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Abstract

Annealed importance sampling (AIS) and related algorithms are highly effective
tools for marginal likelihood estimation, but are not fully differentiable due to the
use of Metropolis-Hastings correction steps. Differentiability is a desirable property
as it would admit the possibility of optimizing marginal likelihood as an objective
using gradient-based methods. To this end, we propose Differentiable AIS (DAIS),
a variant of AIS which ensures differentiability by abandoning the Metropolis-
Hastings corrections. As a further advantage, DAIS allows for mini-batch gradients.
We provide a detailed convergence analysis for Bayesian linear regression which
goes beyond previous analyses by explicitly accounting for the sampler not having
reached equilibrium. Using this analysis, we prove that DAIS is consistent in the
full-batch setting and provide a sublinear convergence rate. Furthermore, motivated
by the problem of learning from large-scale datasets, we study a stochastic variant
of DAIS that uses mini-batch gradients. Surprisingly, stochastic DAIS can be
arbitrarily bad due to a fundamental incompatibility between the goals of last-iterate
convergence to the posterior and elimination of the accumulated stochastic error.
This is in stark contrast with other settings such as gradient-based optimization and
Langevin dynamics, where the effect of gradient noise can be washed out by taking
smaller steps. This indicates that annealing-based marginal likelihood estimation
with stochastic gradients may require new ideas.

1 Introduction

Marginal likelihood (ML), sometimes called evidence, is a central quantity in Bayesian learning
as it measures how well a model can describe a particular dataset. It is commonly used to select
hyperparameters for Gaussian processes [Rasmussen, 2003], where either closed-form solutions or
accurate, tractable approximations are available. However, it is more often the case that computing
ML is computationally intractable, as it involves summation or integration over high-dimensional
model parameters or latent variables. In this case, one must resort to numerical methods or other
approximations [Kass and Raftery, 1995]. In the context of model comparison (e.g., evaluating gener-
ative models [Wu et al., 2016, Huang et al., 2020]), annealed importance sampling (AIS) [Neal, 2001]
is one of the most popular and effective algorithms. Notably, AIS is closely related to other generic
ML estimators that yield accurate estimation [Grosse et al., 2015], including Sequential Monte Carlo
(SMC) [Doucet et al., 2001] and nested sampling [Skilling et al., 2006]. Under some assumptions,
AIS is able to produce accurate estimates of marginal likelihood given enough computation time (it
converges to the true ML value quickly by adding more intermediate distributions).

AIS alternates between Markov chain Monte Carlo (MCMC) transitions and importance sampling
updates, where the MCMC step typically involves a non-differentiable Metropolis-Hastings (MH)
correction. Unfortunately, the non-differentiability precludes gradient-based optimization of the
sampler and complicates theoretical analysis. To deal with this, we marry AIS with Hamiltonian
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Monte Carlo (HMC) [Neal, 2011] and derive an unbiased yet differentiable ML estimator named
differentiable AIS (DAIS) by removing the MH correction step, which further unlocks the possibility
of mini-batch computation. Moreover, DAIS can be made memory efficient by caching noise and
simulating Hamiltonian dynamics in reverse [Maclaurin et al., 2015]. We analyze the convergence of
DAIS in the setting of Bayesian linear regression. Our analysis goes beyond prior analyses of AIS in
that we account for the sampler not having reached equilibrium. In the full-batch setting, we show
that DAIS retains the consistency guarantee of AIS (despite the lack of MH steps) and has a sublinear
convergence rate.

Furthermore, motivated by the problem of learning from large-scale datasets, we study a stochastic
variant of our algorithm that uses gradients estimated from a subset of the dataset. Given the success
of stochastic optimization [Robbins and Monro, 1951, Bottou and Bousquet, 2011] and stochastic
gradient MCMC algorithms [Welling and Teh, 2011, Chen et al., 2014], one may presume that
stochastic gradient DAIS would perform well. Surprisingly, the stochastic version of DAIS can be
arbitrarily bad. In particular, we show that the log ML estimates of DAIS with stochastic gradients
are inconsistent due to a fundamental incompatibility between the goals of last-iterate convergence
to the posterior and elimination of the accumulated stochastic error. This is in stark contrast with
other settings such as gradient-based optimization and Langevin dynamics, where the gradient noise
can be washed out by taking smaller steps. This indicates that annealing-based ML estimation with
minibatch gradients may require new ideas.

We validate our theoretical analysis with simulations. We also demonstrate empirically that DAIS can
be applied to variational autoencoders (VAEs) [Kingma and Welling, 2013, Rezende et al., 2014] for
a tighter evidence lower bound, which in turn leads to improved performance compared to the vanilla
VAE. We also compare to importance weighted autoencoders (IWAE) [Burda et al., 2016]. While
IWAE is more effective with a low compute budget, we show that DAIS eventually outperforms
IWAE as compute increases. Finally, like AIS, DAIS can be used to evaluate generative models. We
show that it performs on par with AIS despite the removal of the MH correction step and outperforms
the IWAE bound by a large margin.

