
Supplementary Material

A Proof of Proposition 1

A.1 Full Derivation of Equation 4

Given a molecular graph G = 〈V, E〉, letR = [r1; r2, · · · ; r|V|] ∈ R|V|×3 denote its conformation.
Let {ek : R|V|×3 → R}Kk=1 denote a set of functions that calculate K interatomic distances, the
gradients of logarithm density of atomic coordinates, i.e., ∇R log pθ(R | G), can be calculated using
the following equation (see Eq.4):

∀i, sθ(R)i :=
∂fG(e1(R), e2(R), · · · , eK(R))

∂ri
(9)

=

K∑

k=1

∂fG(e1(R), e2(R), · · · , eK(R))

∂ek(R)
· ∂ek(R)

∂ri
(10)

=

K∑

k=1

sθ(ek(R)) · ∂ek(R)

∂ri
(11)

=
∑

eij∈{ek}Kk=1

sθ(eij(R)) · ∂eij(R)

∂ri
+

∑

i 6=u,i6=v
euv∈{ek}Kk=1

sθ(euv(R)) · 0 (12)

=
∑

eij∈{ek}Kk=1

1

dij
· sθ(eij(R)) · (ri − rj), (13)

where sθ(R)i denotes ∇ri log pθ(R | G), and sθ(eij(R)) denotes ∇eij(R) log pθ(R | G). We here
abuse the notation a little bit and use eij to denote the interatomic distance between positions of vi and
vj . The term ∂euv(R)

∂ri
for distances not adjacent to vi, i.e., i 6= u and i 6= v, is equal to zero, as these

distances are irrelevant to ri. The ∂eij(R)
∂ri

is equal to 1
dij

(ri−rj) because eij(R) = dij = ‖ri−rj‖2.

A.2 Proof of Roto-Translation Equivariance

Let Tt : R|V |×3 → R|V |×3 be an arbitrary 3D translation function where Tt(R)i := ri + t, and let
RA : R|V |×3 → R|V |×3 be an arbitrary 3D rotation function with a rotation matrixA ∈ R3×3, i.e.,
RA(R)i := Ari. Formally, a score function of Cartesian coordinates s : R|V |×3 → R|V |×3 being
roto-translation equivariant can be expressed as:

s ◦ Tt ◦ RA(R) = RA ◦ s(R). (14)

Proof. Let R̂ := Tt ◦RA(R), and therefore R̂i = r̂i = Ari + t. Following the strategy in Shi et al.
[34] and according to Eq. 13, we have:

∀i,
(
s ◦ Tt ◦ RA(R))i = s(R̂)i (15)

=
∑

eij∈{ek}Kk=1

1

d̂ij
· sθ(eij(R̂)) · (r̂i − r̂j) (16)

=
∑

eij∈{ek}Kk=1

1

dij
· sθ(eij(R)) · ((Ari + t)− (Arj + t)) (17)

=
∑

eij∈{ek}Kk=1

1

dij
· sθ(eij(R)) ·A(ri − rj) (18)

13



= A
( ∑

eij∈{ek}Kk=1

1

dij
· sθ(eij(R)) · (ri − rj)

)
(19)

= As(R)i (20)

=
(
RA ◦ s(R)

)
i
. (21)

Here dij = d̂ij and eij(R) = eij(R̂) because interatomic distances are invariant under the rotation
and translation of R. Combining the results in Section A.1 and above, we prove that the score
function is roto-translation equivariant.

B Additional Model Details

B.1 Message Passing Neural Networks

The message passing formula of the MPNN used in DGSM is:

h
(`+1)
i = σ


W (`)

0 h
(`)
i +

∑

(i,j)∈E
W

(`)
2 (f (`)(dij , tij)� (W

(`)
1 h

(`)
j ))


 , (22)

where f (`) is filter network which takes edge length dij and edge type tij as input and outputs a
weight vector with the same dimension to (W

(`)
1 h

(`)
j ), and � denotes element-wise multiplication.

W
(`)
0 , W (`)

1 , and W (`)
2 are weight matrices that mix the channels of feature vectors. σ is the

activation function, and we use ShiftedSoftplus. The formulation is an extension of continuous
filter convolution [32], where we add edge types as an input to the filter network.

