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Abstract

We consider a variant of the stochastic multi-armed bandit problem where arms are
known to be organized into different groups having the same mean. The groups
are unknown but a lower bound q on their size is known. This situation typically
appears when each arm can be described with a list of categorical attributes, and
the (unknown) mean reward function only depends on a subset of them, the others
being redundant. In this case, q is linked naturally to the number of attributes
considered redundant, and the number of categories of each attribute. For this
structured problem of practical relevance, we first derive the asymptotic regret
lower bound and corresponding constrained optimization problem. They reveal the
achievable regret can be substantially reduced when compared to the unstructured
setup, possibly by a factor q. However, solving exactly the exact constrained
optimization problem involves a combinatorial problem. We introduce a lower-
bound inspired strategy involving a computationally efficient relaxation that is
based on a sorting mechanism. We further prove it achieves a lower bound close to
the optimal one up to a controlled factor, and achieves an asymptotic regret q times
smaller than the unstructured one. We believe this shows it is a valuable strategy
for the practitioner. Last, we illustrate the performance of the considered strategy
on numerical experiments involving a large number of arms.

1 Introduction

The finite stochastic multi-armed bandit problem is a popular framework for studying sequential
decision making problems in which a learner sequentially samples from a finite set of distributions
called arms. It was first introduced in the context of medical trials [Thompson, 1933b, 1935] and later
formalized under this name by Robbins in Robbins [1952]. We refer the interested reader to Lattimore
and Szepesvári [2020] for a recent survey. This is one of the simplest theoretical framework in which
one can study the notion of exploration-exploitation tradeoff. This tension between exploration and
exploitation arises from the sequential optimization problem a learner is trying to perform while
being uncertain about the very problem it is optimizing.

Formally, a multi-armed bandit configuration is specified by a set of unknown real-valued probability
distributions ν=(νa)a∈A with means (µa)a∈A, indexed by a set of arms A. We hereafter consider a
finite A, and that all νa, a∈A belong to the same family of distributions F (e.g. Bernoulli, Gaussian,
etc.), that is ν ∈ FA. The bandit game proceeds as follows. At each time t∈N, the learner chooses
an arm at ∈A based on the past observations and decisions, then receives and observes a sample
Xt (called the reward), conditionally independent, sampled from νat . Her goal is to maximize the
cumulative reward received over time. The mean of each arm is unknown, which makes the problem
non-trivial, hence the learner should adjust her sampling strategy based on past information obtained
from drawing different arms in order to maximize the expected sum of rewards. The maximal
expected value of a finite bandit configuration is denoted by µ?, defined as µ? = max

a∈A
µa. The

performance of the strategy used by the agent is measured by the (pseudo) regret, that compares the
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expected sum of rewards obtained by an oracle that would constantly pull an optimal arm and the
ones obtained by the learner, up to some time horizon T (that we assume is unknown to the learner).
Definition 1 (Regret). The regret incurred by a sampling strategy after T time steps on a bandit
configuration ν is given by:

R (ν, T ) = Eν

(
T∑
t=1

(µ∗ − µat)

)
=
∑
a∈A

(µ∗ − µa)Eν (Na(T )) ,

where Na(T ) =
T∑
t=1

I{at = a} denotes the number of selection of arm a after T time steps.

Group of similar arms Motivated by various practical reasons, one may want to restrict to a subset
B ⊂ FA of allowed bandit configurations instead of the full set FA. In this paper, we study a variant
of the multi-armed bandit problem in which the reward function, µ : a ∈ A → µa, is assumed to
satisfy a cluster-like structural property. A bandit configuration ν is said to satisfy the q-equivalence
property if for every arm a ∈ A, there are at least q−1 distinct arms having the same expected value:

∀a ∈ A, |{a′ ∈ A|µa′ = µa}| > q.

Assuming the set of arms A and base distributions D are known to the learner, we denote by Bq the
set of bandit configurations having the q-equivalence property. We also denote by Bq(µ) the set of all
expected values in Bq . Formally, Bq(µ) is the image of Bq under the µ mapping.
Definition 2 (Arm equivalence and equivalence class). Given a bandit configuration ν, two arms
a, a′ ∈ A are said to be equivalent if their associated distributions have the same expected values:

a ∼ a′ ⇔ µa = µa′ .

An equivalence class c in ν is a maximal subset of arms in A having the same mean, i.e., for all arms
a, a′ in c, µa = µa′ and for all arm a ∈ c and a′ ∈ A \ c, µa 6= µa′ .

This situation typically appears in practical situations when each arm can be described with a
list of categorical attributes, and the (unknown) mean reward function only depends on a subset
of them, the others being redundant. In this case, q is naturally linked to the number of attributes
considered redundant (or useless descriptors), and the number of categories of each attribute. Precisely,
q =

∏
i∈R ci whereR is the set of redundant attributes and ci the number of categories for attribute

i. The learner may know that there exists such a structure while not knowing a closed form formula
mapping the list of categorical attributes to the significant subset. In this case, q might be a lower
bound on the sizes of the class since the setR might not be the largest possible one or because the
number of redundant attributes depends on the number of relevant attributes. In all cases, the smallest
possible number of redundant attributes can be naturally linked to q. We hereafter consider the learner
only knows q but would like to exploit the prior knowledge of this structure in a bandit problem.

Regret lower bounds overview In order to assess the performance of a bandit algorithm on a set
of configurations B, one naturally studies the best guarantee achievable by a uniformly efficient
algorithm on B, i.e with sub-linear regret on any instance ν ∈ B of the bandit problem. When
B = FA, such a guarantee was first provided by Lai and Robbins [1985] for parametric families F ,
and then extended by Burnetas and Katehakis [1996] for more general families. It states that any
algorithm that is uniformly efficient1 on a family of distributions F must satisfy

lim inf
T→∞

R(ν, T )

log(T )
>

∑
a:µ?>µa0

µ? − µa
KF (νa‖µ?)

, KF (νa‖µ?) = inf
G∈F
{KL(νa‖G) :EG(X)>µ?} . (1)

This popular result entails that any strategy having the desirable property to have sub-linear regret
on any instance in F must incur a non-trivial minimal regret. When B is a strict subset of FA,
the bandit problem is called structured, as in this case pulling an arm may reveal information that
makes it possible to refine estimation of other arms (e.g. think of the set of bandit configurations
having Lipschitz mean function with respect to A⊂Rd). The presence of structure may considerably
modify the achievable lowest regret, as shown in Burnetas and Katehakis [1996] and Graves and Lai

1Formally, for each bandit on F , for each arm k with ∆k>0, then E[Nk(T )]=o(Tα) for all α∈(0, 1].
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[1997], who extended the (unstructured) lower bounds to arbitrarily structured bandit problems (and

beyond). These lower bound take the generic form lim infT→∞
R(ν, T )

log(T )
> CB(ν), where CB(ν) is

a constant term solution of a constrained linear-optimization problem. A bandit algorithm is then
called asymptotically optimal for a set B when its regret asymptotically matches this lower bound.

Existing strategies In order to minimize the regret, a learner faces the classical explo-
ration/exploitation dilemma: it needs to balance exploration, that is gaining information about
the expected values of the arms by sampling them, and exploitation, that is playing the most promis-
ing arm sufficiently often. Many algorithms have been proposed to solve the multi-armed bandits
problem (see Lattimore and Szepesvári [2020] for a survey). The study of the lower bounds had
a crucial impact on the development of provably asymptotically optimal strategies. In the case of
unstructured bandit B = FA, this includes strategies that build on the concept of Optimism in Face
of Uncertainty (the most celebrated of which being the Upper Confidence Bound (UCB) algorithms
Agrawal [1995], Auer et al. [2002]), such as KLUCB [Lai, 1987, Cappé et al., 2013, Maillard, 2018],
DMED and IMED Honda and Takemura [2011, 2015], that are proven asymptotically optimal for
various families F (e.g. one-dimensional exponential families), and directly exploit the lower bound
in their structure. Alternative asymptotically optimal strategies include the Thompson Sampling (TS)
Thompson [1933a], Agrawal and Goyal [2012], which uses a Bayesian posterior distribution given
a specific prior, whose optimality was shown in Korda et al. [2013]. See also Kveton et al. [2019]
for other randomized algorithms and Kveton et al. [2020], Chan [2020], Baudry et al. [2020] for
recent non-parametric extensions using re-sampling methods. Further, some authors also allow many
optimal arms, see de Heide et al. [2021], or even countably many arms, see Kalvit and Zeevi [2020].
However, these works do not consider nor exploit a constraint on the level-sets of the mean function
and follow an optimistic paradigm while we follow an information minimization targeting optimality.
On the other hand, several instances of structured bandits received considerable attention in the last
few years. This is the case for instance of linear bandits, see [Abbasi-Yadkori et al., 2011, Srinivas
et al., 2010, Durand et al., 2017, Kveton et al., 2020] and Lattimore and Szepesvari [2017], Lipschitz
bandits Magureanu et al. [2014], Wang et al. [2020], Lu et al. [2019], unimodal bandits Yu and
Mannor [2011], Combes and Proutiere [2014], Saber et al. [2020], or combinatorial bandits Kveton
et al. [2015], Magureanu [2018], and more recently Cuvelier et al. [2021b]. A generic asymptotically
optimal algorithm, called OSSB (Optimal Structured Stochastic Bandit), has been introduced in the
work of Combes et al. [2017], and proven to be asymptotically optimal for all structures satisfying
some weak properties that include all the aforementioned structures. Although being asymptotically
optimal this algorithm often suffers from a long burn-in phase that may hinder its finite practical
performance. It further comes with high computational price as it requires to solve an empirical
version of the optimization problem CB(ν) at each step. This motivates the quest for alternative
strategies, perhaps less generic but better suited to a specific structure. Inspired by combinatorial
structures for which computing CD(ν) is simply not feasible, a relaxation of the generic constrained
optimization problem was recently proposed in Cuvelier et al. [2021a]. The authors show that this
comes at the price of trading-off regret optimality for computational efficiency. Indeed in some
structure, combinatorial properties are at stake and asymptotically optimal algorithms may require
solving combinatorial optimization problems (see Cuvelier et al. [2021a]) related to CB(ν). In order
to exploit the combinatorial structures in a numerically efficient way, research has been made in
how to relax these combinatorial optimization problems while preserving theoretical properties
on the regret of the relaxed algorithms (see Cuvelier et al. [2021b,a]). Our work consider similar
computational issues, with a different perspective.

