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Abstract

Three Operator Splitting (TOS) (Davis & Yin, 2017) can minimize the sum of
multiple convex functions effectively when an efficient gradient oracle or proximal
operator is available for each term. This requirement often fails in machine learning
applications: (i) instead of full gradients only stochastic gradients may be available;
and (ii) instead of proximal operators, using subgradients to handle complex
penalty functions may be more efficient and realistic. Motivated by these concerns,
we analyze three potentially valuable extensions of TOS. The first two permit
using subgradients and stochastic gradients, and are shown to ensure a O(1/

√
t)

convergence rate. The third extension ADAPTOS endows TOS with adaptive step-
sizes. For the important setting of optimizing a convex loss over the intersection
of convex sets ADAPTOS attains universal convergence rates, i.e., the rate adapts
to the unknown smoothness degree of the objective function. We compare our
proposed methods with competing methods on various applications.

1 Introduction

We study convex optimization problems of the form

min
x∈Rn

φ(x) := f(x) + g(x) + h(x), (1)

where f : Rn → R and g, h : Rn → R ∪ {+∞} are proper, lower semicontinuous and convex func-
tions. Importantly, this template captures constrained problems via indicator functions. To avoid
pathological examples, we assume that the relative interiors of dom(f), dom(g) and dom(h) have a
nonempty intersection.

Problem (1) is motivated by a number of applications in machine learning, statistics, and signal
processing, where the three functions comprising the objective φ model data fitting, structural
priors, or decision constraints. Examples include overlapping group lasso (Yuan et al., 2011),
isotonic regression (Tibshirani et al., 2011), dispersive sparsity (El Halabi & Cevher, 2015), graph
transduction (Shivanna et al., 2015), learning with correlation matrices (Higham & Strabić, 2016),
and multidimensional total variation denoising (Barbero & Sra, 2018).

An important technique for addressing composite problems is operator splitting (Bauschke et al.,
2011). However, the basic proximal-(sub)gradient method may be unsuitable for Problem (1) since it
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requires the prox-operator of g + h, computing which may be vastly more expensive than individual
prox-operators of g and h. An elegant, recent method, Three Operator Splitting (TOS, Davis &
Yin (2017), see Algorithm 1) offers a practical choice for solving Problem (1) when f is smooth.
Importantly, at each iteration, TOS evaluates the gradient of f and the proximal operators of g and h
only once. Moreover, composite problems with more than three functions can be reformulated as an
instance of Problem (1) in a product-space and solved by using TOS. This is an effective method as
long as each function has an efficient gradient oracle or proximal operator (see Section 2).

Unfortunately, TOS is not readily applicable to many optimization problems that arise in machine
learning. Most important among those are problems where only access to stochastic gradients is
feasible, e.g., when performing large-scale empirical risk minimization and online learning. Moreover,
prox-operators for some complex penalty functions are computationally expensive and it may be more
efficient to instead use subgradients. For example, proximal operator for the maximum eigenvalue
function that appears in dual-form semidefinite programs (e.g., see Section 6.1 in (Ding et al.,
2019)) may require computing a full eigendecomposition. In contrast, we can form a subgradient by
computing only the top eigenvector via power method or Lanczos algorithm.

Contributions. With the above motivation, this paper contributes three key extensions of TOS. We
tackle nonsmoothness in Section 3 and stochasticity in Section 4. These two extensions enable us to
use subgradients and stochastic gradients of f (see Section 2 for a comparison with related work),
and satisfy a O(1/

√
T ) error bound in function value after T iterations. The third main contribution

is ADAPTOS in Section 5. This extension provides an adaptive step-size rule in the spirit of AdaGrad
(Duchi et al., 2011; Levy, 2017) for an important subclass of Problem (1). Notably, for optimizing a
convex loss over the intersection of two convex sets, ADAPTOS ensures universal convergence rates.
That is, ADAPTOS implicitly adapts to the unknown smoothness degree of the problem, and ensures a
Õ(1/

√
t) convergence rate when the problem is nonsmooth but the rate improves to Õ(1/t) if the

problem is smooth and a solution lies in the relative interior of the feasible set.

In Section 6, we discuss empirical performance of our methods by comparing them against present
established methods on various benchmark problems from COPT Library (Pedregosa et al., 2020)
including the overlapping group lasso, total variation deblurring, and sparse and low-rank matrix
recovery. We also test our methods on nonconvex optimization by training a neural network model.
We present more experiments on isotonic regression and portfolio optimization in the supplements.

Notation. We denote a solution of Problem (1) by x? and φ? := φ(x?). The distance between
a point x ∈ Rn and a closed and convex set G ⊆ Rn is dist(x,G) := miny∈G ‖x − y‖; the
projection of x onto G is given by projG(x) := arg miny∈G ‖x− y‖. The prox-operator of a function
g : Rn → R ∪ {+∞} is defined by proxg(x) := arg miny∈Rn{g(y) + 1

2‖x− y‖
2}. The indicator

function of G gives 0 for all x ∈ G and +∞ otherwise. Clearly, the prox-operator of an indicator
function is the projection onto the corresponding set.

2 Background and related work

TOS, proposed recently by Davis & Yin (2017), can be seen as a generic extension of various
operator splitting schemes, including the forward-backward splitting, Douglas-Rachford splitting,
forward-Douglas-Rachford splitting (Briceño-Arias, 2015), and the generalized forward-backward
splitting (Raguet et al., 2013). It covers these aforementioned approaches as special instances when
the terms f, g and h in Problem (1) are chosen appropriately. Convergence of TOS is well studied
when f has Lipschitz continuous gradients. It ensures O(1/t) convergence rate in this setting, see
(Davis & Yin, 2017) and (Pedregosa, 2016) for details.

Other related methods that can be used for Problem (1) when f is smooth are the primal-dual hybrid
gradient (PDHG) method (Condat, 2013; Vũ, 2013) and the primal-dual three operator splitting
methods in (Yan, 2018) and (Salim et al., 2020). These methods can handle a more general template
where g or h is composed with a linear map, however, they require f to be smooth. The convergence
rate of PDHG is studied in (Chambolle & Pock, 2016).

Nonsmooth setting. We are unaware of any prior result that permits using subgradients in TOS (or
in other methods that can use the prox-operator of g and h separately for Problem (1)). The closest
match is the proximal subgradient method which applies when h is removed from Problem (1), and it
is covered by our nonsmooth TOS as a special case.
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Stochastic setting. There are multiple attempts to devise a stochastic TOS in the literature. Yurtsever
et al. (2016) studied Problem (1) under the assumption that f is smooth and strongly convex, and an
unbiased gradient estimator with bounded variance is available. Their stochastic TOS has a guaranteed
O(1/t) convergence rate. In (Cevher et al., 2018), they drop the strong convexity assumption, instead
they assume that the variance is summable. They show asymptotic convergence with no guarantees
on the rate. Later, Pedregosa et al. (2019) proposed a stochastic variance-reduced TOS and analyzed
its non-asymptotic convergence guarantees. Their method gets O(1/t) convergence rate when f is
smooth. The rate becomes linear if f is smooth and strongly convex and g (or h) is also smooth.
Recently, Yurtsever et al. (2021) studied TOS on problems where f can be nonconvex and showed that
the method finds a first-order stationary point with O(1/ 3

√
t) convergence rate under a diminishing

variance assumption. They increase the batch size over the iterations to satisfy this assumption.

None of these prior works cover the broad template we consider: f is smooth or Lipschitz continuous
and the stochastic first-order oracle has bounded variance. To our knowledge, our paper gives the
first analysis for stochastic TOS without strong convexity assumption or variance reduction.

Other related methods are the stochastic PDHG in (Zhao & Cevher, 2018), the decoupling method
in (Mishchenko & Richtárik, 2019), the stochastic primal-dual method in (Zhao et al., 2019), and
the stochastic primal-dual three operator splitting in (Salim et al., 2020). The method in (Zhao et al.,
2019) can be viewed as an extension of stochastic ADMM (Ouyang et al., 2013; Azadi & Sra, 2014)
from the sum of two terms to three terms in the objective. Similar to the existing stochastic TOS
variants, these methods either assume strong convexity or require variance-reduction.

Adaptive step-sizes. The standard writings of TOS and PDHG require the knowledge of the smooth-
ness constant of f for the step-size. Backtracking line-search strategies (for finding a suitable step-size
when the smoothness constant is unknown) are proposed for PDHG in (Malitsky & Pock, 2018) and
for TOS in (Pedregosa & Gidel, 2018). These line-search strategies are significantly different than
our adaptive learning rate. Importantly, these methods work only when f is smooth. They require
extra function evaluations, and are thus not suitable for stochastic optimization. And their goal is to
estimate the smoothness constant. In contrast, our goal is to design an algorithm that adapts to the
unknown smoothness degree. Our method does not require function evaluations, and it can be used in
smooth, nonsmooth, or stochastic settings.

At the heart of our method lie adaptive online learning algorithms (Duchi et al., 2011; Rakhlin &
Sridharan, 2013) together with online to offline conversion techniques (Levy, 2017; Cutkosky, 2019).
Similar methods appear in the literature for other problem templates with no constraint or a single
constraint in (Levy, 2017; Levy et al., 2018; Kavis et al., 2019; Cutkosky, 2019; Bach & Levy, 2019).
Our method extends these results to optimization over the intersection of convex sets. When f is
nonsmooth, ADAPTOS ensures a Õ(1/

√
t) rate, whereas the rate improves to Õ(1/t) if f is smooth

and there is a solution in the relative interior of the feasible set.

TOS for more than three functions. TOS can be used for solving problems with more than three
convex functions by a product-space reformulation technique (Briceño-Arias, 2015). Consider

min
x∈Rd

q∑
i=1

φi(x), (2)

where each component φi : Rd → R∪{+∞} is a proper, lower semicontinuous and convex function.
Without loss of generality, suppose φ1, . . . , φp are prox-friendly. Then, we can reformulate (2) in the
product-space Rd×(p+1) as

min
(x0,x1,...,xp)∈Rd×(p+1)

p∑
i=1

φi(xi) +

q∑
i=p+1

φi(x0) subject to x0 = x1 = . . . = xp. (3)

This is an instance of Problem (1) with n = d×(p+1) and x = (x0, x1, . . . , xp). We can choose g(x)
as the indicator of the equality constraint, f(x) =

∑q
i=p+1 φi(x0), and h(x) =

∑p
i=1 φi(xi). Then,

the (sub)gradient of f is the sum of (sub)gradients of φp+1, . . . , φq; proxg is a mapping that averages
x0, x1, . . . , xp; and proxh is the concatenation of the individual prox-operators of φ1, . . . , φp.