2 Background

2.1 Marginal Likelihood Estimation

For a modelM and observed data D, one can define the marginal likelihood (ML) as

p(D|M) =

∫
p(D,θ|M)dθ =

∫
p(D|θ,M)p(θ|M)dθ, (1)

where θ denotes the parameters of the model. ML estimation can be regarded as an instance of
estimating the partition function of an unnormalized distribution. Given a distribution defined as
p(θ) = f(θ)/Z where the unnormalized density f(θ) can be efficiently computed, we are interested
in estimating the partition function Z =

∫
f(θ)dθ. Here, f(θ) corresponds to p(D,θ|M) in (1). In

this paper, we focus on the setting of ML estimation because the stochastic version of DAIS is most
naturally viewed as arising from data subsampling, but otherwise our analysis applies to the more
general setting.

It is often the case that computing ML is computationally intractable. One approach is to approximate
(1) with Monte Carlo methods, e.g., one can approximate the integration using importance sampling:

p(D|M) = Eq(θ)
[
p(D|θ,M)p(θ|M)

q(θ)

]
≈ 1

S

S∑
i=1

p(D|θi,M)p(θi|M)

q(θi)
with θi ∼ q(θ) (2)

However, this estimation can exhibit high variance for small or medium S when the target distribution
p(D,θ|M) and proposal distribution q(θ) are dissimilar.

2.2 Annealed Importance Sampling

Annealed importance sampling (AIS) is an algorithm which estimates the ML by gradually changing,
or “annealing”, a distribution. Formally, the algorithm takes in a sequence of distributions p0, . . . , pK ,
with pk(θ) = fk(θ)/Zk and Zk =

∫
fk(θ)dθ. In the context of ML estimation, the starting
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distribution f0 is the tractable prior distribution p(θ|M) with Z0 = 1, while the target distribution
fK is p(D,θ|M) with ZK = p(D|M). For each pk, one must also specify an MCMC transition
operator Tk which leaves pk invariant.

The output of AIS is an unbiased estimate ẐK of the exact ML ZK . Importantly, unbiasedness holds
for any finite K, as shown in Neal [2001]. Moreover, AIS can be viewed as importance sampling
over an extended space [Neal, 2001]. In particular, we have ZK = Eqfwd [qbwd/qfwd] with the target
and proposal distributions defined as

qfwd(θ0:K) = p0(θ0)T1(θ1|θ0) · · · TK(θK |θK−1) (3)

qbwd(θ0:K) = fK(θK)T̃K(θK−1|θK) · · · T̃1(θ0|θ1), (4)

where Tk(θ|θ′) is a forward MCMC kernel and T̃k(θ′|θ) = Tk(θ|θ′)pk(θ′)/pk(θ) is the correspond-
ing reverse kernel. Here, qfwd represents the chain of states generated by AIS, and qbwd is a fictitious
(unnormalized) reverse chain which begins with a sample from pK and applies the transitions in
reverse order. In practice, the intermediate distributions have to be chosen carefully for a low variance
estimate ẐK . One typically uses geometric averages of the initial and target distributions:

pk(θ) = pβk(θ) = fβk(θ)/Zβk = f0(θ)
1−βkfK(θ)βk/Zβk = p(θ|M)p(D|θ,M)βk/Zβk (5)

where 0 = β0 < β1 < · · · < βK = 1 is the annealing schedule. Indeed, AIS gives an unbiased
estimate Ẑ of Z . However, as Z can vary over many orders of magnitude, it is often more meaningful
to talk about estimating logZ . Unfortunately, unbiased estimators ofZ can result in biased estimators
of logZ because E log Ẑ ≤ logEẐ by Jensen’s inequality, resulting in only a lower bound. In
particular, we have the AIS bound

Eqfwd log ẐK =

K∑
k=1

Eqfwd

[
log fβk(θk−1)− log fβk−1

(θk−1)
]

(6)

=

K∑
k=1

(βk − βk−1)Eqfwd [log p(D|θk−1,M)] (7)

where (5) facilitated the simplification from (6) to (7). Of course, it is not enough to have a lower
bound; we would also like the estimates to be close to the true value. Fortunately, AIS is consistent
in that the estimate log Ẑ converges to the correct value in the limit of infinitely many intermediate
distributions [Neal, 2001], under the very idealized assumption of perfect transitions (i.e. that each
transition Tk generates an exact sample from pk, independent of the previous state). To give some
intuition, the bound (6) can be simplified as

Eqfwd log ẐK = logZK −
K∑
k=1

DKL(pk−1 ‖ pk), (8)

and the sum of the KL divergence terms diminishes as K →∞.

3 Differentiable Annealed Importance Sampling

Algorithm 1 Differentiable AIS (DAIS)

θ0,v0 sample from p0(θ), π , N (0,M)
LDAIS = − log p0(θ0)
for k = 1, . . . ,K do
θk− 1

2
← θk−1 +

η
2M−1vk−1

v̂k ← vk−1 + η∇ log fβk(θk− 1
2
)

θk ← θk− 1
2
+ η

2M−1v̂k

vk ← γv̂k +
√
1− γ2ε, ε ∼ N (0,M)

LDAIS += log π(v̂k))− log π(vk−1)
end for
return LDAIS += log p(D,θK |M)

In this section, we motivate and derive a dif-
ferentiable AIS (DAIS) algorithm for marginal
likelihood (ML) estimation. We also discuss its
application to variational inference for a tighter
ELBO and a memory-efficient implementation.