Goal For the structure Bq , as we show in Theorem 1 below, the term CBq (ν) unfortunately makes
appear in general a combinatorial optimization problem. This makes resorting to OSSB or any
strategy targeting exact asymptotic optimality a daunting task for the practitioner. In this paper, our
goal is to provide a computationally efficient strategy adapted to the structure Bq , that is able to reach
optimality up to controlled error term.

Outline and contributions The rest of this paper is organized as follows. In section 2, we derive a
lower bound on the regret for the structured set of bandit configurations Bq . This bound makes appear
two components, one that we call non-combinatorial as optimizing it can be done efficiently, and a
second term that we term combinatorial as it involves solving a combinatorial problem. Interestingly,
using in Lemma 1 and Theorem 3 that the contribution of the combinatorial part of the lower bound
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can be controlled. Owing to this key insight, we introduce in section 3, IMED-EC, an adaptation of the
IMED strategy from Honda and Takemura [2015] to the structured set Bq . One advantage of IMED
over a KL-UCB alternative is its reduced complexity, which translates to the equivalence class setup.
At each time step, the complexity of computing the next arm to be pulled by IMED-EC is no more than
the one of sorting a list of |A| elements once the IMED indexes have been computed, which is only
log |A| times larger than looking for the minimal IMED index. In Section 4, we prove that IMED-EC
achieves a controlled asymptotic regret that matches the non-combinatorial part of the lower bound
and is at most (less than) a factor of 2 times the optimal regret bound. Last, we illustrate the benefit
of the IMED-EC over its unstructured version in section 5, where it shows a substantial improvement.
Our experiments also highlights the robustness of the algorithm to a misspecified parameter q, which
is a desirable feature for the practitioner.

2 A regret lower bound with combinatorial and non-combinatorial parts

In this section, we derive a lower bound on the number of pulls of suboptimal arms that involves a
combinatorial optimization problem. Using that lower bound, we derive a simple algorithm, IMED-EC,
that does not involve any optimization problem. While not being asymptotically optimal, we will
show in the next section that our algorithm has an upper bound on its regret that is no more than a
fraction of the unstructured regret.

The proof of Theorem 1 is based on the concept of most confusing instance. Most confusing
instances allow to assess the intrinsic difficulty of a bandit problem and allow to compute lower
bounds on the number of times suboptimal arms are pulled. The lower bound informs us on the
minimal amount of exploration one needs to do to solve a bandit problem. More formally, a confusing
instance ν′ associated to a suboptimal arm a for a bandit problem ν is a bandit instance with the same
set of arms as the original one, but in which µa has been changed to µ′a > µ∗ . An optimal sampling
strategy (one that does not sample suboptimal arms too much) should behave differently on the two
problems. Studying this difference, we can compute the minimal amount of exploration performed
by an optimal strategy on arm a in the original problem ν. Doing so for all suboptimal arms allows to
bound the number of samples of suboptimal arms and therefore characterize the intrinsic complexity
of a bandit instance ν.

In a structured setting, a confusing instance also has to respect the structure. In our case, it means that
a confusing instance cannot have a class with less than q arms. We will therefore consider confusing
instances associated to classes rather than individual arms.

Definition 3 (Confusing instance). Given a bandit configuration ν ∈ Bq, a real number λ and a
subset cq ⊆ A of q equivalent arms in ν, we denote by Bq (ν, cq, λ) the set of all bandit configurations
having the same set of arms as ν and such that for all ν′ ∈ Bq (ν, cq, λ), ν′ ∈ Bq and for every arm
a in cq , µ′a > λ.

When λ > µ∗, and cq is a subset of a suboptimal class, a bandit configuration in Bq (ν, cq, λ) is
called a confusing instance of ν.

Similarly to the notation introduced above, we will use the notation Bq (µ, cq, λ) to specify the set of
means of bandit configurations in Bq (µ, cq, λ).

The aim of an asymptotic lower bound on the number of pulls of a suboptimal arm is to mathematically
understand the minimal asymptotic amount of exploration an algorithm should perform.

Assumption 1: The family F is such that for all κ ∈ F , µ 7→ KF (κ‖µ) and µ 7→ Keq (κ‖µ) are
continuous, where Keq(κ, µ) = infG∈F {KL(κ,G) :EG(X)=µ} with KL being a notation for the
relative entropy or Kullback-Leibler divergence.

Assumption 2: The family F is an exponential family of dimension 1. Therefore the KL di-
vergences are parameterized by the mean and we may write the KL as a function of the means,
∀κ, χ ∈ F ,KL (κ‖χ) = KL (EX∼κ (X) ‖EX∼χ (X)) (identification of the KL with its parameteri-
zation by the means).

Theorem 1 (Asymptotic lower bound). Let q ∈ N∗ be a positive integer and ν ∈ Bq be a bandit
configuration having the q-equivalence property. Let c ⊂ A be a suboptimal equivalence class in ν.
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Assuming uniform consistency, for all suboptimal arms a,

∀α > 0, lim
T→+∞

E
(
Na(T )

Tα

)
= 0,

assuming assumption 1, we have the following asymptotic bandit dependent lower bound on the
number of pulls of arms in c:

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν(Na(T ))KF (νa‖µ∗) + inf
µ′∈Bq(µ,cq,µ∗)

∑
a/∈cq

Eν(Na(T ))Keq(νa‖µ′a)

log T
> 1 , (2)

where cq is any subset of c having q distincts arms within it.

We briefly sketch how confusing instances are used in the proof of Theorem 1. We consider confusing
instances in which q arms from a suboptimal class c are moved above the optimal one (w.r.t. the
mean). If there are q arms in the class, then there are no remaining arms to move. If there are more
than 2q arms, then moving q arms creates a reminder of size larger than q meaning that the crafted
confusing instance respects the equivalence structure. However, if there are between q+ 1 and 2q− 1
arms, then the reminder is of size larger than 1 but strictly smaller than q. The created confusing
instance does not respect the equivalence structure and we have to deal with the arms in the reminder
(the infimum of equation (2)). There are |c| choose q possible choices to move q arms from class c (the
minimum of equation (2)). All in all, the lower bound involves a combinatorial optimization problem.

While this lower bound involves a combinatorial optimization term, one can distinguish between
two regimes depending on the size of the suboptimal class. The combinatorial regime and the
non combinatorial regime.

Non-combinatorial regime For a suboptimal class c, if |c| = q or |c| > 2q, then the lower bound
reduces to

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν (Na(T ))KF (νa‖µ∗)

log T
> 1,

because the reminder is of size larger than q and the infimum from Theorem 1 disappears. Indeed,
the infimum is always 0 as this quantity can be obtained by choosing µ′a = µa for all a ∈ c \ cq.
Furthermore, the minimum over all q-partitions of c is in fact the sum of the q smallest elements of
{Eν (Na(T ))KF (νa‖µ∗)}a∈c. The search amongst all the q-partitions of c amounts to a research of
the q smallest elements which is not more complex than sorting a list of |c| elements. Hence, the prob-
lem is no more a combinatorial optimization one and we call this case the non-combinatorial regime.

Lemma 1. Let ν ∈ Bq be a bandit configuration having the q-equivalence property. Let c be a
suboptimal class in the non-combinatorial regime, then, under assumption 1 and 2,

lim inf
T→∞

∑
a∈c

Eν (Na(T ))

log T
>
|c|
q

1

KF (νa‖λ)
. (3)

While we do not have information about individual number of times an arm in a class has been
sampled, Lemma 1 roughly tells us than on average, the lower bound on the minimal amount of
exploration of an arm in a suboptimal class has been divided by q.

Lemma 2. If all suboptimal classes are in the non-combinatorial regime, under assumption 1 and 2,
the regret may be asymptotically lower bounded by

lim inf
T→∞

R (ν, T )

log T
>

1

q

∑
a∈A\A∗

µ∗ − µa
KF (νa‖λ)

. (4)

Lemma 2 informs us that in the non-combinatorial regime, the classical lower bound on the regret
given by equation (1) has been divided by q.
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Combinatorial regime For a suboptimal class c to be in the combinatorial regime, we need
q < |c| < 2q, since the reminder is such that 0 < |c \ cq| < q and the infimum in Theorem 1 is not 0.
In that case, the lower bound (2) involves a combinatorial optimization problem. Two difficulties
arise from the term

inf
µ′∈Bq(µ,cq,λ)

∑
a/∈cq

Eν (Na(T ))Keq (νa‖µ′a) .