B.2 Hyper-parameters

The hyper-parameters of DGSM for various tasks are summarized in Table 4, including highest noise
level σ1, lowest noise level σL, number of noise levels L, number of steps for each noise level T ,
minimum step size ε, cutoff radius for dynamic graph construction δ, training batch size, and number
of training iterations. Each model is trained on a single 2080ti GPU.

Table 4: Additional hyperparameters of our DGSM.

Task σ1 σL L T ε δ Batch Size Train Iter.

QM9 10 0.01 50 100 2.4e-6 10Å 64 1M
Drugs 10 0.01 50 100 2.4e-6 10Å 32 1M

Complex 10 0.01 50 100 2.4e-6 10Å 32 1M
Sidechain 20 0.1 100 50 3.5e-4 5Å 4 1M

C Additional Experimental Details

C.1 Metrics

The coverage score (COV) and matching score (MAT) [43] adopted in the conformation generation
experiments are defined as:

COV(Sg, Sr) =

∣∣∣
{
R ∈ Sr|RMSD(R, R̂) ≤ τ, R̂ ∈ Sg

}∣∣∣
|Sr|

,

MAT(Sg, Sr) =
1

|Sr|
∑

R∈Sr
min
R̂∈Sg

RMSD(R, R̂),

(23)

where Sg is the set of generated conformations and Sr is the set of reference conformations. We use
the GetBestRMS function provided by RDKit[28] to compute the RMSD between two conformations
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based on heavy atoms only, following previous works [34, 43]. Note that the RMSD implementation
has already taken symmetry into account.

In addition to COV and MAT score, we also report mismatch rates (MIS) [34] in the additional
experiment (Section C.4):

MIS(Sg, Sr) =
1

|Sg|
∣∣∣
{
R ∈ Sg|RMSD(R, R̂) > τ, ∀R̂ ∈ Sr

}∣∣∣, (24)

where τ is the threshold. The mismatch rate is the percentage of generated conformations that are not
matched by any reference conformation. Higher mismatch rate indicates more invalid conformations
are generated.

Recently, [12] proposed COV-Precision and MAT-Precision scores:

COV-P(Sg, Sr) =

∣∣∣
{
R ∈ Sg|RMSD(R, R̂) ≤ τ, R̂ ∈ Sr

}∣∣∣
|Sg|

,

MAT-P(Sg, Sr) =
1

|Sg|
∑

R∈Sg
min
R̂∈Sr

RMSD(R, R̂),

(25)

We also report these scores for our model and the baselines in Table 5.

C.2 Multi-Molecular Complex Datasets

The training set for the multi-molecular conformation generation task (Section 5.3) consists of
complexes with the form: X + 4H2O, where X is an organic molecules. There are 20 complexes
in the training set and 26,303 conformations in total. The SMILES strings of organic molecules
appeared in the training set are: CO, CC(O)C, CCCCCO, OCCC(C)C, OCC(C)CC, CC(CO)(C)C,
OC(CC)CC, CC(C)C(C)O, CCC(C)(C)O, COC, CCOCC, CC(C)(C)OC, C1CCOC1, O1CCOCC1,
C=O, CCC=O, O=CCCC, CC(=O)C, O=CO, CC(O)=O. The testing set contains 4 complexes:
C2H4O · 2 H2O, C5H12O · 3 H2O, CH5N · 4 H2O, and C2H6O · 5 H2O.

C.3 COV-Precision and MAT-Precision Scores

We report COV-Precision and MAT-Precision [12] scores as below:
Table 5: COV-Precision and MAT-Precision scores on GEOM-QM9 and GEOM-Drugs datasets. The
threshold δ of COV score is 0.5Å for GEOM-QM9 and 1.25Å for GEOM-Drugs. (↑): the higher the
better. (↓): the lower the better.