Ideally, assuming a continuously parameterized
model class (e.g., variational autoencoder), we
would like to differentiate through the lower
bound (7) to find an optimal modelM. How-
ever, AIS must be instantiated with an MCMC
transition kernel Tk that satisfies detailed bal-
ance to ensure it leaves pk invariant. In practice,
this is typically achieved by using a MH step,
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which is generally not differentiable.1 We thus remove the MH correction and, in particular, specify
each transition to consist of a deterministic leapfrog integration step followed by a stochastic par-
tial momentum refreshment [Horowitz, 1991]. Algorithm 1 details the simulation of Hamiltonian
dynamics using such transitions. With γ = 0, the algorithm resemables unadjusted Langevin dynam-
ics [Roberts et al., 1996] but computes the ML bound on the fly. In practice, choosing 0 < γ < 1
(γ = 0.9 is a common default) helps avoid random walk behavior and accelerates mixing [Neal, 2011,
Chen et al., 2014]. Importantly, we retain the formalism of performing importance sampling on an
extended space despite the loss of detailed balance.2 To show this, we can define the forward and
(unnormalized) backward distributions as

qfwd(θ0:K ,v0:K) = p0(θ0)π(v0)T1(θ1,v1|θ0,v0) · · · TK(θK ,vK |θK−1,vK−1) (9)

qbwd(θ0:K ,v0:K) = fK(θK)π(vK)T̃K(θK−1,vK−1|θK ,vK) · · · T̃1(θ0,v0|θ1,v1) (10)

where the transition operator Tk(θk,vk|θk−1,vk−1) = T ′k(θk, v̂k|θk−1,vk−1)T ′′k (vk|v̂k) is the
composition of a leapfrog step and momentum refreshment step. We define the reverse chain by
starting with an exact sample and executing each of the above steps of Algorithm 1 in the reverse
order, which leads to a surprisingly simple expression for our estimator. In particular, the backward
transition operator is defined by T̃k(θk−1,vk−1|θk,vk) = T ′′k (v̂k|vk)T ′k(θk−1,vk−1|θk,−v̂k).
Note that we need to flip the sign of v̂k in the reverse chain to account for time reversal. As a
consequence of the above definitions, we have

T ′′k (vk|v̂k) = T ′′k (v̂k|vk)π(vk)/π(v̂k). (11)

This is because T ′′k (vk|v̂k) = N (γv̂k, (1 − γ2)M) and T ′′k (v̂k|vk) = N (γvk, (1 − γ2)M). Fur-
thermore, since T ′k is a deterministic leapfrog update, it is reversible and volume preserving, so we
have T ′k(θk−1,vk−1|θk,−v̂k) = T ′k(θk, v̂k|θk−1,vk−1). With this, we can derive the DAIS bound:

LDAIS = Eqfwd [log qbwd(θ0:K ,v0:K)− log qfwd(θ0:K ,v0:K)]

= Eqfwd

[
log p(D,θK |M)− log p0(θ0) +

K∑
k=1

log
π(v̂k)

π(vk−1)

]
.

(12)

We remark that this bound supports the computation of pathwise derivatives.

It’s useful to consider an intuition for the final term of (12), since this will help to clarify our
convergence analysis. Observe that log π(vk) is simply the negative kinetic energy plus a constant,
so this term will be negative if the kinetic energy increases over the course of a leapfrog step and
positive if it decreases. For small enough step sizes, leapfrog steps approximately conserve the total
energy. If the posterior distribution is becoming more concentrated over the course of annealing (as
is typically the case), the start of the leapfrog step is likely to have atypically high potential energy,
so the leapfrog step will convert the potential energy to kinetic energy, and this term will be negative
in expectation. Conversely, if the distribution is becoming more spread out, kinetic energy will be
converted to potential energy, and the term will be positive in expectation. Hence, when summed over
the whole trajectory, this term helps to estimate the volume of the support of the posterior distribution.

3.1 Differentiable Annealed Variational Inference

DAIS can be applied to variational inference for a tighter bound; we name this differentiable annealed
variational inference (DAVI). We note that the general idea of incorporating auxiliary MCMC states
into a variational approximation was discussed in Salimans et al. [2015], but their formulation requires
the specification and learning of a reverse transition model, whereas ours does not.

Recall that we can lower bound the log ML by choosing a tractable variational distribution and
optimizing the bound. This has been widely adopted in variational autoencoders [Kingma and
Welling, 2013, Rezende et al., 2014] and Bayesian neural networks [Blundell et al., 2015, Zhang
et al., 2018]. The lower bound has the following form:

L ≡ Eqφ [log p(D,θ|M)− log qφ(θ)] (13)

1The discontinuity introduced by the MH step makes it hard to use the reparameterization trick, though this
can be done using a delicate gradient estimator [Naesseth et al., 2017]. This is orthogonal to our work and our
fix is simpler and easier for us to analyze.