First, while we could have thought that summing on the reminder c r cq would be enough, the
summand has to be on a /∈ cq as a whole. Indeed, the residual cr cq may be of size q − 1 meaning
that it might cost less to move an arm from another class to the residual in order to complete it rather
than moving all the reminder. Second, while we could have thought that moving elements from
one class of ν to another might be enough, the infimum has to be taken on Bq (µ, cq, λ). Indeed, the
residual cr cq may be of size q − 1 and the nearest class might be of size exactly q. In this case, it
may cost less to move all the 2q − 1 distributions in between the two classes and create a new one
rather than merging one of the two with the other.
Lemma 3. Let ν ∈ Bq be a bandit configuration having the q-equivalence property and c be a
suboptimal class in the combinatorial regime. Then, under assumptions 1 and 2,

lim inf
T→∞

∑
a∈c

Eν (Na(T ))

log T
>

1
q
|c|KF (νa‖µ∗) + |c|−q

|c| minκ∈ν Keq (νa‖κ)
, (5)

lim inf
T→∞

∑
a∈c

Eν (Na(T ))

log T
>

1

2q

∑
a∈c

1

KF (νa‖µ∗)
. (6)

Those equations can be compared to the equation (3) from the non-combinatorial regime. We
emphasize the fact that the lower bounds given by equations (5) and (6) are not the largest possible
lower bound and hence do not provide as much information about the algorithmically achievable
regret as the largest one given by equation (2). However, together with a regret upper bound on
the algorithm IMED-EC, those quantities will help us control the asymptotic discrepancy between
IMED-EC’s regret and the asymptotic lower bound given by Theorem 1.

3 Information Minimization for bandits with equivalence class

The algorithm we present, IMED-EC, depends on the (weak) indexes introduced in the IMED paper by
Honda and Takemura [2015]. At each time step t, for each arm a ∈ A, we can compute its IMED
index as

Ia(t) = Na(t)KF (µ̂a(t)‖µ̂∗(t)) + logNa(t),

where µ̂∗(t) = maxa∈A µ̂a(t) and for each arm a ∈ A, µ̂a(t) is the empirical mean of arm a

computed with samples from this arm collected up to time t, µ̂a(t) = 1
Na(t)

∑t
s=1Xs1 {as = a},

whereXs is the sample collected by the algorithm at time step s. Let ν ∈ Bq be a bandit configuration
having the q-equivalence property. We denote by A∗(t) = arg maxa∈A {µ̂a(t)} the set of empirical
optimal arms at time t. We will denote by Aq(t) the set of arms having the q smallest IMED indexes
(breaking ties randomly so that this set has size q). We will also consider the two following quantities
for each time t:

I∗(t) = min
a∈A∗(t)

Ia(t) = min
a∈A∗(t)

logNa(t),

I(t) = min
A′⊂A
|A′|=q

∑
a′∈A′

Ia′(t) =
∑

a′∈Aq(t)

Ia(t).

I(t) can be computed efficiently by summing the q smallest elements of the list of IMED indexes.
Finding the q smallest elements can be done by maintaining a sorted array of IMED indexes while
computing them. The procedure costs a constant factor of log |A|. Computing I(t) therefore
costs O (|A| log |A|), which is only log |A| times larger than looking for the minimal IMED index.
Computing |A∗(t)| can be done by maintaining a set of arms having the best empirical mean (adds a
constant factor). The IMED-EC algorithm is presented in Algorithm 1.
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Algorithm 1 IMED-EC (IMED for Equivalent Classes)
Pull each arm once
for t = |A| . . . T − 1 do

if I∗(t) 6 I(t) then
Pull at+1 ∈ arg mina∈A∗(t)Na(t) (chosen arbitrarily)

else
Pull at+1 ∈ arg mina/∈A∗(t) Ia(t) (chosen arbitrarily)

end if
end for

While the orginal problem involves combinatorial quantities, those are not involved in the IMED-EC
algorithm. From a time complexity viewpoint, this makes this algorithm on par with other popular
algorithms such as UCB, KLUCB, and IMED algorithm. On the contrary, the general structure algorithm
OSSB involves solving a combinatorial optimization problem at each time step, which makes it
numerically inefficient. We are not aware of any general relaxation method for this algorithm that
we could compare IMED-EC with. It is interesting to note that in the case where q = 1, the IMED-EC
algorithms coincide with the IMED algorithm.

Intuition For an arm a, Na(t)KF (µ̂a(t)‖µ̂∗(t)) may be interpreted as the opposite of a log-
likelihood of optimality of that arm. logNa(t) is linked to the log-frequency of play of that arm, the
frequency of play of an arm being interpreted as the probability of pulling that arm is a sequence
of length t. The IMED algorithm thus can be intuitively understood as an algorithm matching an
empirical log-probability with a log-frequency of play. In our setting, there is at least q elements
in each group. It therefore makes sense to test for the optimality of a group rather single elements.
Since all arms are independent, it makes sense to sum the log-likelihood of optimality on all the
q-partitions of the set of arms. Since we have the intuition that this first part is the logarithm of
a product of probability, we may compare it to the product of the frequencies. Therefore, we get
that important quantities are the sum of IMED indexes for each q partition of the arms, seen as a
comparison between the optimality of this group of q elements and the associated frequency of play
of that group. The minimal IMED index is the one whose frequency of play is the lowest compared
to its likelihood of optimality, similarly for the sum of IMED indexes. Other intuitions regarding the
fairness (frequency of pulls within the same class) of the algorithm are given in appendix D.

4 Regret analysis

In this section, we now detail the main bound on the regret of IMED-EC.

Theorem 2 (Upper bound on the number of pulls). Under the IMED-EC algorithms, under assumption
1 and 2, the number of pulls of a suboptimal arm a is upper bounded by:

Eν (Na(T )) 6
log T

qKF (νa‖µ∗)
(1 + α(ε)) + f(ε), (7)

where 0 < ε < 1
3 mina∈A\A∗ (µ∗ − µa), f is function that depends on concentration properties on

F , and α tends to 0 as ε tends to 0.

Remark: α and f functions are mostly used for deriving theoretical guarantees in IMED-EC regret
analysis. α is controlled thanks to property 2 as in the paper of Honda and Takemura [2015] for IMED
regret analysis. A finite sample analysis can be derived from a careful analysis of the term f . Being
more precise requires scrutinizing the properties of the considered family.

Corollary 1. Under the IMED-EC algorithms, under assumptions 1 and 2, the number of pulls of a
suboptimal arm a is upper bounded by:

min
cq⊆c

∑
a∈cq

Eν (Na(T ))KF (νa‖µ∗) 6 (1 + α (ε)) log T + g(ε). (8)

where 0 < ε < 1
3 mina∈A\A∗ (µ∗ − µa) α and α tends to 0 as ε tends to 0.
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Theorem 3 (Asymptotic upper bound on the number of pulls). Under the IMED-EC algorithms, under
assumption 1 and 2, the number of pulls of a suboptimal arm a is asymptotically upper bounded by:

lim inf
t→+∞

Eν (Na(T ))

log T
6

1

qKF (νa‖µ∗)
. (9)

Discussion This upper bound shows that in particular, the number of pulls of a suboptimal class,∑
a∈c Eν (Na(T )) is asymptotically no more than |c|

qKF (νa‖µ∗) log T . This hence matches the lower
bound in the non-combinatorial regime. In the combinatorial regime, along with equation (6), this
regret upper bound shows that

|c|
qKF (νa‖µ∗)

> lim inf
T→∞

∑
a∈c

Eν (Na(T ))

log T
>

1

2
· |c|
qKF (νa‖µ∗)

,

proving that the regret of the proposed IMED-EC does not differ from the optimal lower bound by a
factor more than 2. This is a striking result. Equation (6) can be used to have an even more precise
control on the discrepancy to the optimal regret bound, as it shows the factor 2 can be actually
replaced with 1 + |c|−q

q
minκ∈ν Keq(νa‖κ)
KF (νa‖µ∗) . Since the factor |c|−qq

minκ∈ν Keq(νa‖κ)
KF (νa‖µ∗) is strictly between

0 and 1 in the combinatorial regime that we are studying, the discrepancy between the lower bound
and the regret of IMED-EC indeed is always bounded by 2. On the other hand, this refined error
measurement is problem dependant while the factor of 2 is universal.

We provide the full proof of Theorem 3 and Theorem 2 in appendix C where we also discuss how to
weaken assumption 2 and still get the result of theorem 2.

5 Experiments

In this section, we support our theoretical analysis by conducting three sets of experiments. The
Python code used to perform those experiments is available on Github2. We support our empirical
evidences using plots of cumulative regrets. In this section, all the experiments are conducted using
gaussian distributions whose means are between 0 and 1 and of unit standard deviation. Those graphs
are representative of all the experiments that we conducted and more plots and experiments may be
found in the appendix D.