To our knowledge, TOS has been studied only for problems with smooth f , and this forces us
to assign all nonsmooth components φi in (2) to the proximal term h in (3). In this work, by
enabling subgradient steps for nonsmooth f , we provide the flexibility to choose how to process each
nonsmooth component φi in (3), either by its proximal operator through h or by its subgradient via f .
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Algorithm 1 Three Operator Splitting (TOS)

Input: Initial point y0 ∈ Rn, step-size sequence {γt}Tt=0

for t = 0, 1, 2, . . . , T do
zt = proxγtg(yt)
Choose an update direction ut ∈ Rn {ut = ∇f(zt) captures the standard version of TOS}
xt = proxγth(2zt − yt − γtut)
yt+1 = yt − zt + xt

end for
Return: Ergodic sequence x̄t and z̄t defined in (5)

3 TOS for Nonsmooth Setting

Algorithm 1 presents the generalized TOS for Problem (1). It recovers the standard version in (Davis
& Yin, 2017) if we choose ut = ∇f(zt) when f is smooth. For convenience, we define the mapping

TOSγ(y, u) := y − proxγg(y) + proxγh
(
2 · proxγg(y)− y − γu

)
(4)

which represents one iteration of Algorithm 1.

The first step of the analysis is the fixed-point characterization of TOS. The following lemma is a
straightforward extension of Lemma 2.2 in (Davis & Yin, 2017) to permit subgradients. The proof is
similar to (Davis & Yin, 2017), we present it in the supplementary material for completeness.
Lemma 1 (Fixed points of TOS). Let γ > 0. Then, there exists a subgradient u ∈ ∂f(proxγg(y))
that satisfies TOSγ(y, u) = y if and only if proxγg(y) is a solution of Problem (1).

When f is Lf -smooth, TOS with ut = ∇f(zt) is known to be an averaged operator1 if γ ∈ (0, 2/Lf )
(see Proposition 2.1 in (Davis & Yin, 2017)) and the analysis in prior work is based on this property.
In particular, averagedness implies Fejér monotonicity, i.e., that ‖yt − y?‖ is non-increasing, where
y? denotes a fixed point of TOS. However, when f is nonsmooth and ut is replaced with a subgradient,
TOS operator is no longer averaged and the standard analysis fails. One of our key observations is
that ‖yt − y?‖ remains bounded even-though we loose averagedness and Fejér monotonicity in this
setting, see Theorem S.6 in the supplements.

Ergodic sequence. Convergence of operator splitting methods are often given in terms of ergodic
(averaged) sequences. This strategy requires maintaining the running averages of zt and xt:

x̄t =
1

t+ 1

t∑
τ=0

xτ and z̄t =
1

t+ 1

t∑
τ=0

zτ . (5)

Clearly, we do not need to store the history of xt and zt to maintain these sequences. In practice, the
last iterate often converges faster than the ergodic sequence. We can evaluate the objective function
at both points and return the one with the smaller value.

We are ready to present convergence guarantees of TOS for the nonsmooth setting.
Theorem 1. Consider Problem (1) and employ TOS (Algorithm 1) with the update directions and
step-size chosen as

ut ∈ ∂f(zt) and γt =
γ0√
T + 1

for some γ0 > 0, for t = 0, 1, . . . , T . (6)

Assume that ‖ut‖ ≤ Gf for all t. Then, the following guarantees hold:

f(z̄T ) + g(z̄T ) + h(x̄T )− φ? ≤
1

2
√
T + 1

(
D2

γ0
+ γ0G

2
f

)
(7)

and ‖x̄T − z̄T ‖ ≤
2

T + 1
(D + γ0Gf ) , where D = max{‖y0 − x?‖, ‖y0 − y?‖}. (8)

1An operator T : Rn → Rn is ω-averaged if ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−ω
ω
‖(x− Tx)− (y − Ty)‖2 for

some ω ∈ (0, 1) for all x, y ∈ Rn.
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Remark 1. The boundedness of subgradients is a standard assumption in nonsmooth optimization.
It is equivalent to assuming that f is Gf -Lipschitz continuous on dom(g).

If D and Gf are known, we can optimize the constants in (7) by choosing γ0 = D/Gf . This gives
f(z̄T ) + g(z̄T ) + h(x̄T )− φ? ≤ O(DGf/

√
T ) and ‖x̄T − z̄T ‖ ≤ O(D/T ).

Proof sketch. We start by writing the optimality conditions for the proximal steps for zt and xt.
Through algebraic modifications and by using convexity of f , g and h, we obtain

f(zt) + g(zt) + h(xt)− φ? ≤
1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 +

γ

2
‖ut‖2. (9)

‖ut‖ ≤ Gf by assumption. Then, we average this inequality over t = 0, 1, . . . , T and use Jensen’s
inequality to get (7).

The bound in (8) is an immediate consequence of the boundedness of ‖yT+1 − y?‖ that we show in
Theorem S.6 in the supplementary material:

‖yT+1 − y?‖ ≤ ‖y0 − y?‖+ 2γ0Gf . (10)

By definition, ‖x̄T − z̄T ‖ = 1
T ‖yT+1 − y0‖ ≤ 1

T (‖yT+1 − y?‖+ ‖y? − y0‖).

Theorem 1 does not immediately yield convergence to a solution of Problem (1) because f + g and h
are evaluated at different points in (7). Next corollary solves this issue.

Corollary 1. We are interested in two particular cases of Theorem 1:

(i). Suppose h is Gh-Lipschitz continuous. Then,

φ(z̄T )− φ? ≤
1

2
√
T + 1

(
D2

γ0
+ γ0G

2
f

)
+

2Gh
T + 1

(D + γ0Gf ) . (11)

(ii). Suppose h is the indicator function of a convex setH ⊆ Rn. Then,

f(z̄T ) + g(z̄T )− φ? ≤
1

2
√
T + 1

(
D2

γ0
+ γ0G

2
f

)
(12)

and dist(z̄T ,H) ≤ 2

T + 1
(D + γ0Gf ) . (13)

Proof. (i). Since h is Gh-Lipschitz, φ(z̄T ) ≤ f(z̄T ) + g(z̄T ) + h(x̄T ) +Gh‖x̄T − z̄T ‖.
(ii). h(x̄T ) = 0 since x̄T ∈ H. Moreover, dist(z̄T ,H) := infx∈H ‖z̄T − x‖ ≤ ‖z̄T − x̄T ‖.

Remark 2. We fix time horizon T for the ease of analysis and presentation. In practice, we use
γt = γ0/

√
t+ 1.

Theorem 1 covers the case in which g is the indicator of a convex set G ⊆ Rn. By definition, z̄T ∈ G
and x? ∈ G, hence g(z̄T ) = g(x?) = 0. If both g and h are indicator functions, TOS gives an
approximately feasible solution, in G, and close to H. We can also consider a stronger notion of
approximate feasibility, measured by dist(z̄T ,G ∩H). However, this requires additional regularity
assumptions on G and H to avoid pathological examples, see Lemma 1 in (Hoffmann, 1992) and
Definition 2 in (Kundu et al., 2018).

Problem (1) captures unconstrained minimization problems when g = h = 0. Therefore, the
convergence rate in Theorem 1 is optimal in the sense that it matches the information theoretical
lower bounds for first-order black-box methods, see Section 3.2.1 in (Nesterov, 2003). Remark that
the subgradient method can achieve a O(1/t) rate when f is strongly convex. We leave the analysis
of TOS for strongly convex nonsmooth f as an open problem.
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4 TOS for Stochastic Setting

In this section, we focus on the three-composite stochastic optimization template:

min
x∈Rn

φ(x) := f(x) + g(x) + h(x) where f(x) := Eξ f̃(x, ξ) (14)

and ξ is a random variable. The following theorem characterizes the convergence rate of Algorithm 1
for Problem (14).
Theorem 2. Consider Problem (14) and employ TOS (Algorithm 1) with a fixed step-size γt = γ =
γ0/
√
T + 1 for some γ0 > 0. Suppose we are receiving the update directions ut from an unbiased

stochastic first-order oracle with bounded variance, i.e.,

ût := E[ut|zt] ∈ ∂f(zt) and E[‖ut − ût‖2] ≤ σ2 for some σ < +∞. (15)

Assume that ‖ût‖ ≤ Gf for all t. Then, the following guarantees hold:

E[f(z̄T ) + g(z̄T ) + h(x̄T )]− φ? ≤
1

2
√
T + 1

(
D2

γ0
+ γ0(σ2 +G2

f )

)
and (16)

E[‖x̄T − z̄T ‖] ≤
2

T + 1

(
D + γ0

(
Gf +

σ

2

))
, where D = max{‖y0 − x?‖, ‖y0 − y?‖}. (17)

Remark 3. Similar rate guarantees hold with some restrictions on the choice of γ0 if we replace
bounded subgradients assumption with the smoothness of f . We defer details to the supplements.

If we can estimateD,Gf and σ, then we can optimize the bounds by choosing γ0 ≈ D/max{Gf , σ}.
This gives f(z̄T ) + g(z̄T ) + h(x̄T )− φ? ≤ O(Dmax{Gf , σ}/

√
T ) and ‖x̄T − z̄T ‖ ≤ O(D/T ).

Analogous to Corollary 1, from Theorem 2 we can derive convergence guarantees when h is Lipschitz
continuous or an indicator function. As in the nonsmooth setting, the rates shown in this section are
optimal because Problem (14) covers g(x) = h(x) = 0 as a special case.

5 TOS with Adaptive Learning Rates

In this section, we focus on an important subclass of Problem (1) where g and h are indicator functions
of some closed and convex sets:

min
x∈Rn

f(x) subject to x ∈ G ∩H. (18)

TOS is effective for Problem (18) when projections onto G andH are easy but the projection onto their
intersection is challenging. Particular examples include transportation polytopes, doubly nonnegative
matrices, and isotonic regression, among many others.