2This is true even with mini-batch gradients.
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However, the lower bound can be quite loose if the variational posterior family qφ(θ) is restrictive,
e.g. Gaussian. To improve the bound, we can define a new variational distribution on an extended
space as in (9), but starting from qφ rather than p0:

qfwd(θ0:K ,v0:K) = qφ(θ0)π(v0)T1(θ1,v1|θ0,v0) · · · TK(θK ,vK |θK−1,vK−1). (14)

We also define associated intermediate distributions pk(θ) = qφ(θ)
1−βkp(D,θ|M)βk . This gives a

new lower bound:

LDAVI ≡ Eqfwd

[
log p(D,θK |M)− log qφ(θ0) +

K∑
k=1

log
π(v̂k)

π(vk−1)

]
. (15)

We can maximize this lower bound over model parameters of M, all parameters of AIS (e.g.,
annealing schedule βk) as well as variational parameters φ.

3.2 Memory-Efficient Implementation

Table 1: Memory and time usage of DAIS imple-
mentations. B is 32 for single-precision floating-
point format.

Scheme Memory Time

Naive O(BK) O(K)
Rev. Learning O(log2(1/γ)K) O(K)

Naively optimizing instantiations of (12) or (15)
w.r.t. parameters using reverse-mode differentiation in-
volves storing the entire sequence of sampled states
θ0,v0, . . . ,θK ,vK . This can be problematic in cases
when K is large due to the large memory overhead.
However, DAIS is compatible with the idea of re-
versible learning [Maclaurin et al., 2015], which ame-
liorates this problem. Instead of storing the states in memory, we can compute the previous state given
the current state by reversing the dynamics. Recall that each DAIS transition is deterministic and
reversible other than the use of noise εk for momentum refreshment. The exact noise samples can also
be computed in reverse if one uses a deterministic and reversible scheme (e.g. the linear congruential
generator) for managing pseudorandom number generator seeds. Assuming exact arithmetic (in
practice, this is impossible), this means that the memory footprint of DAIS can be made constant
with respect to the number of intermediate distributions K. Similar memory-efficiency tricks have
also been used in other applications [Li et al., 2020, Ruan et al., 2021].

However, as discussed by Maclaurin et al. [2015], reversible learning with finite arithmetic precision
requires some storage to counteract compounding round-off error. For γ 6= 0 (γ = 0.9 is a common
default), we need on average log2(1/γ) bits per parameter per step, which is still small compared to
naive storage. We defer further exposition on memory-efficient DAIS to Appendix D. We remark that
reversible learning is a potentially crucial property of DAIS as it affords some degree of scaling to
longer chain lengths and, indirectly, bigger models.

4 Convergence Analysis for Bayesian Linear Regression

Neal [2001] has pointed that AIS is consistent, i.e. that it converges to the true log ML value in the
limit of infinitely many intermediate distributions. However, these consistency results depend on
the idealized assumption of perfect transitions (where each transition returns an independent exact
sample), and therefore don’t account for the time required for the samples to reach equilibrium.
Here, we analyze DAIS for a Bayesian linear regression model with realistic (imperfect) transitions.
Accounting for the convergence of the sampler is essential for separating the behaviors in the
full-batch and mini-batch regimes.

In particular, we focus on the Bayesian linear regression setting and adopt the following model:

prior: θ ∼ N (µp,Λ
−1
p )

likelihood: y ∼ N (Xθ, σ2I)⇒ θ ∼ N (µ∗,Λ
−1
lld ) where Λlld = X>X

σ2 and µ∗ = (X>X)−1X>y

posterior: θ ∼ N (µpos,Λ
−1
pos) where µpos = Λ−1pos(Λpµp + Λlldµ∗) and Λpos = Λp + Λlld

with X ∈ Rn×d denoting the input features and y ∈ Rn×1 the targets. We choose Bayesian linear
regression because it enables us to analyze the dynamics analytically in a similar manner as done by
the noisy quadratic model (NQM) [Zhang et al., 2019] in the context of optimization. We adopt the
leapfrog step (we assume an identity mass matrix without loss of generality because we can absorb
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M into the input matrix X in Algorithm 1) and obtain the following update rule (see Appendix B.1
for derivation):

θk ←
(

I− η2k
2

Λβk
pos

)
θk−1 +

(
ηkI−

η3k
4

Λβk
pos

)
vk−1 +

η2k
2

Λβk
posµ

βk
pos

v̂k ← −ηkΛβk
posθk−1 +

(
I− η2k

2
Λβk

pos

)
vk−1 + ηkΛ

βk
posµ

βk
pos

(16)

where Λβk
pos = Λp + βkΛlld and µβkpos = (Λβk

pos)−1(Λpµp + βkΛlldµ∗). With these iterative updates,
we can compute the expectation and covariance of θk and vk at any time k, which suffices to compute
the lower bound in closed-form.