Balanced class, perfect knowledge In this set of experiments, see Figure 1, we focus on the bandit
configurations in which all equivalence classes have the same cardinality and assume that we know
the number of elements per class. This setting is interesting for two reasons. First, one can compute
the theoretical lowerbound without solving a combinatorial optimization problem. Second, the
theoretical analysis shows that IMED-EC is asymptotically optimal in this case. This setting will
thus allow us to numerically grasp what happens in the most structured case. We compare IMED-EC
to unspecialized bandit algorithm, UCB, IMED and KLUCB. To make the comparison fairer we also
compare IMED-EC to OSSB, an algorithm specialized in structured bandit. Since OSSB has to solve a
combinatorial optimization problem at each time step, we cannot carry experiments on large sets of
arms while comparing IMED-EC to it. In this particular setting, we see that while OSSB and IMED-EC
are provably asymptotically optimal, IMED-EC numerically performs better in finite time horizon. We
recall that it is furthermore numerically more efficient since it does not involve any combinatorial
optimization. Without too much surprises, IMED-EC also outperforms unspecialized algorithm.

Imperfect knowledge In the experiment plotted Figure 2, we leverage the knowledge hypothesis
and assume that we only know a lower bound on the number of elements per class while the classes
are still balanced. We compare IMED-EC to unspecialized bandit algorithm, IMED and KLUCB. We
drop OSSB from our test bed due to the computational burden of solving a combinatorial optimization
problem at each time step. We can see that the finite time cumulative regret of IMED-EC indeed is
much smaller than the regret of the unspecialized algorithms.

Influence of the parameter q Here we show the numerical robustness of IMED-EC with respect to
the lower bound parameter q on the number of elements per classes. On the same bandit problem,

2https://github.com/fabienpesquerel/stochastic-bandits-with-groups-of-similar-arms-neurips-2021
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Figure 1: 3 classes, 3 distributions per class - set of means = {0.3, 0.5, 0.9}

Figure 2: 7 classes, 8 distributions per class - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

we compare different instances of IMED-EC where different values of q are used. In the legend, opt.
stands for optimal and corresponds to the largest valid lower bound on the number of elements per
class, i.e. the minimal number of elements in a class. The experiment Figure 3 is performed on a
bandit problem with 7 classes and an uneven number of distributions per class. The smallest class
has 4 elements and the largest 23. While q increases up to the minimum cardinality of a class, we
see that the performances of IMED-EC increases. It is rather remarkable that once we go beyond that
theoretical threshold, the performances of IMED-EC do not deteriorate. We even found it difficult
to find settings to deteriorate them at all. While the expected regret does not seem to deteriorate,
we sometimes see that the tails of the regret widen as it can be seen on the plot Figure 3 for q = 7
and q = 20 since the 0.9 quantile curves are so large for those values of q. We interpret part of
this robustness to the fact that the relaxation induced in IMED-EC makes the algorithm over explore
compared to what the true lower bound suggests. Increasing q reduces the exploration and therefore
may improve the performances of the algorithm. However, this robustness is observed even in the
case where the classes are balanced. This interpretation thus does not explain everything about the
numerical robustness of IMED-EC. This type of experiment does not take more than roughly 10 to 15
minutes on a notebook run in Google Colab depending on the number of arms, the horizon and the
number of runs. This supports the numerical efficiency of the relaxation made in IMED-EC.
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Figure 3: 7 classes, unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

6 Conclusion

In this paper, we introduced IMED-EC, a numerically efficient algorithm to solve a structured bandit
problem for which we derived a lower bound involving a combinatorial optimization problem. While
not being asymptotically optimal, we proved that the asymptotic regret of IMED-EC is always smaller
than the unstructured one and that we can control the discrepancy with respect to the structured regret
lower bound by a factor of at most 2.
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A Notations and Assumptions

In this section, we first recall a few notations. Then, we provide details about the assumptions made
about the distributions. In particular, we make precise the assumption about exponential families
we consider, and we also provide an alternative set of assumptions under which our analysis hold.
Indeed, our proof techniques naturally apply to the setup considered for the analysis of the IMED
strategy. We formalize the corresponding assumptions below in (Assumption 1, 3).

Notations: Given a bandit configuration ν and an arm a ∈ A, µ̂a(T ) = 1
Na(T )

∑T
t=1Xt1 {at = a}

where Na(T )
∑T
t=1 1 {at = a} and Xt is the reward obtained at time t. We will denote by µ̂na the

empirical mean of arm a obtained from n i.i.d. samples (and n is not a random variable).

Assumption 1: The family F is such that for all κ ∈ F , µ 7→ KF (κ‖µ) and µ 7→ Keq (κ‖µ) are
continuous, where Keq(κ‖µ) = infG∈F {KL(κ‖G) :EG(X)=µ} with KL being a notation for the
relative entropy or Kullback-Leibler divergence.

This property is also assumed in Honda and Takemura [2015]. This is especially relevant as they
consider reward distributions having a semi-bounded support.

Assumption 2: The family F is an exponential family of dimension 1, i.e. admits the canonical
decomposition with respect to some measure

pθ (x) = exp (t(x)θ − ψ(θ) + k(x)) ,

where θ ∈ Θ ⊆ R is a parameter, k a real function, t is called the sufficient statistics and ψ, the
log-partition function, is assumed to be twice differentiable. We assume that Θ is open and non-empty.
We further assume that on Θ, the second derivative, ψ′′ , of the log-partition function is bounded.
Formally, there exists Mψ,Θ such that:

sup
θ∈Θ

ψ′′ (θ) 6Mψ,Θ. (10)

If pθ and pθ′ are two distributions in F , then:

KL (pθ‖pθ′) = ψ (θ)− ψ (θ′)− (θ − θ′)ψ′ (θ′) .

Because F is an exponential family of dimension 1, ψ′′ > 0 and ψ′ is strictly increasing. This implies
that there is a continuous bijection between the parameter space Θ and the space of expected values
that can be taken between distributions in F . Specifically, µ : θ 7→ EX∼pθ (X) is a bijection on its
co-domain, µ (Θ). Therefore the KL divergences can be parameterized by the mean and we may
write the KL as a function of the means, ∀κ, χ ∈ F ,KL (κ‖χ) = d (EX∼κ (X) ‖EX∼χ (X)).

Therefore, under assumption 2 KF identifies with the KL and assumption 1 holds by twice differen-
tiability of ψ since it implies the continuity of ψ and ψ′. Note that exponential families of dimension
1 have been considered in several other works, see e.g. Korda et al. [2013], Cappé et al. [2013], or
Maillard [2018] and Lai [1988] where restriction on ψ′′ is also considered.

Assumption 3: The family F is the set of distributions with semi-bounded rewards, i.e. whose
supports lies in (−∞, 1]. Furthermore, the moment generating function E (exp (λX)) of any dis-
tribution X ∈ F exists in a neighborhood of λ = 0. For technical reasons linked to the moment
generating function, we also assume that the maximal expected rewards of the distributions in F is
strictly smaller than 1. Those assumptions on F are the same than the one of the paper Honda and
Takemura [2015].

Under assumption 2, the moment generating function can be written as a function of ψ,

EX∼pθ (exp (λX)) = exp (ψ (θ + λ)− ψ (θ)) ,

which is well defined as long as θ + λ ∈ Θ. This is the reason assumption 1 consider Θ to be open
since in this case, θ can never be too close to the boundary, i.e. there always exists λ small enough
such that θ + λ ∈ Θ, and the moment generating function always exists in a neighborhood of 0.
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Remark: The regret lower bound can be proved under assumption 2 or alternatively under assump-
tion 1 and 3. Most of the distributions studied in the bandit literature fall under one of those sets of
assumptions. Assumption 2 includes for instance Gaussian bandits (known variance) and Bernoulli
distributions. For Bernoulli distributions, the set of considered means should be of the form (ε, 1− δ)
with 0 < ε < 1− δ < 1 in order to upper bound the second derivative of the log-partition function.
This situation is represented in Figure 4. Now for Gaussian distributions with known variance, (10)
holds trivially.

0.2 0.4 0.6 0.8 1

0

2

4

6 µ = 0.1
µ = 0.5
µ = 0.80

Figure 4: Plot of x 7→ kl (µ‖x) = x log x
µ + (1− x) 1−x

1−µ (Bernoulli)

Property 1 (Monotonicity of the KL). Under assumption 2, if we assume that,

a 6 µ+ ε < µ∗ − ε 6 b,

then,
d (a‖b) > d (µ+ ε‖µ∗ − ε) .

The paper of Honda and Takemura [2015] features a similar property for the KF under assumption 1
and assumption 3.
Property 2 (Upper approximation of the KL). Let ε be such that µ+ ε < x− ε. Under assumption
2, there exists α such that

1

d (µ+ ε‖x− ε)
6

1

d (µ‖x)
(1 + α (ε)) , (11)

with α(ε)→ 0 as ε→ 0.

The paper of Honda and Takemura [2015] features a similar property for the KF under assumption 1
and assumption 3.
Proposition 1. Let F be an exponential family F of dimension 1 satisfying the hypothesis of
assumption 2. Let X ∼ pθ∗ ∈ F be a real random variable. Denote by θ∗ its true natural parameter
and θ̂n it empirical parameter computed with n i.i.d. samples from the distribution of X . Let ψ be the
log-partition function of the family F . Let θ be the parameter corresponding to the distribution of F
with mean µ < µ∗ and θ∗ be the parameter corresponding to the disribution of F with mean µ∗, then

P
(

KL
(
pθ̂n‖pθ

)
> u, µ̂n 6 µ

)
6 P

(
KL
(
pθ̂n‖pθ∗

)
> u+ αψ (θ∗, θ)

√
u
)

6 exp
(
−n
(
u+ αψ (θ∗, θ)

√
u
))
,

where αψ (θ∗, θ) > 0.