GEOM-QM9 GEOM-Drugs
COV-P (%, ↑) MAT-P (Å, ↓) COV-P (%, ↑) MAT-P (Å, ↓)

Method Mean Median Mean Median Mean Median Mean Median

GRAPHDG [36] 43.90 35.33 0.5809 0.5823 2.08 0.00 2.4340 2.4100
CGCF [43] 36.49 33.57 0.6615 0.6427 21.68 13.72 1.8571 1.8066
CONFGF [34] 46.43 43.41 0.5224 0.5124 23.42 15.52 1.7219 1.6863

DGSM 44.64 43.72 0.5369 0.5023 40.08 37.15 1.4994 1.4496
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C.4 Additional COV and MIS Scores

We report COV and MIS score at different thresholds in the tables below. The results show that
DGSM consistently outperforms previous methods by a significant margin.
Table 6: COV and MIS scores of different methods on GEOM-QM9 dataset at different thresholds
(τ ). (↑) indicates higher is better. (↓) indicates lower is better.

QM9 Mean COV (%, ↑) Median COV (%, ↑) Mean MIS (%, ↓) Median MIS (%, ↓)
τ (Å) GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM
0.10 1.03 0.14 17.59 35.43 0.00 0.00 10.29 29.64 99.70 99.93 92.30 81.38 100.00 100.00 96.23 84.42
0.20 13.05 10.97 43.60 59.29 2.99 3.95 37.92 57.60 96.12 96.91 81.67 69.19 99.04 99.04 85.65 72.10
0.30 32.26 31.02 61.94 72.19 18.81 22.94 59.66 73.79 87.15 89.21 73.06 63.29 94.44 94.44 77.27 67.32
0.40 53.53 53.65 75.45 80.82 50.00 52.63 80.64 83.84 72.60 78.35 65.38 58.34 82.63 82.63 70.00 60.32
0.50 73.33 78.05 88.49 91.49 84.21 82.48 94.13 95.92 56.09 63.51 53.56 46.31 64.66 64.66 56.59 49.76

0.60 88.24 94.85 97.71 98.50 98.83 98.79 100.00 100.00 40.36 44.82 34.78 27.51 43.73 43.73 35.86 23.52
0.70 95.93 99.05 99.52 99.58 100.00 100.00 100.00 100.00 27.93 29.64 21.00 15.52 23.38 23.38 15.64 8.05
0.80 98.70 99.47 99.68 99.74 100.00 100.00 100.00 100.00 19.15 20.98 12.86 9.48 10.72 10.72 5.23 0.85
0.90 99.33 99.50 99.77 99.86 100.00 100.00 100.00 100.00 12.76 16.74 8.98 7.13 3.65 3.65 1.53 0.00
1.00 99.48 99.50 99.86 99.94 100.00 100.00 100.00 100.00 8.00 14.19 6.76 5.81 0.47 0.47 0.36 0.00

1.10 99.51 99.51 99.91 99.98 100.00 100.00 100.00 100.00 4.99 12.26 5.57 5.06 0.00 0.00 0.00 0.00
1.20 99.51 99.51 99.94 99.99 100.00 100.00 100.00 100.00 2.95 9.68 3.48 3.26 0.00 0.00 0.00 0.00
1.30 99.51 99.51 99.96 100.00 100.00 100.00 100.00 100.00 1.65 7.48 1.91 1.73 0.00 0.00 0.00 0.00
1.40 99.51 99.51 99.96 100.00 100.00 100.00 100.00 100.00 0.84 5.94 1.05 0.91 0.00 0.00 0.00 0.00
1.50 99.52 99.51 99.97 100.00 100.00 100.00 100.00 100.00 0.41 4.94 0.70 0.55 0.00 0.00 0.00 0.00

Table 7: COV and MIS scores of different methods on GEOM-Drugs dataset at different thresholds
(τ ). (↑) indicates higher is better. (↓) indicates lower is better.