4.1 Sublinear Convergence in the Full-Batch Setting

With the model defined, we now show that our algorithm is asymptotically consistent, i.e., the
bound (12) converges to exact log ML as K goes to infinity. For Bayesian linear regression, the
update rules in (16) are affine transformations of Gaussian random variables, so the distribution of θk
is also Gaussian in the form of N (µk,Σk). We can compute the gap between the log ML and our
lower bound in closed-form (see Appendix B.2 for derivation):

log p(D)− LDAIS =

1

2
‖µK − µpos‖2Λpos︸ ︷︷ ︸

1

+
1

2
Tr(ΛposΣK)− d

2︸ ︷︷ ︸
2

+
1

2
log
|Σpos|
|Σp|

− Eq

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
︸ ︷︷ ︸

3

(17)

where d is the feature dimension. Here, 1 and 2 measure the error of last-iterate Markov chain
convergence and will both vanish as long as µK → µpos and ΣK → Σpos. We will show later that
they converge with a rate of O( 1

η2K ). The key is to show that µk (resp. Λk) lags behind µβkpos (resp.
Λβk
pos) with roughly 1

η2 steps. Formally, we have the following.

Lemma 1. Given equally spaced βk, running DAIS with γ = 0 and η ∼ 1
Kc where c ≥ 1

4 yields

‖µk−1 − µβkpos‖2 = O(K2c−1), ‖Λk−1 −Λβk
pos‖2 = O(K2c−1). (18)

We remark that the assumption of βk being equally spaced is not essential and can be relaxed as
long as they are chosen by a scheme that leads to βk − βk−1 going down approximately in inverse
proportion to K. In addition, we note that the assumption of full momentum refreshment is for
convenience and we believe a similar result holds for γ > 0.

Importantly, this lemma implies that both 1 and 2 vanish sublinearly if we choose c < 1
2 . The

analysis of error term 3 is more nuanced. In particular, this error could either come from using
transitions for each of these intermediate distributions that do not bring the distribution close to
equilibrium, or from using a finite number of distributions to anneal from p0 to pK . Surprisingly, the
error 3 decays as fast as the other two terms if the step size scales as 1/Kc with c ≥ 1

4 . In summary,
we have the following theorem.
Theorem 1. Given equally spaced βk, running DAIS with γ = 0 and η ∼ 1

Kc where c ≥ 1
4 yields

log p(D)− LDAIS = O(K2c−1).

With c = 1
4 , we have the convergence rate O(1/

√
K).

We remark that with perfect transitions, the requirement of c ≥ 1/4 is not necessary and we can
achieve O(1/K) convergence, as also shown in Grosse et al. [2013]. The gap between O(1/

√
K)

and O(1/K) highlights the importance of considering convergence to the stationary distribution.

4.2 Inconsistency in the Stochastic Setting

Standard AIS involves MH steps which require a costly computation using all of the data, thus
defeating the potential computational efficiency benefit of stochastic gradients [Chen et al., 2014].
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This is likely why the convergence properties of stochastic gradient AIS were previously unknown.
In contrast, the only part of DAIS that requires full-batch computation is the gradient term in the
leapfrog step of Algorithm 1, which may be amenable to estimation via mini-batching.

We have shown that our algorithm is asymptotically consistent in the full-batch setting. Often, a
consistent/convergent algorithm in the deterministic setting readily implies a similar convergence
result in the stochastic setting. For example, SGD [Robbins and Monro, 1951] and SGMCMC [Chen
et al., 2014, Ma et al., 2015] are both convergent in the presence of noise. This begs the question
of whether DAIS is consistent when we only have access to stochastic gradients. Here, we adopt
an additive noise model3 ∇̃ log fk(θ) = ∇ log fk(θ) + ε. This model is commonly used in the
stochastic approximation literature, and such a model has also been adopted in Chen et al. [2014].
With such a noise model, we have the following dynamics:

θk ←
(

I− η2k
2

Λβk
pos

)
θk−1 +

(
ηkI−

η3k
4

Λβk
pos

)
vk−1 +

η2k
2

Λβk
posµ

βk
pos +

η2k
2
ε

v̂k ← −ηkΛβk
posθk−1 +

(
I− η2k

2
Λβk

pos

)
vk−1 + ηkΛ

βk
posµ

βt
pos + ηkε

(19)

where stochastic noise ε has variance lowered bounded by Σε. Further, we letµv
k = E[v̂k] and Σv

k be
the covariance of v̂k. Surprisingly, we find that DAIS is incompatible with stochastic gradients, even
though it admits the same importance sampling interpretation if the reverse transition T̃k conditions
on the same mini-batch of data as Tk. We summarize the result in the following theorem.
Theorem 2. For stochastic DAIS with full momentum refreshment (γ = 0 in Algorithm 1) and any
stepsize scheme, we have

lim inf
K→∞

|log p(D)− LDAIS| > 0. (20)

Here, we give some intuition why DAIS fails in the stochastic setting. To ensure convergence of
θK to N (µpos,Σpos), a major requirement is for the step sizes to satisfy limK→∞

∑K
k=1 η

2
k = ∞

[Robbins and Monro, 1951]. However, the randomness of mini-batching sampling would contribute
to the variance of v̂k. In particular, we have the following recursion:

Σ̃v
k = η2kΛ

βk
posΣ̂k−1Λ

βk
pos +

(
I− η2k

2
Λβk

pos

)2

+ η2kΣε. (21)

For notational convenience, we let Σ̂v
k , η2kΛ

βk
posΣ̂k−1Λ

βk
pos + (I − η2k

2 Λβk
pos)2. Here, we used Σ̃v

k ,
Σ̂v
k and Σ̂k to avoid confusion with Σv

k and Σk in the full-batch setting. In this case, if we follow
Stephan et al. [2017] and Chen et al. [2014] in assuming ε is Gaussian,4 we have

Eq

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
=

K∑
k=1

[
−1

2
‖µv

k‖22 −
1

2
Tr(Σ̂v

k) +
d

2

]
−

K∑
k=1

[
1

2
η2kTr(Σε)

]
. (22)

The second term of (22) goes to infinity as limK→∞
∑K
k=1 η

2
k =∞. Intuitively, the gradient noise

adds to the kinetic energy, and the size of this contribution is proportional to η2k. Since this effect
is cumulative over all K steps, ηk has to be reduced at least as 1/

√
K for the kinetic energy term

to go down. However, this contradicts the requirement that limK→∞
∑K
k=1 η

2
k = ∞, needed for

last-iterate convergence. In summary, the convergence of θK requires us to make sure the sum of
step sizes goes to infinity, which in turn results in a non-convergent kinetic energy term (22).

One may wonder why gradient noise does not hurt the convergence of SGLD [Welling and Teh, 2011]
or SGMCMC [Ma et al., 2015]. Generally speaking, these algorithms are only concerned with the
last iteration convergence to the true posterior, hence one can eliminate the stochastic error by taking
more steps of a smaller size. In contrast, our bound (and potentially other AIS-style algorithms) relies
on all intermediate distributions, and so the error induced by stochastic gradient noise accumulates
over the whole trajectory. Simply taking smaller steps fails to reduce the error. We conjecture that
AIS-style algorithms are inherently fragile to gradient noise.

3In reality, the noise consists of two parts: multiplicative input subsampling noise and additive label noise.
We can assume that the noise is lower bounded by the additive part. See Appendix B.4 for justifications.

4This assumption is non-essential, though Gaussian noise is reasonable by the central limit theorem.
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5 Related Works

For ML estimation (or partition function estimation), Sequential Monte Carlo (SMC) [Doucet et al.,
2001, Del Moral et al., 2006] is another popular method which is derived from particle filtering.
While SMC is based on a different intuition from AIS, the underlying mathematics is equivalent.
In SMC, the intermediate distributions are defined by conditioning on a sequence of increasing
subsets of data. Both AIS and SMC are closely related to a broader family of techniques for partition
function estimation, all based on the following identity from statistical physics: logZK − logZ0 =∫ 1

0
Eθ∼pβ

[
d
dβ log fβ(θ)

]
dβ. In particular, the weight update in AIS can be seen as a finite difference

approximation. In comparison, thermodynamic integration (TI) [Frenkel and Smit, 2001] estimates
this integration using numerical quadrature, and path sampling [Gelman and Meng, 1998] does so with
Monte Carlo integration. Recently, Masrani et al. [2019] connected TI and variational inference for a
tighter bound on the log ML, but they computed each intermediate term using importance sampling
rather than annealing-based sampling algorithms. More recently5, Thin et al. [2021] proposed a
similar algorithm based on sequential importance sampling with unadjusted Langevin kernels in the
context of variational auto-encoders. Concurrently, Geffner and Domke [2021] proposed the same
algorithm as our DAVI with a focus on the empirical side.

In the context of variational inference, many papers have also investigated tighter lower bounds for
the log ML. Burda et al. [2016] proposed a strictly tighter log-likelihood lower bound derived from
importance weighting and Luo et al. [2019] recently extended this idea of importance sampling to
derive an unbiased (but potentially high variance) estimator of log ML using the Russian roulette
estimator [Kahn, 1955]. Salimans et al. [2015] proposed to incorporate MCMC iterations into the
variational approximation. The central idea is that we can interpret the stochastic Markov chain as part
of a variational approximation in an extended space, as we did in the paper. However, the proposed
methods require learning reverse kernels, which has a large impact on performance. The same authors
also briefly discussed annealed variational inference, which combines variational inference and AIS.
However, their derivation relies on the detailed balance assumption and is therefore not amenable
to gradient-based optimization. Later, Caterini et al. [2019] proposed the Hamiltonian VAE, which
improves Hamiltonian variational inference [Salimans et al., 2015] with an optimally chosen reverse
MCMC kernel. In particular, they removed the momentum sampling step and used deterministic
transitions. The resulting algorithm can be thought of as a normalizing flow scheme in which the flow
depends explicitly on the target distribution. Along this line, Le et al. [2018], Naesseth et al. [2018],
Maddison et al. [2017] proposed to meld variational inference and SMC for time-series models.