Proof. For distributions in an exponential family, the Kullback-Leibler divergence can be written
using ψ′′, and therefore:

KL
(
pθ̂n‖pθ

)
=

1

2

(
θ̂n − θ

)2

ψ′′
(
γθ̂n + (1− γ) θ

)
> u .
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Under assumption 2, ψ′′ is uniformly bounded, ψ′′ 6M , therefore:∣∣∣θ − θ̂n∣∣∣ >√2u

M
.

Without loss of generality, we can assume that

θ − θ̂n >

√
2u

M
. (12)

because the following derivation will feature the term 〈θ − θ̂n|ψ′ (θ∗)− ψ′ (θ)〉. This term is always
positive because µ̂n 6 µ < µ∗ and µ : θ 7→ EX∼pθ (X) is a continuous bijection. Therefore it has
to be strictly monotonous. Since ψ′ is strictly increasing (because ψ is strictly convex), it preserves
the order. Therefore, θ − θ̂n and ψ′ (θ∗)− ψ′ (θ) have the same sign.

Since KL (pθ‖pθ′) = ψ (θ) − ψ (θ) − (θ − θ′)ψ′ (θ′), we can derive the following sequence of
implications:

⇔KL
(
pθ̂n‖pθ

)
> u

⇔KL
(
pθ̂n‖pθ

)
+ KL

(
pθ̂n‖pθ∗

)
> u+ KL

(
pθ̂n‖pθ∗

)
⇔KL

(
pθ̂n‖pθ∗

)
> u+ KL

(
pθ̂n‖pθ∗

)
− KL

(
pθ̂n‖pθ

)
︸ ︷︷ ︸

>0

⇔KL
(
pθ̂n‖pθ∗

)
> u+ KL (pθ‖pθ∗) + 〈θ − θ̂n| ψ′ (θ∗)− ψ′ (θ)︸ ︷︷ ︸

>0 because ψ is strictly convex

〉

⇔KL
(
pθ̂n‖pθ∗

)
> u+ KL (pθ‖pθ∗) + 〈 θ − θ̂n︸ ︷︷ ︸

>
√

2u/M by (12)

|g (θ∗, θ)〉

⇒KL
(
pθ̂n‖pθ∗

)
> u+ KL (pθ‖pθ∗) + 〈

√
2u

M
|g (θ∗, θ)〉

⇒KL
(
pθ̂n‖pθ∗

)
> u+ αψ (θ∗, θ)

√
u.

The upper bound on the probability is a classical result about exponential families.

B Proof of the regret lower bound

In this section we prove Theorem 1 that we remind below.

Theorem (Asymptotic lower bound). Let q ∈ N∗ be a positive integer and ν ∈ Bq be a bandit
configuration having the q-equivalence property. Let c ⊂ A be a suboptimal equivalence class in ν.
Assuming uniform consistency, for all suboptimal arm a,

∀α > 0, lim
T→+∞

E
(
Na(T )

Tα

)
= 0,

assuming assumption 1, we have the following asymptotic bandit dependent lower bound on the
number of pulls of arms in c:

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν (Na(T ))KF (νa‖µ∗) + inf
µ′∈Bq(µ,cq,λ)

∑
a/∈cq

Eν (Na(T ))Keq (νa‖µ′a)

log T
> 1,

where cq is any subset of c having q distinct arms within it.

The proof is standard and makes use of the notion of most confusing instance specialized for this
structure in the main part of this paper.
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Proof of Theorem 1. Let IT = (ak, Xak)16k6T denote the history of actions and rewards taken by a
sequential decision maker algorithm up to time T . Then, using the data processing inequality, it is
proved in Garivier et al. [2016] that∑

a∈A
Eν (Na(T )) KL (νa‖ν′a) > kl (Eν (Z) ‖Eν′ (Z)) ,

for Z ∈ (0, 1) a σ(IT )-measurable random variable and kl the Kullback-Leibler divergence between
Bernoulli distributions. Let c be suboptimal class and cq ⊆ c be subset of q elements in c. Applying
the previous inequality for Z = Nc(T )/T , for all λ > µ∗ and ν′ ∈ Bq (ν, cq, λ) we have that:∑

a∈c
Eν (Na(T )) KL (νa‖ν′a) =

∑
a∈cq

Eν (Na(T )) KL (νa‖ν′a) +
∑
a/∈cq

Eν (Na(T )) KL (νa‖ν′a)

> kl

(
Eν
(
Nc(T )

T

)
‖Eν′

(
Nc(T )

T

))
>

(
1− Eν

(
Nc(T )

T

))
log

1

1− Eν′
(
Nc(T )
T

) − log 2

=

(
1− Eν

(
Nc(T )

T

))
log

T

T − Eν′ (Nc(T ))
− log 2.

Since all arms that are not in c are suboptimal for ν′, the uniform consistency hypothesis implies that

∀0 < α 6 1, 0 6 T − Eν′ (Nc(T )) = o (Tα) ;

and therefore, T − Eν′ (Nc(T )) 6 Tα for T large enough. We deduce that, for all 0 < α 6 1,

lim inf
T→+∞

1

log T
log

T

T − Eν′ (Nc(T ))
> lim inf
T→+∞

1

log T
log

T

Tα
= 1− α.

Since all arms within the class c are suboptimal for ν and the considered strategy is assumed to
satisfy the uniform consistency hypothesis, Eν

(
Nc(T )
T

)
→ 0 as T → +∞. Together, and letting α

be arbitrarily close to 0, these facts implies that

lim inf
T→∞

∑
a∈cq Eν (Na(t)) KL (νa‖ν′a) +

∑
a/∈cq Eν (Na(t)) KL (νa‖ν′a)

log T
> 1.

For each cq, we can minimize this quantity over all confusing instances ν′ ∈ Bq (ν, cq, λ) (with a 0
lower bound if the set is empty), and use the continuity of the KL (assumption 1) to let λ > µ∗ tends
toward µ∗,

lim inf
T→∞

∑
a∈cq

Eν (Na(T ))KF (νa‖µ∗) + inf
µ′∈Bq(µ,cq,λ)

∑
a/∈cq

Eν (Na(T ))Keq (νa‖µ′a)

log T
> 1,

where each KL can be minimized independently once µ′ ∈ Bq (µ, cq, λ) has been set, owing to the
considered structure. Since this lower bound is valid for all cq ∈ c suboptimal, it is valid for the
minimal quantity over all q partitions,

lim inf
T→∞

min
cq⊆c

∑
a∈cq

Eν (Na(T ))KF (νa‖µ∗) + inf
µ′∈Bq(µ,cq,λ)

∑
a/∈cq

Eν (Na(T ))Keq (νa‖µ′a)

log T
> 1,

which proves the Theorem 1.
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C Proof of the regret upper bound

In this section, we prove the regret upper bound, Theorem 2, incurred by the IMED-EC algorithm.
Theorem (Upper bound on the number of pulls). Under the IMED-EC algorithms, under assumption
1 and 2, the number of pulls of a suboptimal arm a is upper bounded by:

Eν (Na(T )) 6
log T

qKF (νa‖µ∗)
(1 + α(ε)) + f(ε) , (13)

where 0 < ε < 1
3 mina∈A\A∗ (µ∗ − µa) α and α tends to 0 as ε tends to 0.

The proof proceeds in several steps. We first derive empirical bounds on the number of pulls of a
suboptimal arm given that this arm is being pulled at time t.
Lemma 4 (Empirical bounds). Let at+1 be the pulled arm at time t+ 1, and a be any arm belonging
to A∗(t) at some time t. Under the IMED-EC algorithm,
if at+1 ∈ A∗(t),

Nat+1
(t) 6 Na(t), (14)

log
(
Nat+1(t)

)
6 min
cq⊆c∗

∑
k∈cq

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t), (15)

and if at+1 /∈ A∗(t),

qNat+1
(t)d

(
µ̂at+1

‖µ̂∗
)
6 log t, (16)

q log
(
Nat+1(t)

)
6 min
cq⊆c∗

∑
k∈cq

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t) . (17)

Proof. Assume that the chosen arm, at+1, belongs to A∗(t), then by definition of I(t) and I∗(t),
I∗(t) 6 I(t). I∗(t) = Iat+1

because at+1 is the chosen arm amongst elements of A∗(t), hence
belongs to arg mina∈A∗(t) logNa(t). Equation (14) follows and Nat+1

6 Na(t) for all a ∈ A∗(t).
Equation (15) then follows from the fact that:

logNat+1
(t) = I∗(t)

6 I(t)

= min
A′⊂A
|A′|=q

∑
a′∈A′

Ia′(t)

6 min
cq⊆c∗

∑
k∈cq

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t).

Assume that the chosen arm, at+1, does not belong to A∗(t). Then I(t) 6 I∗(t). The flow of control
of the IMED-EC algorithm implies that at+1 is an arm with minimal IMED index. By definition of
I(t), q times Iat+1

will always be smaller than or equal to I(t):

q
(
Nat+1

(t) d
(
µ̂at+1

(t) ‖µ̂∗ (t)
)

+ logNat+1
(t)
)
6 I(t). (18)

By definition of I∗(t), there exists a ∈ A∗(t) such that I∗(t) = logNa(t) implying that I∗(t) 6 log t.
Since I(t) 6 I∗(t), it implies that I(t) 6 log t. From equation (18) we deduce equation (16),

qNat+1
(t)d

(
µ̂at+1

‖µ̂∗
)
6 log t.