We propose ADAPTOS with an adaptive step-size in the spirit of adaptive online learning algorithms
and online to batch conversion techniques, see (Duchi et al., 2011; Rakhlin & Sridharan, 2013; Levy,
2017; Levy et al., 2018; Cutkosky, 2019; Kavis et al., 2019; Bach & Levy, 2019) and the references
therein. ADAPTOS employs the following step-size rule:

γt =
α√

β +
∑t−1
τ=0 ‖uτ‖2

for some α, β > 0. (19)

β in the denominator prevents γt to become undefined. If D := ‖y0− x?‖ and Gf are known, theory
suggests choosing α = D and β = G2

f for a tight upper bound, however, this choice affects only the
constants and not the rate of convergence as we demonstrate in the rest of this section. Importantly,
we do not assume any prior knowledge on D or Gf . In practice, we often discard β and use γ0 = α
at the first iteration.

For ADAPTOS, in addition to (5), we will also use a second ergodic sequence with weighted averaging:

x̃t =
1∑t

τ=0 γτ

t∑
τ=0

γτxτ and z̃t =
1∑t

τ=0 γτ

t∑
τ=0

γτzτ . (20)

This sequence was also considered for TOS with line-search in (Pedregosa & Gidel, 2018).
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Theorem 3. Consider Problem (18) and TOS (Algorithm 1) with the update directions ut ∈ ∂f(zt)
and the adaptive step-size (19). Assume that ‖ut‖ ≤ Gf for all t. Then, the estimates generated by
TOS satisfy

f(z̃t)− f? ≤ Õ
(

2αGf√
t+ 1

(
D2

4α2 + 1 +
Gf√
β

))
and (21)

dist(z̄t,H) ≤ Õ
(

2α√
t+ 1

(
1 +

Gf√
β

))
where D = ‖y0 − x?‖. (22)

If D and Gf are known, we can choose α = D and β = G2
f . This gives f(z̃t)− f? ≤ Õ(GfD/

√
t)

and dist(z̄t,H) ≤ Õ(D/
√
t).

The next theorem establishes a faster rate for the same algorithm when f is smooth and a solution
lies in the interior of the feasible set.
Theorem 4. Consider Problem (18) and suppose f is Lf -smooth on G. Use TOS (Algorithm 1) with
the update directions ut = ∇f(zt) and the adaptive step-size (19). Assume that ‖ut‖ ≤ Gf for all t.
Suppose Problem (18) has a solution in the interior of the feasible set. Then, the estimates generated
by TOS satisfy

f(z̄t)− f? ≤ Õ
(

2

t+ 1

(
4α2Lf

(
D2

4α2 + 1 +
G2

f

β

)2
+ α

√
β
(
D2

4α2 + 1 +
G2

f

β

)))
and (23)

dist(z̄t,H) ≤ Õ
(

2α

t+ 1

(
D
α + 1 +

Gf√
β

))
where D = ‖y0 − x?‖. (24)

If D and Gf are known, we can choose α = D and β = G2
f .

This gives f(z̄t)− f? ≤ Õ((LfD
2 +GfD)/t) and dist(z̄t,H) ≤ Õ(D/t).

Remark 4. When f is smooth, the boundedness assumption ‖ut‖ ≤ Gf holds automatically with
Gf ≤ LfDG if G has a bounded diameter DG .

We believe the assumption on the location of the solution is a limitation of the analysis and that the
method can achieve fast rates when f is smooth regardless of where the solution lies. Remark that
this assumption also appears in (Levy, 2017; Levy et al., 2018).

Following the definition in (Nesterov, 2015), we say that an algorithm is universal if it does not
require to know whether the objective is smooth or not yet it implicitly adapts to the smoothness
of the objective. ADAPTOS attains universal convergence rates for Problem (18). It converges to a
solution with Õ(1/

√
t) rate (in function value) when f is nonsmooth. The rate becomes Õ(1/t) if f

is smooth and the solution is in the interior of the feasible set.

Finally, the next theorem shows that ADAPTOS can successfully handle stochastic (sub)gradients.
Theorem 5. Consider Problem (18). Use TOS (Algorithm 1) with the update directions ut from
an unbiased stochastic subgradient oracle such that E[ut|zt] ∈ ∂f(zt) almost surely. Assume that
‖ut‖ ≤ Gf for all t. Suppose Problem (18) has a solution in the interior of the feasible set. Then,
the estimates generated by TOS satisfy

E
[
f(z̃t)− f?

]
≤ Õ

(
2αGf√
t+ 1

(
D2

4α2 + 1 +
G2

f

β

))
and (25)

E[dist(z̄t,H)] ≤ Õ
(

2α

t+ 1

(
D
α + 1 +

Gf√
β

))
where D = ‖y0 − x?‖. (26)

6 Numerical Experiments

This section demonstrates empirical performance of the proposed method on a number of convex
optimization problems. We also present an experiment on neural networks. Our experiments are
performed in Python 3.7 with Intel Core i9-9820X CPU @ 3.30GHz. We present more experiments
on isotonic regression and portfolio optimization in the supplementary materials. The source code for
the experiments is available in the supplements.
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6.1 Experiments on Convex Optimization with Smooth f

In this subsection, we compare ADAPTOS with TOS, PDHG and their line-search variants TOS-LS
and PDHG-LS. Our experiments are based on the benchmarks described in (Pedregosa & Gidel,
2018) and their source code available in COPT Library (Pedregosa et al., 2020) under the new BSD
License. We implement ADAPTOS and investigate its performance on three different problems:

. Logistic regression with overlapping group lasso penalty:

min
x∈Rn

1

N

N∑
i=1

log(1 + exp(−bi〈ai, x〉)) + λ
∑
G∈G

√
|G|‖xG‖+ λ

∑
H∈H

√
|H|‖xH‖, (27)

where {(a1, b1), . . . , (aN , bN )} is a given set of training examples, G andH are the sets of distinct
groups and | · | denotes the cardinality. The model we use (from COPT) considers groups of
size 10 with 2 overlapping coefficients. In this experiment, we use the benchmarks on synthetic
data (dimensions n = 1002, N = 100) and real-sim dataset (Chang & Lin, 2011) (n = 20958,
N = 72309).

. Image recovery with total variation penalty:

min
X∈Rm×n

‖Y −A(X)‖2F + λ

m∑
i=1

n−1∑
j=1

|Xi,j+1 −Xi,j |+ λ

n∑
j=1

m−1∑
i=1

|Xi+1,j −Xi,j |, (28)

where Y is a given blurred image and A : Rm×n → Rm×n is a linear operator (blur kernel). The
benchmark in COPT solves this problem for an image of size 153× 115 with a provided blur kernel.

. Sparse and low-rank matrix recovery via `1 and nuclear-norm regularizations:

min
X∈Rn×n

1

N

N∑
i=1

huber(bi − 〈Ai, X〉) + λ‖X‖∗ + λ‖X‖1. (29)

We use huber loss. {(A1, b1), . . . , (AN , bN )} is a given set of measurements and ‖X‖1 is the vector
`1-norm of X . The benchmark in COPT considers a symmetric ground truth matrix X\ ∈ R20×20

and noisy synthetic measurements (N = 100) where Ai has Gaussian iid entries. bi = 〈Ai, X\〉+ωi
where ωi is generated from a zero-mean unit variance Gaussian distribution.

At each problem, we consider two different values for the regularization parameter λ. We use all
methods with their default parameters in the benchmark. For ADAPTOS, we discard β and tune α
by trying the powers of 10. See the supplementary material for the behavior of the algorithm with
different values of α. Figure 1 shows the results of this experiment. In most cases, the performance
of ADAPTOS is between TOS-LS and PDHG-LS. Remark that TOS-LS is using the extra knowledge
of the Lipschitz constant of h.

6.2 Experiments on Convex Optimization with Nonsmooth f

We examine the empirical performance of ADAPTOS for nonsmooth problems on an image impainting
and denoising task from (Zeng & So, 2018; Yurtsever et al., 2018). We are given an occluded image
(i.e., missing some pixels) of size 517× 493, contaminated with salt and pepper noise of 10% density.
We use the following template where data fitting is measured in terms of vector `p-norm:

min
X∈Rm×n

‖A(X)− Y ‖p subject to ‖X‖∗ ≤ λ, 0 ≤ X ≤ 1, (30)

where Y is the observed noisy image with missing pixels. This is essentially a matrix completion
problem, A : Rm×n → Rm×n is a linear map that samples the observed pixels in Y . In particular,
we consider (30) with p = 1 and p = 2. The `2-loss is common in practice for matrix completion
(often in the least-squares form) but it is not robust against the outliers induced by the salt and pepper
noise. `1-loss is known to be more reliable for this task.

The subgradients in both cases have a fixed norm at all points (note that the subgradients are binary
valued for `1-loss and unit-norm for `2-loss), hence the analytical and the adaptive step-sizes are
same up to a constant factor.
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Figure 2 shows the results. The empirical rates for p = 1 roughly match our guarantees in Theorem 1.
We observe a locally linear convergence rate when `2-loss is used. Interestingly, the ergodic sequence
converges faster than the last iterate for p = 1 but significantly slower for p = 2. The runtime of the
two settings are approximately the same, with 67 msec per iteration on average. Despite the slower
rates, we found `1-loss more practical on this problem. A low-accuracy solution obtained by 1000
iterations on `1-loss yields a high quality recovery with PSNR 26.21 dB, whereas the PSNR saturates
at 21.15 dB for the `2-formulation. See the supplements for the recovered images and more details.

6.3 An Experiment on Neural Networks

In this section, we train a regularized deep neural network to test our methods on nonconvex
optimization. We consider a regularized neural network problem formulation in (Scardapane et al.,
2017). This problem involves a fully connected neural network with the standard cross-entropy loss
function, a ReLu activation for the hidden layers, and the softmax activation for the output layer. Two
regularizers are added to this loss function: The first one is the standard `1 regularizer, and the second
is the group sparse regularizer where the outgoing connections of each neuron is considered as a
group. The goal is to force all outgoing connections from the same neurons to be simultaneously
zero, so that we can safely remove the neurons from the network. This is shown as an effective way
to obtain compact networks (Scardapane et al., 2017), which is crucial for the deployment of the
learned parameters on resource-constrained devices such as smartphones (Blalock et al., 2020).

We reuse the open source implementation (built with Lasagne framework based on Theano) published
in (Scardapane et al., 2017) under BSD-2 License. We follow their experimental setup and instructions
with MNIST database (LeCun, 1998) containing 70k grayscale images (28×28) of handwritten digits
(split 75/25 into train and test partitions). We train a fully connected neural network with 784 input
features, three hidden layers (400/300/100) and 10-dimensional output layer. Interested readers can
find more details on the implementation in the supplementary material or in (Scardapane et al., 2017).

