forecast distribution.

Ablation studies: We found all three of our EPIFNP components important for performance, with the
data correlation graph the most relevant in determining uncertainty bounds. Refer to supplementary
for complete results and further discussion.

4.2 Q3: Effective uncertainty estimates: Autoregressive inference

Motivation: We further show the usefulness and quality of our uncertainty estimates by
leveraging the so-called ’auto-regressive’ inference (ARI) task. It is common to perform
such forecasting in real-time epidemiological settings, especially as accuracy and training
data typically drops with increasing k week-ahead in future [37]. In this task, the model
uses its own output for k = 1 forecast as input (multiple samples) to predict k = 2
forecasts and so on to derive k-week ahead prediction. Hence an inaccurate and badly
calibrated initial model’s forecasts propagate their errors to subsequent predictions as well.

Table 2: Evaluation scores for ARI task.

RMSE LS CS
Model k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4
ED 2.21 3.13 3.82 6.03 8.84 10 0.42 0.45 0.48
MCDP 3.62 4.03 4.39 10 10 10 0.47 0.46 0.49
BNN 3.41 4.23 4.78 10 10 10 0.39 0.41 0.42
GP 1.24 1.31 1.38 4.62 5.17 5.51 0.37 0.36 0.37
EPIFNP 0.6 0.85 0.99 0.64 0.96 1.14 0.063 0.074 0.048

We perform forecasting for k =
2, 3, 4 week ahead as described
above using the k = 1 trained
model. The pseudocode for Au-
toregressive inference is given in
the Appendix.

Results: See Table 2. Only base-
lines not trained autoregressively
by default (as EPIFNP already outperforms them (Q1)) are considered. EPIFNP outperforms all and
is comparable even to the non AR trained original EPIFNP scores (Table 1) whereas we observed a
significant deterioration in scores for other baselines, as anticipated.

4.3 Q4: Reacting to abnormal/novel patterns

Motivation: A major challenge in real-time epidemiology [36] is the presence of novel patterns e.g.
consider the impact of the COVID-19 pandemic on the 2019/20 wILI values (see Figure 1a). In such
cases, a trustworthy real-time forecasting model to anticipate, quantify and adapt is needed to such
abnormal situations. We studied our performance for the 2009/10 and 2019/20 seasons, which are
well known abnormal seasons (due to the H1N1 strain and the COVID-19 pandemic respectively).

2Our results are statistically significant using the Wilcox signed ranked test (α = 0.05) with 5 runs.
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While we discuss results for k = 3 week ahead forecasting of 2019/20 season, the results for 2009/10
season and for k = 1, 2, 4 lead to similar conclusions.
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Figure 6: EPIFNP outperforms top 2 baselines during ab-
normal COVID-19 season 2019/20.

Results: In short, EPIFNP reacts re-
liably and adapts to novel scenarios.
EPIFNP outperforms other baselines
in all metrics. We observed 18% and
31% reduction in RMSE and MAPE
respectively compared to best baseline
(RNP) and 3.7 times lower LS com-
pared to best baseline (GP). Figure
6(a) shows the prediction and uncer-
tainty bounds of EPIFNP and top 2
baselines. GP and most other base-
lines (except RNP) fail to capture
the unprecedented third peak around
week 24. Calibration Plot in Figure
6(b) shows that EPIFNP is better calibrated.

4.4 Q5: Explainable Predictions

Motivation: Lack of explainability is a major challenge in many ML models, which becomes
even more acute in critical domains like public health. Since the Stochastic data correlation graph
(SDCG) of EPIFNP (recall Section 3.2) explicitly learns to relate each test sequence with relevant
historical seasons’ sequences, we can leverage this to provide useful explanations for predictions
and model uncertainty. Knowing which past seasons are similar is very helpful for epidemiological
understanding of the prevalent strain behavior [1]. We sample SDCGs multiple times and compute
average edge probability for every edge between each given historical season and test sequences
during real-time forecasting for all weeks. We perform this for k = 3 weeks ahead forecasting on
season 2015/16 but the observations hold for other seasons and k = 1, 2, 4 too.
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Figure 8: Average edge
probabilities for week 21 of
2015/16 season.

Obs 1: EPIFNP automatically chooses
most similar historical seasons relevant at
time of prediction.
We leverage the edge probabilities from
the SDCG to examine the seasons that are
more likely sampled at at each week. We
observed that the seasons with higher prob-
abilities showed similar patterns to that of
the current test sequence. Consider week
21 of season 2015/16 during 3 weeks ahead
forecasting. The most likely sampled sea-
sons are 2005, 2006 and 2010 (Figure 8).
Figure 7 shows these seasons and 2015/16

snippet; clearly they have very similar wILI patterns.

Obs 2: EpiFNP explains uncertainty bounds of predictions via distribution probabilities in the SDCG.

0 5 10 15 20 25 30

Week No.

1

2

3

4

5

w
IL

I

k=3
Observed

EpiFNP

Figure 9: Higher uncer-
tainty around peaks
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As seen in Section 4.3, EPIFNP reacts re-
liably to abnormal situations and chang-
ing trends (e.g. around peaks) by produc-
ing larger uncertainty bounds around those
events. For example, in Figure 9, uncer-
tainty estimates around peak weeks 12 and
22 are higher than for rest of the weeks. To
examine the source of changing uncertainty
bounds of prediction, we look at average
edge probabilities generated in SDCG (Fig-
ure 10) and find that around the peak weeks
the edge probabilities are lower than in surrounding weeks. This promotes larger variety of small
subsets of the reference set to be sampled during inference that increases the variance of local latent
variable zMi thereby increasing the variance of the output forecast distribution.
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5 Conclusion

We introduced EPIFNP, a novel deep probabilistic sequence modeling method which generates well
calibrated, explainable and accurate predictions. We demonstrated its superior performance in the
problem of real-time influenza forecasting by significantly outperforming other non-trivial baselines
(more than 2.5x in accuracy and upto 2.4x in calibration). Importantly, it was the only one capable of
reliably handling unprecedented scenarios e.g. H1N1 and COVID19 seasons. We also showcased its
explainability as it automatically retrieves the most relevant historical sequences matching its current
week’s predictions using the SDCG. All these highlight the usefulness of EPIFNP for the complex
challenge of trustworthy epidemiological forecasting, which directly impacts public health policies
and planning. However EPIFNP can be affected by any systematic biases in data collection (for
example, some regions might have poorer surveillance and reporting capabilities). There is limited
potential for misuse of our algorithms and/or data sources though the dataset is public/anonymized
without any sensitive patient information.

We believe our work opens up many interesting future questions. Our setup can be easily extended to
handle other diseases and our core technique can be adapted for other general sequence modeling
problems. Further, we can extend EPIFNP to also use heterogeneous data from multiple sources.
We can also explore incorporating domain knowledge of prior dependencies between different
sources/features (e.g. geographically close regions are more likely to have similar disease trends).
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