Last, equation (17) can be deduced from the definition of I(t) and equation (18):

q logNat+1
(t) 6 q

(
Nat+1

(t) d
(
µ̂at+1

(t) ‖µ̂∗ (t)
)

+ logNat+1
(t)
)

6 I(t)

= min
A′⊂A
|A′|=q

∑
a′∈A′

Ia′(t)

6 min
cq⊆c∗

∑
k∈cq

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t).

17



If we were to substitute empirical means with real ones, so that µ̂a(t) = µa for all a ∈ A and
A∗(t) = A∗, then one can see that equation (16) gives us the desired behavior, i.e. if at+1 is a
suboptimal arm, Nat+1

(t) 6 log t

qd(µat+1
‖µ∗)

. For distributions having concentration around the mean

property we will be able to say that, for large enough t, with high probability, for all arms a ∈ A,
|µ̂a(t)− µa| 6 ε. In this case, we shall still have a desired property. This is the statement of the next
Lemma. We then proceed to show the concentration properties later on.
Lemma 5. Let 0 < ε 6 1

3 mina/∈A∗ (µ∗ − µa). Assume that at+1 is the pulled arm at time t + 1
and at+1 ∈ A \ A∗ is a suboptimal arm. Let’s assume that µ̂at+1

(t) 6 µa + ε. Let’s also assume
that µ̂∗(t) > µ∗ − ε. Those hypothesis can be read as:

µ̂at+1
(t) 6 µat+1

+ ε < µ∗ − ε 6 µ∗(t). (19)

Lemma 4 and the monotonicity of the KL divergence implied by assumption 2, imply that:

Nat+1(t) 6
log t

qd
(
µat+1

+ ε‖µ∗ − ε
) . (20)

Property 2 then implies that there exists αa such that

Nat+1(t) 6
log t

qd
(
µat+1

‖µ∗
) (1 + αa(ε)) , (21)

with αa(ε)→ 0 as ε→ 0.

Proof. Equation (19) is a direct consequence of the hypothesis of the Lemma. The strict inequality,
µat+1 < µ∗, implies that at+1 cannot belong to A∗(t). Hence, equation (16) from Lemma 4 applies
and

qNat+1
(t)d

(
µ̂at+1

(t)‖µ̂∗
)
6 log t .

Because µ̂at+1
(t) < µ∗ − ε 6 µ̂∗(t), using assumption 2 that implies d

(
µ̂at+1

‖µ∗ − ε
)

6
d
(
µ̂at+1

‖µ̂∗(t)
)
, we have that:

qNat+1(t)d
(
µ̂at+1‖µ∗ − ε

)
6 log t.

Similarly, µ̂at+1(t) 6 µat+1(t) + ε < µ∗ − ε and using assumption 2 again, d (µa + ε‖µ∗ − ε) 6
d
(
µ̂at+1

‖µ∗ − ε
)
, we proved equation (20):

Nat+1
(t) 6

log t

qd
(
µat+1

+ ε‖µ∗ − ε
) ,

Using equation (11) from property 2, we deduce that there exists αa as in property 2 such that:

Nat+1(t) 6
log t

qd
(
µat+1

‖µ∗
) (1 + αa(ε)) .

In order to better clarify the proof of Theorem 2, we add two more lemmas that help emphasize where
the hypothesis regarding the distribution space F are used. The first one is about decomposing the
event of choosing a suboptimal arm.

Intuition about Lemma 6 The intuition of the next lemma is the following. Let a be a suboptimal
arm. We will decompose the event of choosing arm a at time t+ 1, {at+1 = a}, on three events. We
recall that µ̂∗(t) = max

a∈A
µ̂a(t). Let ε be such that 0 < ε 6 1

3 min
a/∈A∗

(µ∗ − µa) as in Lemma 5.

From Lemma 5, we know that under the event
{
µ̂∗(t) > µ∗ − ε, µ̂at+1

6 µat+1
+ ε
}

, the number
Nat+1

is upper bounded by the desired asymptotic term. The intuition of this term is given in section
3 and made formal in Lemma 5. We want to play an arm as frequently as the likelihood of optimality
of the group of size q it may belong to.

Whatever the space of distributions F , we will always assume a concentration around the mean
property. Therefore, we know that the event

{
µ̂at+1

> µat+1
+ ε
}

can be controlled by concentration

18



inequality (at+1 is the chosen arm at time t). The intuition for controlling this term is that one cannot
play an arm too much while not having a good estimation of its expected reward.

The remainder of the two aforementioned events, {at+1 /∈ A∗, µ̂∗(t) < µ∗ − ε}, is the most technical
and difficult to handle. An intuition may be the following. If µ̂∗(t) 6 µ∗ − ε, then it is true that for
any arm k ∈ A∗, µ̂k(t) 6 µ∗ − ε. In that case, it means that with a high enough probability, most
of the arm k ∈ A∗ have not been pulled too much. The IMED and IMED-EC algorithms try to match
likelihood of optimality with frequency of play. Therefore, we cannot keep not playing arm in A∗
(i.e. we cannot play the suboptimal arm for too long before playing k) and when that happens, we
will mostly observe a regression toward the mean making the event even more unlikely. We will rely
on concentration tools to make the regression toward the mean statement more precise.

We now formalize those intuitions in Lemma 6.

Lemma 6 (Fundamental decomposition). Let a be a suboptimal arm. Let ε be such that 0 < ε 6
1
3 mina/∈A∗ (µ∗ − µa) as in Lemma 5. Under IMED-EC, shifting the time index t by |A| (each arm is
pulled once at the beginning), Na(t) =

∑T
t=1 1 {at+1 = a}, the number of time a suboptimal arm a

has been pulled after time |A| can be upper bounded by:

T∑
t=1

1 {at+1 = a} 6
T∑
t=1

1

{
at+1 = a,Na(t) 6

log t

qd (µa + ε‖µ∗ − ε)

}
(22)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε} (23)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} . (24)

Proof. Following the aforementioned intuition, we decompose the event {at+1 = a} :

{at+1 = a} = {at+1 = a, µ̂∗(t) > µ∗ − ε} ∪ {at+1 = a, µ̂∗(t) < µ∗ − ε}
= {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) 6 µa + ε}
∪ {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε}
∪ {at+1 = a, µ̂∗(t) < µ∗ − ε}

= {at+1 = a, qNa(t)d (µa + ε‖µ∗ − ε) 6 log t} Using Lemma 5
∪ {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε}
∪ {at+1 = a, µ̂∗(t) < µ∗ − ε} .

Using indicators of those events and shifting the time index t by |A| (each arm is pulled once at the
beginning), we can upper bound Na(t) =

∑T
t=1 1 {at+1 = a}, the number of time a suboptimal arm

a as been pulled after time |A|:

T∑
t=1

1 {at+1 = a} 6
T∑
t=1

1

{
at+1 = a,Na(t) 6

log t

qd (µa + ε‖µ∗ − ε)

}
(22)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε} (23)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} . (24)

The second lemma is about bounding equation (24) by a quantity that can be controlled in both
assumptions 2 and 3. This particular control is very specific to the q-equivalence structure and rely
heavily on the fact that there is at least q distributions in the optimal class A∗.
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Lemma 7 (q-factorization). Let a be a suboptimal arm and c ⊆ A∗ be any subset of q optimal arms.
Then, under the IMED-EC algorithm,

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} 6∏
k∈c

∑
m1>1

...
mq>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε)) .

Proof. We want to control part (24) of the upper bound on the number of pulls of a subopti-
mal arm a. From Lemma 4, equation (15) and equation (17), we know that log

(
Nat+1

(t)
)
6

mincq⊆c∗
∑
k∈cq Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t). Let c ⊆ A∗ be any subset of q optimal arms.

Since we are studying the event {at+1 = a} this inequality becomes

log (Na(t)) 6 min
cq⊆c∗

∑
k∈cq

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t)

6
∑
k∈c

Nk(t)d (µ̂k(t)‖µ̂∗) + logNk(t) .

We use this inequality to control the sum (24).

(24) =

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε}

=

T∑
t=1

1

{
µ̂∗(t) < µ∗ − ε, logNa(t) 6

∑
k∈c

Nk(t)d (µ̂k(t)‖µ̂∗(t)) + logNk(t)

}
×

1 {at+1 = a}

=

T∑
t=1

T∑
n=1

1

{
µ̂∗(t) < µ∗ − ε, log (n) 6

∑
k∈c

Nk(t)d (µ̂k(t)‖µ̂∗(t)) + logNk(t)

}
×

1 {at+1 = a,Na(t) = n} .