Finally, stochastic gradient variants of several MCMC algorithms [Welling and Teh, 2011, Chen
et al., 2014, Ma et al., 2015] have been proposed over the last decade. In particular, these works
showed that adding the “right amount” of noise to the parameter updates leads to samples from
the target posterior as long as the step size is annealed. Importantly, the convergence rates of these
algorithms are established in both the full-batch setting [Dalalyan, 2017, Cheng et al., 2018] and the
stochastic setting [Chen et al., 2015, Teh et al., 2016, Raginsky et al., 2017, Zou et al., 2020]. By
contrast, the convergence properties for AIS and related algorithms were largely unknown even for
the deterministic case, and it remains largely unexplored whether AIS can be made compatible with
stochastic gradients.

6 Simulations

In this section, we discuss the experiments used to validate our algorithm and theory. Importantly, we
do not aim to achieve state-of-the-art on these tasks.

6.1 Bayesian Linear Regression

In Section 4, we proved for the Bayesian linear regression setting that while DAIS is asymptotically
consistent with full-batch gradient, the noise injected into the system via stochastic gradients precludes
convergence. Here, we verify our theory with numerical simulations. The n input vectors X ∈ Rn×d
and targets y ∈ Rn respectively consist of entries sampled from N (0, 0.01) and N (0, 1). In
particular, we choose n = 10, 000 and d = 10 for our simulations (the results are qualitatively same

5The paper appeared on arXiv after we submitted the paper.
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Figure 1: Gap between true log ML and our DAIS bound as a function of number of intermediate distributions.
Solid lines are exact computation of our DAIS bound; dotted lines are sample-based simulation (Monte Carlo
method with 100 samples); dashed lines are theoretical predictions based on Theorem 1 with slope 2c− 1. For
the rightmost figure, we use a batch size of 100.

Table 2: Test negative log-likelihood of the trained model, estimated using AIS with 10,000 intermediate
distribution and 10 particles. For VAE/IWAE, we used S ×K samples. The numbers reported are averaged over
three runs. The standard deviations are fairly small over three runs (< 0.06).

Objective S ×K = 1 S ×K = 5 S ×K = 50 S ×K = 500

K = 1 K = 5 K = 5 K = 10 K = 50 K = 10 K = 50

VAE 86.93 86.95 86.94 86.89
IWAE 86.93 85.43 84.46 83.87
DAVI - 86.51 84.49 84.45 85.23 83.62 83.65
DAVI (adapt) - 86.49 84.42 84.39 85.00 83.56 83.69

with different n and d). In addition, we set the observation variance σ2 = 1. For convenience, we set
the linear annealing scheme βk = k

K .

In Figure 1, we report the gap between exact log ML and our bound as a function of number of
intermediate distributions. With full-batch gradients, the simulations (solid and dotted lines) align
well with our theoretical predictions (dashed lines) for different step-size scaling schemes, suggesting
our bound in Theorem 1 is tight. In addition, we observe in Figure 1c that the gap fails to vanish
with mini-batch gradients for all step-size scaling schemes. Interestingly, with c = 1/2, the gap stays
constant. This matches our predictions that the deterministic error decays as O(K2c−1) = O(1)
while the stochastic error is proportional to

∑K
k=1 η

2
k = O(K2c−1) = O(1).

6.2 Variational Autoencoder

We compare the performance of DAVI to vanilla VAE [Kingma and Welling, 2013] and IWAE [Burda
et al., 2016] on density modeling tasks. We use the dynamically binarized MNIST [LeCun et al.,
1998] dataset. We use the same architecture as in IWAE paper. The prior p(z) is a 50-dimensional
standard Gaussian distribution. The conditional distributions p(xi|z) are independent Bernoulli, with
the decoder parameterized by two hidden layers, each with 200 tanh units. The variational posterior
q(z|x) is also a 50-dimensional Gaussian with diagonal covariance, whose mean and variance are
both parameterized by two hidden layers with 200 tanh units (see other details in Appendix C.1).

In the first set of experiments, we investigate the effect of number of intermediate distributions K
and combine it with importance sampling (as done in IWAE) with S samples in DAVI. To be specific,
we define the bound as follows:

log
1

S

S∑
i=1

(
pθ(x, z

i
K)

qφ(zi0|x)

K∏
k=1

π(v̂ik)

π(vik−1)

)
, (23)

where we sample (zi0,v
i
0, v̂

i
1, . . . ) independently from qfwd. By default, we use partial momentum

refreshment with γ = 0.9 and equally spaced annealing parameters βk = k/K. We compare it
to vanilla VAE and IWAE bounds with S ×K samples. As shown in Table 2, increasing K gives
strictly better models with lower test negative log-likelihood. However, IWAE achieves slightly better
performance with roughly the same computation if S ×K is small. On the other hand, DAVI is more
effective with more compute budget (i.e., S ×K is large) and eventually outperforms IWAE.
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(b) IWAE with S = 10
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(c) DAIS with K = 10

Figure 2: Results of different algorithms in evaluating VAE-, IWAE- or DAIS-trained models. DAIS performs
on par with AIS/HAIS but without requiring the MH correction steps.