Drugs Mean COV (%, ↑) Median COV (%, ↑) Mean MIS (%, ↓) Median MIS (%, ↓)
τ (Å) GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM GraphDG CGCF ConfGF DGSM
0.25 0.00 0.06 0.17 0.29 0.00 0.00 0.00 0.00 100.00 99.99 99.97 99.90 100.00 100.00 100.00 100.00
0.50 0.26 0.80 1.15 3.85 0.00 0.00 0.00 0.00 99.95 99.80 99.52 98.34 100.00 100.00 100.00 100.00
0.75 0.75 5.81 9.15 19.94 0.00 0.00 0.50 8.15 99.69 97.86 96.94 91.93 100.00 100.00 99.75 97.09
1.00 2.39 24.67 30.60 48.71 0.00 11.81 18.89 47.15 99.14 90.82 89.63 78.38 100.00 96.50 95.58 86.07

1.25 8.27 53.96 62.15 78.73 0.00 57.06 70.93 94.39 97.92 78.32 76.58 59.92 100.00 86.28 84.48 62.85
1.50 19.96 79.37 86.62 93.75 4.00 92.46 98.79 100.00 94.40 63.80 60.06 42.02 99.14 66.39 63.81 37.36
1.75 36.86 91.47 96.53 99.01 26.58 100.00 100.00 100.00 87.68 49.72 43.63 27.61 95.83 47.09 41.72 18.66
2.00 55.79 96.73 98.62 99.90 55.26 100.00 100.00 100.00 76.99 37.53 29.80 18.04 87.35 30.90 22.44 9.23

2.25 71.43 99.05 99.83 99.99 80.00 100.00 100.00 100.00 61.76 27.30 18.68 12.04 69.74 20.07 10.93 6.00
2.50 83.53 99.47 100.00 100.00 95.45 100.00 100.00 100.00 44.32 18.97 11.09 8.19 42.96 12.33 3.31 4.12
2.75 91.09 99.60 100.00 100.00 100.00 100.00 100.00 100.00 27.92 12.52 6.32 5.62 16.67 6.82 0.74 3.04
3.00 95.00 99.96 100.00 100.00 100.00 100.00 100.00 100.00 15.97 7.67 3.36 3.57 2.46 3.32 0.00 2.00

C.5 Ablation Studies

To examine the benefit of dynamic non-bonded edges, we trained another model without non-bonded
edges and report its performance in Table 8. We find that when non-bonded edges are removed from
our model, the performance drops to a level similar to ConfGF. This confirms the effectiveness of
non-bonded edges.

We additionally trained two models with cutoff distances of 5Å, and 20Å on the GEOM-Drugs dataset,
and report their performance in Table 9. We find that as the cutoff distance increases (from 5Å to 20Å),
the coverage score (COV) decreases. This is because a longer cutoff will lead to more non-bonded
edges and introduce additional redundancies, thus reducing the flexibility and the diversity of the
generation. The matching score (MAT) slightly increases as the cutoff distance gets longer. We find
that the network produces less confident and less accurate predictions for distant interactions and
thus affects the generation quality.

Table 8: We trained another model without non-
bonded edges on the GEOM-Drugs dataset, and
report the COV and MAT scores in the table.

COV (%, ↑) MAT (Å, ↓)
Mean Median Mean Median

ConfGF 62.15 70.93 1.1629 1.1596
w/o non-bonded (δ = 0Å) 68.96 79.48 1.1524 1.1370
w/ non-bonded 78.73 94.39 1.0154 0.9980

Table 9: We trained two models with cutoff
distances of 5Å, and 20Å respectively on the
GEOM-Drugs dataset, and report the COV and
MAT scores in the table.

COV (%, ↑) MAT (Å, ↓)
δ Mean Median Mean Median

0Å(w/o non-bonded) 68.96 79.48 1.1524 1.1370
5Å 81.27 94.62 0.9855 0.9697

10Å 78.73 94.39 1.0154 0.9980
20Å 77.23 88.06 1.0096 1.0118
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C.6 Additional Generated Samples

We visualize more generated conformations by our DGSM of different molecular systems, i.e.,
drug-like molecules, multi-molecular complexes and protein sidechains, in Figure 7.

Graph / SMILES Conformations

C2H6O⋅5H2O

C2H4O⋅2H2O

CH5N⋅4H2O

C5H12O⋅3H2O

Proteins

Figure 7: Visualization of conformations generated by DGSM. The reference conformations are
highlighted by red dashes. For protein sidechains, the ground-truth sidechain (blue) and the generated
sidechain (red) are highlighted.
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