Since µ̂∗(t) < µ∗−ε and µ̂∗(t) = maxb∈A µ̂b(t), we can use the monotonicity of the KL divergence
to state that for all k ∈ c, d (µ̂mkk ‖µ̂∗(t)) 6 d (µ̂k(t)‖µ∗ − ε). This implies the inclusion of events,{

µ̂∗(t) < µ∗ − ε, log (n) 6
∑
k∈c

Nk(t)d (µ̂k(t)‖µ̂∗(t)) + logNk(t)

}
⊆{

µ̂∗(t) < µ∗ − ε, log (n) 6
∑
k∈c

Nk(t)d (µ̂k(t)‖µ∗ − ε) + logNk(t)

}
,

which can be used to control the indicators. Furthermore, µ̂∗(t) 6 µ∗ − ε implies that max
k∈c

µ̂k(t) 6

µ∗ − ε since max
k∈c

µ̂k(t) 6 max
k∈A

µ̂k(t). Therefore,{
µ̂∗(t) < µ∗ − ε, log (n) 6

∑
k∈c

Nk(t)d (µ̂k(t)‖µ̂∗(t)) + logNk(t)

}
⊆{

max
k∈c

µ̂k(t) < µ∗ − ε, log (n) 6
∑
k∈c

Nk(t)d (µ̂k(t)‖µ∗ − ε) + logNk(t)

}
,
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which we use to control the indicators. We then obtain

(24) 6
T∑
t=1

T∑
n=1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

Nk(t)d (µ̂k(t)‖µ∗ − ε) + logNk(t)

}
×

1 {at+1 = a,Na(t) = n}

=
∑
m1>1

...
mq>1

∑
n>1

T∑
t=1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
×

1 {at+1 = a,Na(t) = n}
∏
k∈c

1 {Nk(t) = mk}︸ ︷︷ ︸
61

6
∑
m1>1

...
mq>1

∑
n>1

T∑
t=1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
×

1 {at+1 = a,Na(t) = n}

=
∑
m1>1

...
mq>1

∑
n>1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
×

T∑
t=1

1 {at+1 = a,Na(t) = n}︸ ︷︷ ︸
61

6
∑
m1>1

...
mq>1

∑
n>1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
.

We can then factorize the following term

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
=

1

{
max
k∈c

µ̂mkk < µ∗ − ε
}
1

{
log (n) 6

∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}
,

21



and remark that 1
{

max
k∈c

µ̂mkk < µ∗ − ε
}

does not depend on n. Hence,

(24) 6
∑
m1>1

...
mq>1

∑
n>1

1

{
max
k∈c

µ̂mkk < µ∗ − ε, log (n) 6
∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}

=
∑
m1>1

...
mq>1

1

{
max
k∈c

µ̂mkk < µ∗ − ε
}∑
n>1

1

{
log (n) 6

∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

}

6
∑
m1>1

...
mq>1

1

{
max
k∈c

µ̂mkk < µ∗ − ε
}

exp

(∑
k∈c

mkd (µ̂mkk ‖µ∗ − ε) + logmk

)
.

Since exp
(∑

k∈cmkd (µ̂mkk ‖µ∗ − ε) + logmk

)
=

∏
k∈cmk exp (mkd (µ̂mkk ‖µ∗ − ε)) and

1 {maxk∈c µ̂
mk
k < µ∗ − ε} =

∏
k∈c 1 {µ̂

mk
k < µ∗ − ε}, we can rewrite the last bound as

(24) 6
∑
m1>1

...
mq>1

∏
k∈c

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))

6
∏
k∈c

∑
m1>1

...
mq>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε)) .

where we used the fact that a sum of product of non-negative terms is not greater than the product of
the sum of these terms, since one contains all the terms of the other.

Thanks to Lemma 7, controlling the Equation (24) amounts to controlling terms like

E

 ∑
mk>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))

 , (25)

which is linked to the upper bound one can have on P (d (µ̂mkk ‖µ∗ − ε) > u, µ̂mkk 6 µ∗ − ε) and
whether or not it is better than exp (−mku). As we can see, controlling this terms amounts to a
concentration hypothesis of the distributions in F . Assumption 2 and assumption 3 are two possible
assumptions that make it possible to control the Equation (25).

We are now ready to prove the Theorem 2.

Proof of Theorem 2. Let a be a suboptimal arm and let ε be such that 0 < ε 6 1
3 min
a/∈A∗

(µ∗ − µa).

By Lemma 6 we have the following decomposition:

T∑
t=1

1 {at+1 = a} 6
T∑
t=1

1

{
at+1 = a,Na(t) 6

log t

qd (µa + ε‖µ∗ − ε)

}
(22)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε} (23)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} . (24)
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Control of equation (22) Equation (22) can be controlled as a random variable without any
concentration tools. The following derivation bound the sum (22) by:

(22) =

T∑
t=1

1

{
at+1 = a,Na(t) 6

log t

qd (µa + ε‖µ∗ − ε)

}

=

T∑
n=1

T∑
t=1

1

{
n 6

log t

qd (µa + ε‖µ∗ − ε)

}
1 {at+1 = a,Na(t) = n}

=

T∑
n=1

1

{
n 6

log T

qd (µa + ε‖µ∗ − ε)

} T∑
t=1

1 {at+1 = a,Na(t) = n}︸ ︷︷ ︸
61

6
T∑
n=1

1

{
n 6

log T

qd (µa + ε‖µ∗ − ε)

}
=

⌊
log T

qd (µa + ε‖µ∗ − ε)

⌋
6

log T

qd (µa + ε‖µ∗ − ε)
.

The derivation relies on the simple fact that an indicator function is upper bounded by 1. This part
proved that:

T∑
t=1

1 {at+1 = a} 6 log T

qd (µa + ε‖µ∗ − ε)
(22′)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε} (23)

+

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} . (24)

Control of equation (23) Equation (23) can be controlled using large deviation hypothesis on the
set of distributions that are considered. It should be noted that this term is also bounded by O(1) in
the paper Honda and Takemura [2015]. Therefore, this term can be also be handled under assumption
3. We give an upper bound under assumption 2. The common fact of those two assumptions is the
light-tail property of the considered distributions. A distributions is said light-tailed if its moment
generating function exists in a neighborhood of 0. In that case one can apply a concentration property

23



since Cramer’s theorem applies (see [Dembo and Zeitouni, 1998, Theorem 2.2.3]).

(23) =

T∑
t=1

1 {at+1 = a, µ̂∗(t) > µ∗ − ε, µ̂a(t) > µa + ε}

6
T∑
t=1

1 {at+1 = a, µ̂a(t) > µa + ε}

=

T∑
n=1

T∑
t=1

1 {at+1 = a,Na(t) = n, µ̂a(t) > µa + ε}

=

T∑
n=1

T∑
t=1

1 {at+1 = a,Na(t) = n}1 {µ̂na > µa + ε}

=

T∑
n=1

1 {µ̂na > µa + ε}
T∑
t=1

1 {at+1 = a,Na(t) = n}︸ ︷︷ ︸
61

6
T∑
n=1

1 {µ̂na > µa + ε} .

Taking the expectation of both sides,

E ((23)) 6
T∑
n=1

P (µ̂na > µa + ε) ,

which is a series of positive real numbers between 0 and 1 if we set T = +∞. The reason we
are interested in the limit is because we want E ((23)) to be upper bounded by a time independent
quantity. For this series to be convergent, we need the terms of the series, (P (µ̂a(n) > µa + ε))n
to converge fast enough toward 0. Denoting ϕa the moment generating function of arm a and
ψa = logϕa the cumulant generating function we derive that for all λ > 0:

P (µ̂na > µa + ε) = P

(
n∑
i=1

Xa
i > n (µa + ε)

)

6
ϕa (λ)

n

enλ(µa+ε)
Markov inequality

= exp (n (ψa (λ)− λ (µa + ε)))

= exp (−n (λ (µa + ε)− ψa (λ))) .

Since this inequality is true for all λ we can minimize the right-hand side expression which features
the Legendre-Fenchel transformation of ψa (also known as the Cramer transform). We denote
ψ∗a(ε) = supλ (λ (µa + ε)− ψa (λ)) the Legendre-Fenchel transform of ψa that exists thanks to
assumption 2.

For distributions in F this quantity is strictly positive as it is proved in Dembo and Zeitouni [1998].
Therefore, we proved that

P (µ̂na > µa + ε) 6 exp (−nψ∗a (ε))

= (exp (−ψ∗a (ε)))
n
,
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with 0 6 exp (−ψ∗a (ε)) < 1. This result is enough to bound equation (23) in expectation,

E ((23)) 6
T∑
n=1

P (µ̂na > µa + ε)

6
+∞∑
n=1

P (µ̂na > µa + ε)

6
+∞∑
n=1

exp (−nψ∗a (ε))

= Ca (ε) ,

where Ca(ε) denotes the limit of the series
∑+∞
n=1 exp (−nψ∗a (ε)). This part and the previous one

proved that

E

(
T∑
t=1

1 {at+1 = a}

)
6

log T

qd (µa + ε‖µ∗ − ε)
(22′)

+ Ca (ε) (23′)

+ E

(
T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε}

)
. (24)

Control of equation (24) We are left to control part (24) of the upper bound on the number of pulls
of a suboptimal arm. Let c ⊆ A∗ be any subset of q optimal arms. From the q-factorization lemma,
Lemma 7, we know that

T∑
t=1

1 {at+1 = a, µ̂∗(t) < µ∗ − ε} 6∏
k∈c

∑
m1>1

...
mq>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε)) .

Since samples from the different arms are independents, the inequality holds in expectation:

E ((24)) 6
∏
k∈c

E


∑
m1>1

...
mq>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))


.

The proof of Lemma 14 in Honda and Takemura [2015], from equation (26), features a very similar
quantity. In particular, it has been proved that for all k ∈ c, under the assumption 3

E

 ∑
mk>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))

 6 DIMED(ε), (26)

where DIMED(ε) is given by equation (28) of Honda and Takemura [2015]. The proof of Lemma 14
in Honda and Takemura [2015] relies on the Proposition 11 of Honda and Takemura [2015]. Under
assumption 2, Proposition 1 allows us to upper bound the left hand side of Equation (27) by a time
independent quantity using the same strategy of integration by parts used in Honda and Takemura
[2015]:

E

 ∑
mk>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))

 6 D(ε). (27)
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This upper bounds amount to the fact that u 7→ exp (−α
√
u) is integrable on [0,+∞[ for all α > 0.