Scardapane et al. (2017) use SGD and Adam with the subgradient of the overall objective. In contrast,
our methods can leverage the prox-operators for the regularizers. Figure 3 compares the performance
in terms of two measures: the sparsity of the parameters and the accuracy. On the left side, we see the
spectrum of weight and neuron magnitudes. The advantage of using prox-operators is outstanding:
More than 93% of the weights are zero and 68% of neurons are inactive when trained with ADAPTOS.
In contrast, subgradient based methods can achieve only approximately sparse solutions.

The third and the fourth subplots present the training and test accuracies. Remarkably, ADAPTOS
performs better than the state-of-the-art (both in train and test). Unfortunately, we could not achieve
the same performance gain in preliminary experiments with more complex models like ResNet (He
et al., 2016), where SGD with momentum shines. Interested readers can find the code for these
preliminary experiments in the supplements. We leave the technical analysis and a comprehensive
examination of ADAPTOS for nonconvex problems to a future work.

7 Conclusions

We studied an extension of TOS that permits subgradients and stochastic gradients instead of the
gradient step and established convergence guarantees for this extension. Moreover, we proposed an
adaptive step-size rule (ADAPTOS) for the minimization of a convex function over the intersection
of two convex sets. ADAPTOS guarantees a nearly optimal Õ(1/

√
t) rate on the baseline setting,

and it enjoys the faster Õ(1/t) rate when the problem is smooth and the solution is in the interior
of feasible set. We present numerical experiments on various benchmark problems. The empirical
performance of the method is promising.

We conclude with a short list of open questions and follow-up directions: (i) In parallel to the
subgradient method, we believe TOS can achieve O(1/t) rate guarantees in the nonsmooth setting
if f is strongly convex. The analysis remains open. (ii) The faster rate for ADAPTOS on smooth
f requires an extra assumption on the location of the solution. We believe this assumption can be
removed, and leave this as an open problem. (iii) We analyzed ADAPTOS only for a specific subclass
of Problem (1) in which g and h are indicator functions. Extending this result for the whole class is a
valuable question for future study.
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Figure 1: Empirical comparison of 5 algorithms for Problem (1) with smooth f . Dashed lines
represent the line-search variants of TOS and PDHG. The performance of ADAPTOS is between
TOS-LS and PDHG-LS. TOS and PDHG require the knowledge of the smoothness constant, and
TOS-LS uses the Lipschitz constant for one of the nonsmooth terms.

Figure 2: Performance of ADAPTOS on image impainting and denoising problems with `1 and
`2-loss functions. The empirical rates for `1-loss match the guaranteed O(1/

√
t) rate in objective

suboptimality andO(1/t) in infeasibility. We observe a locally linear convergence rate for the `2-loss.

Figure 3: Comparison of methods on training neural networks with group lasso regularization. The
outgoing connections of each neuron form a group. The first plot shows the magnitude of weights
after 500 epochs. The second plot shows the absolute sum of outgoing weights from each neuron.
x-axes are normalized by the total number of weights and neurons in these plots. More than 68% of
the neurons are inactive on the network trained by ADAPTOS. The third and fourth plots show the
training and validation losses. This experiment is performed with 20 random seeds. The solid lines
show the average performance and the shaded area represents ± standard deviation from the mean.
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Three Operator Splitting with Subgradients,
Stochastic Gradients, and Adaptive Learning Rates

Supplementary Material

A Preliminaries

We will use the following standard results in our analysis.

Lemma S.2. Let f : Rn → R∪{+∞} be a proper closed and convex function. Then, for any x, u ∈ Rn, the followings
are equivalent:

(i) u = proxf (x).

(ii) x− u ∈ ∂f(u).

(iii) 〈x− u, y − u〉 ≤ f(y)− f(u) for any y ∈ Rn.

Corollary S.2 (Firm non-expansivity of the prox-operator). Let f : Rn → R ∪ {+∞} be a proper closed and convex
function. Then, for any x, u ∈ Rn, the followings hold:

(non-expansivity) ‖proxf (x)− proxf (y)‖ ≤ ‖x− y‖.

(firm non-expansivity) ‖proxf (x)− proxf (y)‖2 ≤ 〈x− y,proxf (x)− proxf (y)〉.

B Fixed Point Characterization

This appendix presents the proof for Lemma 1. This is a straightforward extension of Lemma 2.2 in (Davis & Yin,
2017) to permit subgradients. We will use this lemma in the next section to prove the boundedness of yt in Algorithm 1.

B.1 Proof of Lemma 1

Define z = proxγg(y) and x = proxγh(2z − y − γu). Then, TOSγ(y, u) := y − z + x.

Suppose there exists u ∈ ∂f(z) such that TOS(y, u) = y. Then, we must have z = x. Moreover, by Lemma S.2, we
have

z = proxγg(y) ⇐⇒ y − z ∈ γ∂g(z), (S.1)

and z = x = proxγh(2z − y − γu) ⇐⇒ z − y − γu ∈ γ∂h(x). (S.2)

By summing up (S.1) and (S.2), we observe

0 ∈ γ(u+ ∂g(z) + ∂h(x)) =⇒ 0 ∈ ∂f(z) + ∂g(z) + ∂h(z) = ∂φ(z), (S.3)

which proves that z is an optimal solution of Problem (1) since φ is convex.

To prove the reverse direction, suppose z is an optimal solution, i.e., there exists u ∈ ∂f(z), v ∈ ∂g(z), w ∈ ∂h(z)
such that u+ v + w = 0. By Lemma S.2, we have

z = proxγg(y) ⇐⇒ y − z ∈ γ∂g(z), (S.4)

and x = proxγh(2z − y − γu) ⇐⇒ 2z − x− y − γu ∈ γ∂h(x). (S.5)

Now, let y = z + γv. Then,

2z − x− y − γu = z − x− γ(u+ v) = z − x+ γw. (S.6)

Therefore, we have z − x+ γw ∈ ∂h(x). Again, due to Lemma S.2, this means x = proxγh(z + γw). We also know
w ∈ ∂h(z) ⇐⇒ z + γw− z ∈ ∂γh(z) ⇐⇒ z = proxγh(z + γw). However, since h is convex, its prox-operator is
unique, hence, x = z and TOSγ(y, u) = y.
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C Boundedness Guarantees

Theorem S.6. Consider Problem (1) and employ TOS (Algorithm 1) with subgradient steps ut ∈ ∂f(zt) and a fixed
step-size γ = γ0/

√
T + 1 for some γ0 > 0. Assume that ‖ut‖ ≤ Gf for all t. Then,

‖yT+1 − y?‖ ≤ ‖y0 − y?‖+ 2γ0Gf (S.7)
where y? is a fixed point of TOS.

Proof. By Lemma 1, there exists u? ∈ ∂f(x?) such that
x? = proxγg(y?) = proxγh(2x? − y? − γu?) = z?. (S.8)

We decompose ‖yt+1 − y?‖2 as

‖yt+1 − y?‖2 = ‖yt − zt + xt − y? + x? − x?‖2

= ‖yt − zt − y? + x?‖2 + ‖xt − x?‖2 + 2〈xt − x?, yt − zt − y? + x?〉. (S.9)
Since zt = proxγg(yt) and x? = proxγg(y?), by the firm non-expansivity of the prox-operator, we have

‖yt − zt − y? + x?‖2 = 〈yt − zt − y? + x?, yt − y?〉 − 〈yt − zt − y? + x?, zt − x?〉
≤ 〈yt − zt − y? + x?, yt − y?〉. (S.10)

Similarly, since xt = proxγh(2zt − yt − γut) and x? = proxγh(2x? − y? − γu?), by the firm non-expansivity of the
prox-operator, we have

‖xt − x?‖2 ≤ 〈xt − x?, (2zt − yt − γut)− (2x? − y? − γu?)〉. (S.11)
By combining (S.9), (S.10) and (S.11), we get

‖yt+1 − y?‖2 ≤ 〈yt − zt + xt − y?, yt − y?〉 − γ〈xt − x?, ut − u?〉
= 〈yt+1 − y?, yt − y?〉 − γ〈xt − x?, ut − u?〉

=
1

2
‖yt+1 − y?‖2 +

1

2
‖yt − y?‖2 −

1

2
‖yt+1 − yt‖2 − γ〈xt − x?, ut − u?〉. (S.12)

Since ut ∈ ∂f(zt) and u? ∈ ∂f(x?), we have
−〈xt − x?, ut − u?〉 = −〈zt − x?, ut − u?〉 − 〈xt − zt, ut − u?〉

≤ −〈xt − zt, ut − u?〉

≤ 1

2γ
‖xt − zt‖2 +

γ

2
‖ut − u?‖2, (S.13)

where we used Young’s inequality in the last line. We use this inequality in (S.12) to obtain
‖yt+1 − y?‖2 ≤ ‖yt − y?‖2 + γ2‖ut − u?‖2. (S.14)

If we sum this inequality from t = 0 to T , we get

‖yT+1 − y?‖2 ≤ ‖y0 − y?‖2 + γ2
T∑
τ=0

‖uτ − u?‖2. (S.15)

Finally, due to the bounded subgradients assumption, we have ‖uτ − u?‖ ≤ 2Gf , hence

‖yT+1 − y?‖2 ≤ ‖y0 − y?‖2 + 4G2
fγ

2(T + 1) = ‖y0 − y?‖2 + 4G2
fγ

2
0 . (S.16)

We complete the proof by taking the square-root of both sides,

‖yT+1 − y?‖ ≤
√
‖y0 − y?‖2 + 4G2

fγ
2
0 ≤ ‖y0 − y?‖+ 2Gfγ0. (S.17)

Theorem S.7. Consider Problem (14) and employ TOS (Algorithm 1) with a fixed step-size γ = γ0/
√
T + 1 for some

γ0 > 0. Suppose we are receiving the update directions ut from an unbiased stochastic first-order oracle with bounded
variance such that

ût := E[ut|zt] ∈ ∂f(zt) and E[‖ut − ût‖2] ≤ σ2 for some σ < +∞. (S.18)
Assume that ‖ût‖ ≤ Gf for all t. Then,

E[‖yT+1 − y?‖] ≤ ‖y0 − y?‖+ γ0(2Gf + σ) (S.19)
where y? is a fixed point of TOS.
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Proof. We follow the same steps as in the proof of Theorem S.6 until (S.12):

‖yt+1 − y?‖2 ≤ ‖yt − y?‖2 − ‖yt+1 − yt‖2 − 2γ〈xt − x?, ut − u?〉. (S.20)

Then, we need to take noise into account:

−〈xt − x?, ut − u?〉 = −〈xt − zt, ut − u?〉 − 〈zt − x?, ut − ût〉 − 〈zt − x?, ût − u?〉
≤ −〈xt − zt, ut − u?〉 − 〈zt − x?, ut − ût〉. (S.21)

We take the expectation of both sides and get

−E[〈xt − x?, ut − u?〉] ≤ −E[〈xt − zt, ut − u?〉]

≤ 1

2γ
E[‖xt − zt‖2] +

γ

2
E[‖u? − ut‖2]

=
1

2γ
E[‖xt − zt‖2] +

γ

2
E[‖u? − ût‖2] +

γ

2
E[‖ût − ut‖2]

≤ 1

2γ
E[‖xt − zt‖2] + 2γG2

f +
γ

2
σ2, (S.22)

where the last line holds due to the bounded subgradients and variance assumptions.