Let P (u) = Pνk (d (µ̂mkk ‖µ∗ − ε) > u, µ̂µkk < µ∗ − ε). Under assumption 2, Proposition 1 upper
bounds P (u), P (u) 6 exp (−mk (u+ λ (µ∗, µ∗ − ε)

√
u)) with λ (µ∗, µ∗ − ε) > 0. Therefore, we

can integrate against P (u)∑
mk>1

E (1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε)))

=

∫ ∞
0

mk exp (mku) (−dP (u))

=
∑
mk>1

[mk exp (mku) (−P (u))]
∞
0 +

∫ ∞
0

m2
k exp (mku)P (u)du

6 h (ε) +
∑
mk>1

∫ ∞
0

m2
k exp (mku) exp

(
−mk

(
u+ λ (µ∗, µ∗ − ε)

√
u
))
du

= h (ε) +
∑
mk>1

∫ ∞
0

m2
k exp

(
−mkλ (µ∗, µ∗ − ε)

√
u
)
du

6 h (ε) + p (ε)

= D (ε) ,

which proves our claim. Therefore, under assumption 2 or assumption 3, we can deduce a bound on
equation (24),

(24) 6
∏
k∈c

∑
m1>1

...
mq>1

1 {µ̂mkk < µ∗ − ε}mk exp (mkd (µ̂mkk ‖µ∗ − ε))

6 D (ε)
q
,

because c is a set of size q.

All combined, those derivations proved that

E

(
T∑
t=1

1 {at+1 = a}

)
6

log T

qd (µa + ε‖µ∗ − ε)
(22′)

+ Ca (ε) (23′)

+D(ε)q, (24′)

and can be written as

E (Na(t)) 6
log T

qd (µa + ε‖µ∗ − ε)
+ Ca (ε) +D(ε)q.

Using property 2 for the KL divergence, we finally get the final expression proving the Theorem 2,

E (Na(t)) 6
log T

qd (µa‖µ∗)
(1 + αa(ε)) + f(ε),

with f(ε) = Ca (ε) +D(ε)q .

Proof of Theorem 3. The Theorem 2 we just proved states that

E (Na(t)) 6
log T

qd (µa‖µ∗)
(1 + αa(ε)) + f(ε)

with f(ε) = Ca (ε) +D(ε)q . Dividing both sides by log T , we get that for all ε small enough

lim inf
t→+∞

Eν (Na(T ))

log T
6

1

qd (µa‖µ∗)
(1 + αa(ε)) .

Letting ε tends to 0 proves the Theorem 3.
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D Experiments

In this section, we illustrate the performances of IMED-EC with a few more plots and explore the
dispatching of this algorithm. By dispatching, we mean to compare the discrepancy in the number of
pulls within a class. In particular, we are interested in the behavior of the different sampling strategies
within the optimal class. The different settings are the same as the one presented in the main part of
this paper. We present additional details.

Balanced class, perfect knowledge In this set of experiments, see Figure 5, we focus on the
bandit configurations in which all equivalence classes have the same cardinality and assume that
we know the number of elements per class. Recall that since OSSB has to solve a combinatorial
optimization problem at each time step, we can cannot carry experiments on large set of arms while
comparing IMED-EC to it. In this particular setting, we see that while OSSB and IMED-EC are provably

Figure 5: 3 classes, 2 distributions per class - set of means = {0.1, 0.3, 0.7}

asymptotically optimal, IMED-EC numerically performs better in finite time horizon.

Next, we explore the dispatching of IMED-EC and compare it to the one of KLUCB and IMED. We
run the three algorithms 1000 times on an bandit problem whose number of class is 4 with means
{0.1, 0.3, 0.6, 0.9} and 10 Gaussian distributions with unit variance within each class. The chosen
horizon is 2000. We assume that IMED-EC has perfect knowledge on the number of elements per
class, 10. In the next section, similar plots (see Figure 11, Figure 12, Figure 13 and Figure 14) can
be found where IMED-EC only knows a strict lower bound on the number of elements per class. For
each of the 4 classes, we report the histogram accounting for the number of times distributions within
each class has been pulled. Specifically, we are interested in the statistical order of the number of
pulls within each class. After each run, for each class, we sort the number of pulls. The histograms
are built using those sorted number of pulls. Error bars corresponds to the standard deviations and
have been clipped to not go below the x-axis.

For the most suboptimal class, Figure 6, not much can be said since the number of pulls is very low.
Still, one can see that the progression of the order statistics for KLUCB and IMED is somewhat linear
while it seems more exponential for IMED-EC. (Note that we use these terms here informally.)

The same linear versus exponential apparent behavior can be seen on Figure 7.

On Figure 8, one can clearly a difference in the behaviour of KLUCB and IMED, that have small error
bars, and IMED-EC that have a large error bar for the most pulled arm within the least suboptimal
class. We can clearly see how risky it might be to reduce the exploration from this error bar. However,
this risk is compensated by the fact that there is at least q similar distributions. This can be read
from the fact that the sum of all the number of pulls within this class for KLUCB and IMED is above
200 which is roughly the maximal number of pulls of IMED-EC within this class computed using the
upper bounds (given by the maximal value of the standard deviation).
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Figure 6: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.1

Figure 7: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.3

Figure 8: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.6

Finally, Figure 9 enables to compare the behaviours of the algorithms within the optimal class. It
seems clear that, at least numerically, IMED-EC is not a fair algorithm in finite time (in the sense that
it does not equally distribute the pulls between arms from the same class) and that it leverages the
lower bound on the number of elements per class to play a more risky strategy, and benefits from it.
Again, we observe the linear versus exponential progression in the order statistics of the number of
pulls.
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Figure 9: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - class of mean 0.9

Imperfect knowledge In the experiment plotted Figure 10, we leverage the knowledge hypothesis
and assume that we only know a lower bound on the number of elements per class while the classes
are still balanced. We compare IMED-EC to unspecialized bandit algorithm, IMED and KLUCB. We can

Figure 10: 7 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9}

see that the finite time cumulative regret of IMED-EC indeed is much smaller than the regret of the
unspecialized algorithms, showing the ability of IMED-EC to effectively exploit this weak knowledge.

For the sake of completeness, we explore the dispatching of IMED-EC and compare it to the one
of KLUCB and IMED on this setting. We run the three algorithms 1000 times on an bandit problem
whose number of class is 4 with means {0.1, 0.3, 0.6, 0.9} and 10 Gaussian distributions with unit
variance within each class. The chosen horizon is 2000. We assume that IMED-EC does not have
perfect knowledge on the number of elements per class, and we use 3 as the lower bound parameter
of IMED-EC. For each of the 4 classes, we report the histogram accounting for the number of times
distributions within each class has been pulled.Error bars corresponds to the standard deviations and
have been clipped to not go below the x-axis.

Comments that were respectively made for Figure 6, Figure 7, Figure 8, and Figure 9 can similarly
made for Figure 11, Figure 12, Figure 13, and Figure 14.

Interestingly, we can tell apart the two settings by looking at the behaviour of the algorithms for the
least suboptimal class, i.e. comparing Figure 8 and Figure 13. In Figure 8 the error bar for the most
pulled elements is much larger than in Figure 13 meaning that the algorithm at stakes explore less.
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Figure 11: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - mean 0.1

Figure 12: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - mean 0.3

Figure 13: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - mean 0.6

Influence of the parameter q Here we show the numerical robustness of IMED-EC with respect to
the lower bound parameter q on the number of elements per classes. On the same bandit problem,
we compare different instances of IMED-EC where different values of q are used. In the legend,
opt. stands for optimal and corresponds to the largest valid lower bound on the number of elements
per class, i.e. the minimal number of elements in a class. The experiments done for Figure 15 are
performed on a bandit problem with 4 classes and and 10 distributions per class. While q increases up
to the minimum cardinality of a class, we see that the performances of IMED-EC increases, which is
expected. It is rather remarkable that once we go beyond that theoretical threshold, the performances
of IMED-EC do not seem to deteriorate.
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Figure 14: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9} - mean 0.9

Figure 15: 4 classes, 10 distributions per class - set of means = {0.1, 0.3, 0.6, 0.9}

Finally, we explore the dispatching of IMED-EC and compare it to the one of KLUCB and IMED on this
setting. We run the three algorithms 1000 times on a bandit problem whose number of class is 7 with
means {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} and an uneven number of Gaussian distributions with unit
variance within each class. The chosen horizon is 2000. We assume that IMED-EC does not have
perfect knowledge on the number of elements per class, and we use 3 as the lower bound parameter of
IMED-EC. For some classes, we report the histogram accounting for the number of times distributions
within each chosen class has been pulled. Error bars corresponds to the standard deviations and have
been clipped to not go below the x-axis.

The comments that can be made about those plots are similar to the one that were already made
for similar experiments. We included them to show that the behaviour of IMED-EC (and also the
behaviour of IMED and KLUCB) is consistent across multiple settings. In particular, the algorithm
IMED-EC exhibits the same aforementioned behaviour for the least suboptimal class, as it can be seen
by comparing Figure 18 to the corresponding Figure 8 and Figure 13.
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Figure 16: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.3

Figure 17: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.5

Figure 18: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.75

Figure 19: 7 classes - unbalanced - set of means = {0.1, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9} - mean 0.9
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