Now, we take the expectation of (S.20) and substitute (S.22) into it:

E[‖yt+1 − y?‖2] ≤ E[‖yt − y?‖2] + γ2(4G2
f + σ2). (S.23)

Finally, we sum this inequality over t = 0, 1, . . . , T :

E[‖yT+1 − y?‖2] ≤ ‖y0 − y?‖2 + γ2
0(4G2

f + σ2). (S.24)

By Jensen’s inequality, we have E[‖yT+1 − y?‖]2 ≤ E[‖yT+1 − y?‖2]. We finalize the proof by taking the square-root
of both sides.

Next, we assume that f is Lf -smooth instead of Lipschitz continuity.

Theorem S.8. Consider Problem (14) and suppose f is Lf -smooth on dom(g). Employ TOS (Algorithm 1) with a
fixed step-size γt = γ = γ0/

√
T + 1 for some γ0 ∈ [0, 2

Lf
]. Suppose we are receiving the update directions ut from an

unbiased stochastic first-order oracle with bounded variance such that

E[ut|zt] = ∇f(zt) and E[‖ut −∇f(zt)‖2] ≤ σ2 for some σ < +∞. (S.25)

Then,

E[‖yT+1 − y?‖] ≤ ‖y0 − y?‖+ 2σ

√
γ0

Lf
, (S.26)

where y? is a fixed point of TOS.

Proof. The proof is similar to the proof of Theorem S.7. We start from (S.20) and take the expectation:

E[‖yt+1 − y?‖2] ≤ E[‖yt − y?‖2]− E[‖yt+1 − yt‖2]− 2γE[〈xt − x?, ut − u?〉]. (S.27)

We decompose the last term as follows:

E[〈xt − x?, u? − ut〉] = E[〈xt − zt, u? − ut〉] + E[〈zt − x?, u? −∇f(zt)〉] + E[〈zt − x?,∇f(zt)− ut〉]

≤ E[〈xt − zt, u? − ut〉]−
1

Lf
E[‖u? −∇f(zt)‖2]. (S.28)

where the inequality holds since f is Lf -smooth and convex. Moreover, we can bound the inner product term by using
Young’s inequality as follows:

E[〈xt − zt, u? − ut〉] = E
[
〈xt − zt, u? −∇f(zt)〉+ 〈xt − zt,∇f(zt)− ut〉

]
≤ E

[c1 + c2
2
‖xt − zt‖2 +

1

2c1
‖u? −∇f(zt)‖2 +

1

2c2
‖∇f(zt)− ut‖2

]
(S.29)
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for any c1, c2 > 0. We choose c1 = Lf/2, so that the corresponding terms in (S.28) and (S.29) cancel out. Combining
(S.27), (S.28) and (S.29), we get

E[‖yt+1 − y?‖2] ≤ E[‖yt − y?‖2]− E[‖yt+1 − yt‖2] + γ(
Lf

2 + c2)E[‖xt − zt‖2] + γ
σ2

c2

≤ E[‖yt − y?‖2] +
(
γ
Lf + 2c2

2
− 1
)
E[‖xt − zt‖2] + γ

σ2

c2
. (S.30)

Then, we choose c2 =
Lf

2 (
√
T + 1− 1). With the condition γ0 ≤ 2

Lf
, this guarantees

γ
Lf + 2c2

2
− 1 =

γ0√
T + 1

Lf
√
T + 1

2
− 1 ≤ γ0

Lf
2
− 1 ≤ 0. (S.31)

Returning to (S.30), we now have

E[‖yt+1 − y?‖2] ≤ E[‖yt − y?‖2] +
γ0√
T + 1

2σ2

Lf (
√
T + 1− 1)

≤ E[‖yt − y?‖2] +
4γ0σ

2

Lf (T + 1)
. (S.32)

Finally, we sum this inequality over t = 0 to T ,

E[‖yT+1 − y?‖2] ≤ ‖y0 − y?‖2 +
4γ0σ

2

Lf
. (S.33)

Remark that E[‖yT+1 − y?‖]2 ≤ E[‖yT+1 − y?‖2]. We finish the proof by taking the square-root of both sides.

D Convergence Guarantees

This section presents the technical analysis of our main results.

D.1 Proof of Theorem 1

We divide this proof into two parts.

Part 1. In the first part, we show that the sequence generated by TOS satisfies

〈ut, xt − x?〉+ g(zt)− g(x?) + h(xt)− h(x?) ≤
1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 −

1

2γ
‖yt+1 − yt‖2. (S.34)

Since xt = proxγh(2zt − yt − γut), by Lemma S.2, we have

〈2zt − yt − γut − xt, x? − xt〉 ≤ γh(x?)− γh(xt). (S.35)

We rearrange this inequality as follows:

〈ut, xt − x?〉+ h(xt)−h(x?) ≤
1

γ
〈2zt − yt − xt, xt − x?〉

=
1

γ
〈zt − yt, zt − x?〉+

1

γ
〈zt − yt, xt − zt〉+

1

γ
〈zt − xt, xt − x?〉

=
1

γ
〈zt − yt, zt − x?〉+

1

γ
〈yt + xt − zt − x?, zt − xt〉

=
1

γ
〈zt − yt, zt − x?〉+

1

γ
〈yt+1 − x?, yt − yt+1〉. (S.36)

Then, we use Lemma S.2 once again (for γg) and get

〈ut, xt − x?〉+ g(zt)− g(x?) + h(xt)− h(x?) ≤
1

γ
〈yt+1 − x?, yt − yt+1〉

≤ 1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 −

1

2γ
‖yt+1 − yt‖2. (S.37)

This completes the first part of the proof.
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Part 2. In the second part, we characterize the convergence rate of f(z̄t) + g(z̄t) + h(x̄t)− φ? to 0 by using (S.34).
Since f is convex, we have

〈ut, xt − x?〉 = 〈ut, zt − x?〉 − 〈ut, zt − xt〉 ≥ f(zt)− f(x?)−
1

2γ
‖xt − zt‖2 −

γ

2
‖ut‖2. (S.38)

By combining (S.34) and (S.38), we obtain

f(zt) + g(zt) + h(xt)− φ? ≤
1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 +

γ

2
‖ut‖2. (S.39)

We sum this inequality over t = 0 to T :

T∑
τ=0

(
f(zτ ) + g(zτ ) + h(xτ )− φ?

)
≤ 1

2γ
‖y0 − x?‖2 +

γ

2

T∑
τ=0

‖uτ‖2 ≤
1

2γ
‖y0 − x?‖2 +

γ0

2
G2
f

√
T + 1, (S.40)

where the second inequality holds due to the bounded subgradients assumption. Finally, we divide both sides by (T + 1)
and use Jensen’s inequality:

f(z̄t) + g(z̄t) + h(x̄t)− φ? ≤
1

2
√
T + 1

(
1

γ0
‖y0 − x?‖2 + γ0G

2
f

)
. (S.41)

D.2 Proof of Theorem 2

The proof is similar to the proof of Theorem 1. We will only discuss the different steps. Part 1 of the proof is the same,
i.e., (S.34) is still valid.

We need to consider the randomness of the gradient estimator in the second part. To this end, we modify (S.38) as:

E[〈ut, xt − x?〉] = E[〈ût, zt − x?〉] + E[〈ut − ût, zt − x?〉]− E[〈ut, zt − xt〉]
≥ E[f(zt)− f(x?)]− E[〈ut, zt − xt〉]

≥ E[f(zt)− f(x?)]−
1

2γ
E[‖zt − xt‖2]− γ

2
E[‖ut‖2]

≥ E[f(zt)− f(x?)]−
1

2γ
E[‖zt − xt‖2]− γ

2
(G2

f + σ2), (S.42)

where the last line holds since

E[‖ut‖2] = E[‖ut − ût + ût‖2] (S.43)

= E[‖ut − ût‖2] + E[‖ût‖2] + 2E[〈ut − ût, ût〉] ≤ σ2 +G2
f . (S.44)

Now, we take the expectation of (S.34) and substitute (S.42) into it:

E[f(zt) + g(zt) + h(xt)]− φ? ≤
1

2γ
E[‖yt − x?‖2]− 1

2γ
E[‖yt+1 − x?‖2] +

γ

2
(σ2 +G2

f ). (S.45)

We sum this inequality from t = 0 to T and divide both sides by T + 1. Then, we use Jensen’s inequality and get

E[f(z̄T ) + g(z̄T ) + h(x̄T )]− φ? ≤
1

2
√
T + 1

(
1

γ0
‖y0 − x?‖2 + γ0(σ2 +G2

f )

)
. (S.46)

D.3 TOS for the Smooth and Stochastic Setting (Remark 3)

Theorem S.9. Consider Problem (14) and suppose f is Lf -smooth on dom(g). Employ TOS (Algorithm 1) with a
fixed step-size γ = γ0/

√
T + 1 for some γ0 ∈ [0, 1

2Lf
]. Suppose we are receiving the update directions ut from an

unbiased stochastic first-order oracle with bounded variance such that

E[ut|zt] = ∇f(zt) and E[‖ut −∇f(zt)‖2] ≤ σ2 for some σ < +∞. (S.47)

Then, the following guarantees hold:

E[f(x̄T ) + g(z̄T ) + h(x̄T )]− φ? ≤
1√
T + 1

(
D2

2γ0
+ γ0σ

2

)
, where D = ‖y0 − x?‖. (S.48)
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Proof. The proof is similar to Theorem 1. (S.34) still holds. We modify (S.38) as follows (similar to (S.42)):

E[〈ut, xt − x?〉] ≥ E[f(zt)− f(x?)] + E[〈∇f(zt)− ut, zt − xt〉]− E[〈∇f(zt), zt − xt〉]

≥ E[f(xt)− f(x?)]−
1

4γ
E[‖zt − xt‖2]− γE[‖∇f(zt)− ut‖2]− Lf

2
‖xt − zt‖2

≥ E[f(xt)− f(x?)]−
1 + 2γLf

4γ
E[‖yt+1 − yt‖2]− γσ2. (S.49)

We take the expectation of (S.34) and replace (S.49) into it

E[f(xt) + g(zt) + h(xt)]− φ? ≤
1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 +

2γLf − 1

4γ
E[‖yt+1 − yt‖2] + γσ2

≤ 1

2γ
‖yt − x?‖2 −

1

2γ
‖yt+1 − x?‖2 + γσ2, (S.50)

where the second line holds since we choose γ0 ∈ [0, 1
2Lf

].

We sum (S.50) from t = 0 to T and divide both sides by T +1. We complete the proof by using Jensen’s inequality.

E Convergence Guarantees for ADAPTOS

In this section, we focus on Problem (18), an important subclass of Problem (1) where g and h are indicator functions.
In this setting, TOS performs the following steps iteratively for t = 0, 1, . . .:

zt = projG(yt) (S.51)
xt = projH(2zt − yt − γtut) (S.52)

yt+1 = yt − zt + xt, (S.53)

where γt at line (S.52) is chosen according to the adaptive step-size rule (19), i.e.,

γt =
α√

β +
∑t−1
τ=0 ‖uτ‖2

for some α, β > 0. (S.54)

The following lemmas are useful in the analysis.
Lemma S.3 (Lemma A.2 in (Levy, 2017)). Let f : Rn → R be a Lf -smooth function and let x? ∈ arg minx∈Rn f(x).
Then,

‖∇f(x)‖2 ≤ 2Lf
(
f(x)− f(x?)

)
, ∀x ∈ Rn.

Lemma S.4 (Lemma 9 in (Bach & Levy, 2019)). For any non-negative numbers a0, . . . , at ∈ [0, a], and β ≥ 0

t∑
i=0

ai√
β +

∑i−1
j=0 aj

≤ 2a√
β

+ 3
√
a+ 3

√√√√β +

t−1∑
i=0

ai.

Lemma S.5 (Lemma 10 in (Bach & Levy, 2019)). For any non-negative numbers a0, . . . , at ∈ [0, a], and β ≥ 0

t∑
i=0

ai

β +
∑i−1
j=0 aj

≤ 2 +
4a

β
+ 2 log

(
1 +

t−1∑
i=0

ai
β

)
.

Corollary S.3. Suppose ‖ut‖ ≤ G for all t. Then, the following relations hold for ADAPTOS:

(i).

t∑
τ=0

γτ‖uτ‖2 = α

t∑
τ=0

‖uτ‖2√
β +

∑τ−1
j=0 ‖uj‖2

≤ α
(

2G2

√
β

+ 3G+ 3
√
β +G2t

)

(ii).

t∑
τ=0

γ2
τ‖uτ‖2 = α2

t∑
τ=0

‖uτ‖2

β +
∑τ−1
j=0 ‖uj‖2

≤ α2

(
2 +

4G2

β
+ 2 log

(
1 +

G2

β
t
))

(iii).

t∑
τ=0

γτ‖uτ‖ =

t∑
τ=0

√
γ2
τ‖uτ‖2 ≤

√
(t+ 1)

∑t
τ=0 γ

2
τ‖uτ‖2 ≤ α

√
t+ 1

√
2 +

4G2

β
+ 2 log

(
1 +

G2

β
t
)
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E.1 Proof of Theorem 3

First, we will bound the growth rate of ‖yt+1 − x?‖. We decompose ‖yt+1 − x?‖2 as

‖yt+1 − x?‖2 = ‖yt − zt + xt − x?‖2 = ‖yt − zt‖2 + ‖xt − x?‖2 + 2〈xt − x?, yt − zt〉. (S.55)

Since zt = projG(yt) and x? ∈ G, we have

‖yt − zt‖2 = 〈yt − zt, yt − x?〉+ 〈yt − zt, x? − zt〉 ≤ 〈yt − zt, yt − x?〉. (S.56)

Similarly, since xt = projH(2zt − yt − γtut) and x? ∈ H, by the firm non-expansivity, we have

‖xt − x?‖2 ≤ 〈xt − x?, 2zt − yt − γtut − x?〉. (S.57)

By combining (S.55), (S.56) and (S.57), we get

‖yt+1 − x?‖2 ≤ 〈yt − zt + xt − x?, yt − x?〉 − γt〈xt − x?, ut〉
= 〈yt+1 − x?, yt − x?〉 − γt〈xt − x?, ut〉

=
1

2
‖yt+1 − x?‖2 +

1

2
‖yt − x?‖2 −

1

2
‖yt+1 − yt‖2 − γt〈xt − x?, ut〉. (S.58)

Now, we rearrange (S.58) as follows:

‖yt+1 − x?‖2 ≤ ‖yt − x?‖2 − ‖yt+1 − yt‖2 + 2γt〈ut, x? − xt〉
= ‖yt − x?‖2 − ‖yt+1 − yt‖2 + 2γt〈ut, x? − zt〉+ 2γt〈ut, zt − xt〉
≤ ‖yt − x?‖2 + 2γt〈ut, x? − zt〉+ γ2

t ‖ut‖2

≤ ‖yt − x?‖2 + 2γt‖ut‖‖zt − x?‖+ γ2
t ‖ut‖2

≤ ‖yt − x?‖2 + 2γt‖ut‖‖yt − x?‖+ γ2
t ‖ut‖2 = (‖yt − x?‖+ γt‖ut‖)2, (S.59)

where we use non-expansivity of the projection operator in the last line: ‖zt − x?‖ = ‖projG(yt)− x?‖ ≤ ‖yt − x?‖.
Next, we take the square root of both sides and use Corollary S.3 to get

‖yt+1 − x?‖ ≤ ‖yt − x?‖+ γt‖ut‖

≤ ‖y0 − x?‖+

t∑
τ=0

γτ‖uτ‖

≤ ‖y0 − x?‖+ α
√
t+ 1

√
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
)
. (S.60)

Now, we can derive a bound on the infeasibility as follows:

dist(z̄t,H) ≤ ‖x̄t − z̄t‖ =
1

t+ 1
‖

t∑
τ=0

(xτ − zτ )‖ =
1

t+ 1
‖yt+1 − y0‖ ≤

1

t+ 1
(‖yt+1 − x?‖+ ‖y0 − x?‖)

≤ 1

t+ 1

(
2‖y0 − x?‖+ α

√
t+ 1

√
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
))
. (S.61)

Next, we prove convergence in objective value. Define st =
∑t
τ=0 γt and z̃t = 1

st

∑t
τ=0 γtzt. Since f is convex, by

Jensen’s inequality,

f(z̃t)− f? ≤
1

st

t∑
τ=0

γτ (f(zτ )− f?) ≤
1

st

t∑
τ=0

γτ 〈ut, zτ − x?〉. (S.62)

From (S.59), we have

γt〈ut, zt − x?〉 ≤
1

2
‖yt − x?‖2 −

1

2
‖yt+1 − x?‖2 +

1

2
γ2
t ‖ut‖2. (S.63)

If we substitute (S.63) into (S.62), we obtain

f(z̃t)− f? ≤
1

2st

(
‖y0 − x?‖2 +

t∑
τ=0

γ2
τ‖uτ‖2

)
≤ 1

2st

(
‖y0 − x?‖2 + α2

(
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
)))

(S.64)
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where the second line comes from Corollary S.3. Finally, we note that

st =

t∑
τ=0

γτ =

t∑
τ=0

α√
β +

∑τ−1
j=0 ‖uj‖2

≥
t∑

τ=0

α√
β +G2

f t
=

α(t+ 1)√
β +G2

f t
≥ α(t+ 1)
√
β +Gf

√
t
. (S.65)

We complete the proof by using (S.65) in (S.64):

f(z̃t)− f? ≤
(

Gf√
t+ 1

+

√
β

t+ 1

)(
1

2α
‖y0 − x?‖2 + α

(
1 +

2G2
f

β + log
(
1 +

G2
f

β t
)))

. (S.66)

E.2 Proof of Theorem 4

As in the proof of Theorem 3, our first goal is to bound ‖yt+1 − y?‖. We start from (S.59):

‖yt+1 − x?‖2 ≤ ‖yt − x?‖2 + 2γt〈ut, x? − zt〉+ γ2
t ‖ut‖2. (S.67)

By assumption f is convex and the solution lies in the interior of the feasible set. Hence, 〈ut, x? − zt〉 ≤ 0 and

‖yt+1 − x?‖2 ≤ ‖yt − x?‖2 + γ2
t ‖ut‖2 ≤ ‖y0 − x?‖2 +

t∑
τ=0

γ2
τ‖uτ‖2. (S.68)

By using Corollary S.3, this leads to

‖yt+1 − x?‖2 ≤ ‖y0 − x?‖2 + α2
(

2 +
4G2

f

β + 2 log
(
1 +

G2
f

β t
))

︸ ︷︷ ︸
:=D2

t

. (S.69)

We take the square-root of both sides to obtain ‖yt+1 − x?‖ ≤ Dt. This proves that ‖yt − x?‖ is bounded by a
logarithmic growth. Similar to (S.61), we can use this bound to prove convergence to a feasible point:

dist(z̄t,H) ≤ ‖x̄t − z̄t‖ ≤
1

t+ 1

(
‖yt+1 − x?‖+ ‖y0 − x?‖

)
≤ 1

t+ 1

(
Dt + ‖y0 − x?‖

)
≤ 1

t+ 1

(
2‖y0 − x?‖+ α

√
2 +

4G2
f

β + 2 log
(

1 +
G2

f

β t
))

. (S.70)

Next, we analyze the objective suboptimality. From (S.67), we have

〈ut, zt − x?〉 ≤
1

2γt
‖yt − x?‖2 −

1

2γt
‖yt+1 − x?‖2 +

γt
2
‖ut‖2. (S.71)

Then, since f is convex, by using Jensen’s inequality and (S.71), we get

Φt : =
1

t+ 1

t∑
τ=0

(f(zτ )− f?)

≤ 1

t+ 1

t∑
τ=0

〈ut, zt − x?〉

≤ 1

2(t+ 1)

(
1

γ0
‖y0 − x?‖2 +

t∑
τ=1

( 1

γτ
− 1

γτ−1

)
‖yτ − x?‖2︸ ︷︷ ︸

(∗)

+

t∑
τ=0

γτ‖uτ‖2
)
. (S.72)
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Now, we focus on (∗). By using (S.68), we get

(∗) ≤
t∑

τ=1

( 1

γτ
− 1

γτ−1

)(
‖y0 − x?‖2 +

τ−1∑
j=0

γ2
j ‖uj‖2

)
=
( 1

γt
− 1

γ0

)
‖y0 − x?‖2 +

t∑
τ=1

1

γτ

τ−1∑
j=0

γ2
j ‖uj‖2 −

t∑
τ=1

1

γτ−1

τ−1∑
j=0

γ2
j ‖uj‖2

=
( 1

γt
− 1

γ0

)
‖y0 − x?‖2 +

t∑
τ=1

1

γτ

τ−1∑
j=0

γ2
j ‖uj‖2 −

t−1∑
τ=0

1

γτ

τ∑
j=0

γ2
j ‖uj‖2

=
( 1

γt
− 1

γ0

)
‖y0 − x?‖2 +

t∑
τ=1

1

γτ

τ∑
j=0

γ2
j ‖uj‖2 −

t∑
τ=1

γτ‖uτ‖2 −
t−1∑
τ=0

1

γτ

τ∑
j=0

γ2
j ‖uj‖2

=
( 1

γt
− 1

γ0

)
‖y0 − x?‖2 +

t∑
τ=0

1

γτ

τ∑
j=0

γ2
j ‖uj‖2 −

t∑
τ=0

γτ‖uτ‖2 −
t−1∑
τ=0

1

γτ

τ∑
j=0

γ2
j ‖uj‖2

=
( 1

γt
− 1

γ0

)
‖y0 − x?‖2 +

1

γt

t∑
j=0

γ2
j ‖uj‖2 −

t∑
τ=0

γτ‖uτ‖2. (S.73)

We substitute this back into (S.72) and obtain

Φt ≤
1

2(t+ 1)

1

γt

(
‖y0 − x?‖2 +

t∑
j=0

γ2
j ‖uj‖2

)
≤ D2

t

2γt(t+ 1)
(S.74)

where D2
t is defined in (S.69).

By the definition of γt we get

Φt ≤
D2
t

2γt(t+ 1)
=

D2
t

2α(t+ 1)

√√√√β +

t−1∑
τ=0

‖uτ‖2 ≤
D2
t

2α(t+ 1)

√√√√β +

t∑
τ=0

‖uτ‖2. (S.75)

By Lemma S.3, we have
t∑

τ=0

‖uτ‖2 ≤ 2Lf

t∑
τ=0

(
f(zτ )− f?

)
= 2Lf (t+ 1)Φt. (S.76)

We place this back into (S.75), take the square of both sides, and rearrange the inequality as follows:

4α2(t+ 1)2

D4
t

Φ2
t ≤ 2Lf (t+ 1)Φt + β. (S.77)

This is a second order inequality of Φt. By solving this inequality, we get

Φt ≤
1

2(t+ 1)

((D2
t

α

)2

Lf +
D2
t

α

√
β

)
. (S.78)

Finally, we note f(z̄t)− f? ≤ Φt by Jensen’s inequality.

E.3 Proof of Theorem 5

Once again we start from (S.59) and take the expectation of both sides:

E[‖yt+1 − x?‖2] ≤ E[‖yt − x?‖2] + E[2γt〈ut, x? − zt〉] + E[γ2
t ‖ut‖2]

≤ E[‖yt − x?‖2] + E[2γt〈ût, x? − zt〉] + E[γ2
t ‖ut‖2]. (S.79)

Since we assume f is convex and the solution lies in the interior of the feasible set, we know 0 ∈ ∂f(x?) and
〈ût, x? − zt〉 ≤ 0. Hence, we have

E[‖yt+1 − x?‖2] ≤ E[‖yt − x?‖2] + E[γ2
t ‖ut‖2] ≤ ‖y0 − x?‖2 + E

[ t∑
τ=0

γ2
τ‖uτ‖2

]
. (S.80)
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By using Corollary S.3, this leads to

E[‖yt+1 − x?‖2] ≤ ‖y0 − x?‖2 + α2
(

2 +
4G2

f

β + 2 log
(
1 +

G2
f

β t
))
. (S.81)

We take the square-root of both sides. Note that E[‖yt+1 − x?‖]2 ≤ E[‖yt+1 − x?‖2], hence

E[‖yt+1 − x?‖] ≤ ‖y0 − x?‖+ α

√
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
)
. (S.82)

Similar to (S.61), we can use this bound to prove convergence to a feasible point:

E[dist(z̄t,H)] ≤ 1

t+ 1

(
E[‖yt+1 − x?‖] + ‖y0 − x?‖

)
≤ 1

t+ 1

(
2‖y0 − x?‖+ α

√
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
))
. (S.83)

Next, we analyze convergence in the function value. Note that

γτ (f(zτ )− f?) ≤ γτ 〈ût, zτ − x?〉 = γτ 〈uτ , zτ − x?〉+ γτ 〈ûτ − uτ , zτ − x?〉. (S.84)

Recall that γτ and uτ are independent given zτ . Then, the second term vanishes if we take the expectation of both sides:

E[γτ (f(zτ )− f?)] = E[γτ 〈uτ , zτ − x?〉]. (S.85)

Then, by using (S.79), we get

E[γτ (f(zτ )− f?)] ≤
1

2
E
[
‖yτ − x?‖2 − ‖yτ+1 − x?‖2 + γ2

τ‖uτ‖2
]
. (S.86)

If we sum this inequality over τ = 0, 1, . . . , t, we get

E
[ t∑
τ=0

γτ (f(zτ )− f?)
]
≤ 1

2
‖y0 − x?‖2 +

1

2
E
[ t∑
τ=0

γ2
τ‖uτ‖2

]
. (S.87)

From Corollary S.3,

E
[ t∑
τ=0

γ2
τ‖uτ‖2

]
≤ α2

(
2 +

4G2
f

β + 2 log
(
1 +

G2
f

β t
))
. (S.88)

Replacing this back into (S.87), we get

E
[ t∑
τ=0

γτ (f(zτ )− f?)
]
≤ 1

2
‖y0 − x?‖2 + α2

(
1 +

2G2
f

β + log
(
1 +

G2
f

β t
))
. (S.89)

Let us define st :=
∑t
τ=0 γτ . By Jensen’s inequality, we get

E
[ t∑
τ=0

γτ (f(zτ )− f?)
]

= E
[st
st

t∑
τ=0

γτ (f(zτ )− f?)
]
≥ E

[
st(f(z̃t)− f?)

]
. (S.90)

Note that

st =

t∑
τ=0

γτ =

t∑
τ=0

α√
β +

∑τ−1
j=0 ‖uj‖2

≥
t∑

τ=0

α√
β +G2

f t
=

α(t+ 1)√
β +G2

f t
. (S.91)

Then, we have

α(t+ 1)√
β +G2

f t
E
[
(f(z̃t)− f?)

]
≤ E

[
st(f(z̃t)− f?)

]
≤ 1

2
‖y0 − x?‖2 + α2

(
1 +

2G2
f

β + log
(
1 +

G2
f

β t
))
. (S.92)

By rearranging, we get

E
[
(f(z̃t)− f?)

]
≤
( √β
t+ 1

+
Gf√
t+ 1

)( 1

2α
‖y0 − x?‖2 + α

(
1 +

2G2
f

β + log
(
1 +

G2
f

β t
)))

. (S.93)
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F More Details on the Experiments in Section 6

F.1 Details for Section 6.1

In the implementation of ADAPTOS we simply discarded β and set γ0 = α. Figure S.5 demonstrates how the
performance of ADAPTOS depends on α for the experiments we considered in Section 6.1.

For Figure 1, we choose:

. α = 10 for overlapping group lasso with λ = 10−3 and synthetic data,

. α = 1 for overlapping group lasso with λ = 10−1 and synthetic data,

. α = 100 for overlapping group lasso with λ = 10−3 and real-sim dataset,

. α = 100 for overlapping group lasso with λ = 10−2 and real-sim dataset,

. α = 1 for sparse and low-rank regularization with λ = 10−3,

. α = 1 for sparse and low-rank regularization with λ = 10−4,

. α = 100 for total variation deblurring with λ = 10−6,

. α = 100 for total variation deblurring with λ = 10−4.

In Section 6.1, we consider problems only with smooth f . To present how the performance of ADAPTOS changes
by α when f is nonsmooth, we also run the overlapping group lasso problem with the hinge loss. In this setting, we
used RCV1 dataset (Lewis et al., 2004) (n = 677399, N = 20242) and tried two different values of the regularization
parameter λ = 10−3 and 10−2. The results are shown in Figure S.4.

Figure S.4: Empirical performance of ADAPTOS for different choices of α for the overlapping group lasso problem
with the hinge-loss. In this experiment we use RCV1 dataset (Lewis et al., 2004) (n = 677399, N = 20242) and tried
two different values of the regularization parameter λ = 10−3 and 10−2.

F.2 Details for Section 6.2

Figure S.6 shows the recovered approximations with `1 and `2-loss functions along with the original image and the noisy
observation. `1-loss is known to be more reliable against outliers, and it empirically generates a better approximation of
the original image with 26.21 dB peak signal to noise ratio (PSNR) against 21.15 dB for the `2-loss.

In Figure S.7 we extend the comparison in Figure 2 with the squared-`2 loss.

min
X∈Rm×n

1

2
‖A(X)− Y ‖22 subject to ‖X‖∗ ≤ λ, 0 ≤ X ≤ 1, (S.94)

Note that the solution set is the same for `2 and squared-`2 formulations. However, squared-`2 loss is smooth whereas
`2 loss is nonsmooth. Nevertheless, the empirical performance of ADAPTOS for the two formulations are similar. We
also compare the evaluation of PSNR over the iterations. This comparison clearly demonstrates the advantage of using
the robust `1 loss formulation.
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Figure S.5: Empirical performance of ADAPTOS with different choices of α for the problems with smooth and convex
loss function studied in Section 6.1.
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Figure S.6: Comparison or images recovered by minimizing the `1, `2 and squared-`2 loss functions described in
Section 6.2. `1-loss empirically gives a better approximation with 5dB higher PSNR.

Figure S.7: Performance of ADAPTOS on image impainting problems with `1, `2, and squared-`2 loss functions
described in Section 6.2. The performance for nonsmooth `2 loss and smooth squared-`2 loss are qualitatively similar.
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F.3 Details for Section 6.3

Let y = f(x,w) denote a generic deep neural network with H hidden layers, which takes a vector input x and returns
a vector output y, and w represents the column-vector concatenation of all adaptable parameters. kth hidden layer
operates on input vector θk and returns θk+1,

θk+1 = φk(Wkθk + bk), for 1 ≤ k ≤ H, (S.95)

where θ1 = x denotes the input layer by convention, {θk, bk} are the adaptable parameters of the layer and φk is an
activation function to be applied entry-wise. We use ReLu activation (Glorot et al., 2011) for the hidden layers of the
network and the softmax activation function for the output layer. We use the same initial weights as in (Scardapane
et al., 2017), which is based on the method described in (Glorot & Bengio, 2010).

Given a set of N training examples {(x1,y1), . . . , (xN ,yN )}, we train the network by minimizing

min
w∈Rn

1

N

N∑
i=1

L(yi, f(xi,w)) + λ‖w‖1 + λ
∑
α∈Ω

√
|α|‖α‖2, (S.96)

with the standard cross-entropy loss given by L(y, f(x,w)) = −
∑dim(y)
j=1 yj log(fj(x,w)). λ > 0 is the regulariza-

tion parameter. We set λ = 10−4, which is shown to provide the best results in terms of classification accuracy and
sparsity in (Scardapane et al., 2017).

The first regularizer (`1 penalty) in (S.96) promotes sparsity on the overall network, while the second regularizer
(Group-Lasso penalty, introduced in (Yuan & Lin, 2006)) is used to achieve group-level sparsity. The goal is to force all
outgoing connections from the same neurons to be simultaneously zero, so that we can safely remove them and obtain a
compact network. To this end, Ω contains the sets of all outgoing connections from each neuron (corresponding to the
rows ofWk) and single element groups of bias terms (corresponding to the entries of bk).

We compare our methods against SGD, AdaGrad and Adam. We use minibatch size of 400 for all methods. We use
the built-in functions in Lasagne for SGD, AdaGrad and Adam. These methods use the subgradient of the overall
objective (S.96). All of these methods have one learning rate parameter for tuning. We tune these parameters by trying
the powers of 10. We found that γ0 = α = 1 works well for TOS and ADAPTOS. For SGD and AdaGrad, we got the
best performance when the learning rate parameter is set to 10−2, and for Adam we got the best results with 10−3.

Remark that subgradient methods are known to destroy sparsity at the intermediate iterations. For instance, the
subgradients of `1 norm are fully dense. In contrast, TOS and ADAPTOS handle the regularizers through their proximal
operators. The advantage of using a proximal method instead of subgradients is outstanding. TOS and ADAPTOS result
in precisely sparse networks whereas other methods can only get approximately sparse solutions. The comparison
becomes especially stark in group sparsity, with no clear discontinuity in the spectrum for other methods.

G Additional Numerical Experiments

In this section, we present additional numerical experiments on isotonic regression and portfolio optimization problems.
The experiments in this section are performed in MATLAB R2018a with 2.6 GHz Quad-Core Intel Core i7 CPU.

G.1 Isotonic Regression

In this section, we compare the empirical performance of the adaptive step-size in Section 5 with the analytical step-size
in Section 3. We consider the isotonic regression problem with the `p-norm loss:

min
x∈Rn

1
p‖Ax− b‖

p
p subject to x1 ≤ x2 ≤ . . . ≤ xn, (S.97)

where A ∈ Rm×n is a given linear map and b ∈ Rm is the measurement vector. Projection onto the order constraint in
(S.97) is challenging, but we can split it into two simpler constraints:

min
x∈Rn

1
p‖Ax− b‖

p
p subject to


x1 ≤ x2

x3 ≤ x4
...

 and


x2 ≤ x3

x4 ≤ x5
...

 . (S.98)

We demonstrate the numerical performance of the methods for various values of p ∈ [1, 2]. Note that p = 1 and p = 2
capture the nonsmooth least absolute deviations loss and the smooth least squares loss respectively. For larger values of
p, we expect ADAPTOS to exhibit faster rates by adapting to the underlying smoothness of the objective function.
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Figure S.8: Comparison of the empirical performance of TOS with the analytical step-size in Section 3 and the adaptive
step-size in Section 5 on the isotonic regression problem in (S.97) with the `p-loss function for various p ∈ [1, 2].
For larger values of p, ADAPTOS exhibits faster convergence rates by adapting to the underlying smoothness of the
objective function. For p = 2, the problem is smooth so we also consider the standard fixed step-size γ = 1/Lf in this
setting. Solid lines represent the last iteration and the dashed lines correspond to the ergodic sequences x̄t and z̄t.

We generate a synthetic test setup. To this end, we set the problem size as m = 100 and n = 200. We generate right
and left singular vectors of A by computing the singular value decomposition of a random matrix with iid entries drawn
from the standard normal distribution. Then, we set the singular values according to a polynomial decay rule such that
the ith singular vector is 1/i. We generate x\ ∈ Rn by sorting n iid samples from the standard normal distribution.
Then, we compute the noisy measurements b = Ax\ + 0.1ξ where the entries of ξ is drawn iid from the standard
normal distribution.

By considering a decaying singular value spectrum for A we control the condition number and make sure the problem
is not very easy to solve. By adding noise, we ensure that the solution is not in the relative interior of the feasible set.
Therefore, this experiment also supports our claim that ADAPTOS can achieve fast rates when the objective is smooth
even if the solution does not lie in the interior of the feasible set.

When the problem is nonsmooth, i.e., when p < 2, we use TOS with the analytical step-size in Section 3 and the
adaptive step-size in Section 5. We choose α = β = γ0 = 1 without any tuning. When p = 2, the problem is smooth so
we also try TOS with the standard constant step-size γ = 1/Lf in this setting. We run each algorithm for 105 iterations.
In order to find the ground truth f? we solve the problem to very high precision by using CVX (Grant & Boyd, 2014)
with the SDPT3 solver (Toh et al., 1999).

We repeat the experiments with 20 randomly generated data with different seeds and report the average performance
in Figure S.8. This figure compares the performance we get by different step-size strategies in terms of objective
suboptimality (|f(zt) − f?|/f?) and infeasbility bound (‖zt − xt‖). As expected, ADAPTOS performs better as p
becomes larger. Although it does not exactly match the performance of the fixed step-size 1/Lf when f is smooth
(p = 2), remark that ADAPTOS does not require any prior knowledge on Lf or Gf .
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G.2 Portfolio Optimization

In this section, we demonstrate the advantage of stochastic methods for machine learning problems. We consider the
portfolio optimization with empirical risk minimization from Section 5.1 in (Yurtsever et al., 2016):

min
x∈Rn

1

2

N∑
i=1

|〈ai, x〉 − b|2 subject to x ∈ ∆ and 〈aav, x〉 ≥ b (S.99)

where ∆ is the unit simplex. Here n is the number of different assets and x ∈ ∆ represents a portfolio. The collection
of {ai}Ni=1 represents the returns of each asset at different time instances, and the aav is the average returns for each
asset that is assumed to be known or estimated. Given a minimum target return b ∈ R, the goal is to reduce the risk by
minimizing the variance. As in (Yurtsever et al., 2016), we set the target return as the average return over all assets, i.e.,
b = mean(aav).

In addition, we also consider a modification of (S.99) with the least absolute deviation loss, which is nonsmooth but
known to be more robust against outliers:

min
x∈Rn

N∑
i=1

|〈ai, x〉 − b| subject to x ∈ ∆ and 〈aav, x〉 ≥ b. (S.100)

We use 4 different real portfolio datasets: Dow Jones industrial average (DJIA, 30 stocks for 507 days), New York stock
exchange (NYSE, 36 stocks for 5651 days), Standard & Poor’s 500 (SP500, 25 stocks for 1276 days), and Toronto
stock exchange (TSE, 88 stocks for 1258 days).2

For both problems and each dataset, we run ADAPTOS with full (sub)gradients and stochastic (sub)gradients and
compare their performances. We choose α = β = 1 without tuning and run the algorithms for 10 epochs. In the
stochastic setting, we evaluate a (sub)gradient estimator from a single datapoint chosen uniformly at random with
replacement at every iteration. We run the stochastic algorithm 20 times with different random seeds and present the
average performance. To find the ground truth f? we solve the problems to very high precision by using CVX (Grant &
Boyd, 2014) with the SDPT3 solver (Toh et al., 1999). Figures S.9 and S.10 present the results of this experiment for
(S.99) and (S.100) respectively.

2These four datasets can be downloaded from http://www.cs.technion.ac.il/~rani/portfolios/
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Figure S.9: Comparison of ADAPTOS with stochastic and deterministic gradients on the smooth portfolio optimization
problem with least-squares loss in (S.99) for four different datasets. Solid and dashed lines represent the last and ergodic
iterates respectively.

Figure S.10: Comparison ADAPTOS with stochastic and deterministic gradients on the nonsmooth portfolio optimization
problem with least absolute deviations loss in (S.100) for four different datasets. Solid and dashed lines represent the
last and ergodic iterates respectively.

S.17


	Introduction
	Background and related work
	TOS for Nonsmooth Setting
	TOS for Stochastic Setting
	TOS with Adaptive Learning Rates
	Numerical Experiments
	Experiments on Convex Optimization with Smooth f
	Experiments on Convex Optimization with Nonsmooth f
	An Experiment on Neural Networks

	Conclusions
	Preliminaries
	Fixed Point Characterization
	Proof of Lemma 1

	Boundedness Guarantees
	Convergence Guarantees
	Proof of Theorem 1
	Proof of Theorem 2
	TOS for the Smooth and Stochastic Setting (Remark 3)

	Convergence Guarantees for AdapTos
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	More Details on the Experiments in Section 6
	Details for Section 6.1
	Details for Section 6.2
	Details for Section 6.3

	Additional Numerical Experiments
	Isotonic Regression
	Portfolio Optimization