In the second set of experiments, we learn the annealing scheme of DAVI together with the parameters
of encoder and decoder. Comparing the third and fourth rows of Table 2, one can see that learning
the annealing scheme improves the performance slightly.

Lastly, we also compare our algorithm with IWAE, AIS, and Hamiltonian AIS (HAIS)6 [Sohl-
Dickstein and Culpepper, 2012] in evaluating the log-likelihood of trained models. Notably, IWAE
and AIS have been widely used in VAE evaluation, see e.g. Wu et al. [2016], Huang et al. [2020].
For HAIS and DAIS, we employ the optimal step-size scaling scheme derived in Theorem 1 with
c = 1/4 and only tune the step size for the case of K = 10. For all implementation details, please see
Appendix C.2. In particular, we compare the evaluation algorithms on models trained using the VAE,
IWAE, and DAIS objectives. In Figure 2, we report the estimated negative log-likelihood as a function
of the number of particles (for IWAE) or gradient updates (for AIS, HAIS and DAIS). Interestingly,
we observe that IWAE performs better when we have limited computation and AIS/HAIS/DAIS
win out by a big margin if we increase K. Indeed, it is known that naive importance sampling can
have exponential sample complexity in some problem parameters (e.g. the dimension), and that AIS
can overcome this to efficiently give accurate results (see, for instance, the analysis in Neal [2001]).
This may explain the superior performance of AIS-based algorithms when more compute is used.
Importantly, we observe that DAIS performs on par with AIS/HAIS but without requiring the MH
correction steps.

7 Conclusion

In this paper, we proposed a differentiable AIS (DAIS) algorithm for marginal likelihood estimation.
We provided a detailed convergence analysis for Bayesian linear regression which goes beyond
existing analyses. Using this, we proved a sublinear convergence rate of DAIS in the full-batch
setting. However, we showed that DAIS is inconsistent when mini-batch gradients are used due
to a fundamental incompatibility between the goals of last-iterate convergence to the posterior
and elimination of the pathwise stochastic error. This comprises an interesting counterexample to
the general trend of algorithms consistent in the deterministic setting remaining consistent in the
stochastic setting. Our negative result helps explain the difficulty of developing practically effective
AIS-like algorithms that exploit mini-batch gradients. Our numerical experiments validate our claims.
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A Proofs

Lemma 1. Given equally spaced βk, running DAIS with γ = 0 and η ∼ 1
Kc where c ≥ 1

4 yields

‖µk−1 − µβkpos‖2 = O(K2c−1), ‖Λk−1 −Λβk
pos‖2 = O(K2c−1). (18)

Proof. We will prove the result for both quantities by induction. We assume µp = 0 and Λp � I
without loss of generality and choose η = a

Kc . Recall definitions

Λlld =
1

σ2
X>X (24)

Λβk
pos = Λp + βkΛlld (25)

µ∗ =
(
X>X

)−1
X>y (26)

µβkpos =
(
Λβk

pos

)−1
(Λpµp + βkΛlldµ∗) . (27)

We first bound intermediate quantities of interest. In particular, we have

‖Σβk−1
pos −Σβk

pos‖2 ≤ ‖Σ
βk−1
pos ‖2‖Λ

βk−1
pos −Λβk

pos‖2‖Σβk
pos‖2

= (βk − βk−1)‖Σ
βk−1
pos ‖2‖Λlld‖2‖Σβk

pos‖2

=
C3

K

(28)

and

‖µβk−1
pos − µβkpos‖2 = ‖Σβk−1

pos βk−1Λlldµ∗ −Σβk
posβkΛlldµ∗‖2

≤ ‖(βkΣβk
pos − βk−1Σ

βk−1
pos )‖2‖Λlldµ∗‖2

= ‖βk(Σβk
pos −Σ

βk−1
pos ) + (βk − βk−1)Σ

βk−1
pos ‖2‖Λlldµ∗‖2

≤
(
βk‖Σβk

pos −Σ
βk−1
pos ‖2 + (βk − βk−1)‖Σ

βk−1
pos ‖2

)
‖Λlldµ∗‖2

=

(
βk
C3

K
+ (βk − βk−1)‖Σ

βk−1
pos ‖2

)
‖Λlldµ∗‖2

=
C1

K

(29)

We now begin the induction for ‖µk−1 − µβkpos‖2. For k = 1, we have µ0 = µp and obtain

‖µ0 − µβ1
pos‖2 = ‖µβ0

pos − µβ1
pos‖2 = O(K−1). (30)

Next, we assume ‖µk−1 − µβkpos‖ = C2K
2c−1 = O(K2c−1) holds for k ≥ 1. Subtracting µβkpos from

both sides of (73) yields

µk − µβkpos =

(
I− η2k

2
Λβk

pos

)
(µk−1 − µβkpos). (31)

As Λβk
pos � Λp � I by construction, we have

‖µk − µ
βk+1
pos ‖2 ≤ ‖µk − µβkpos‖2 + ‖µβkpos − µ

βk+1
pos ‖2

≤ (1− η2

2
)‖µk−1 − µβkpos‖2 +

C1

K

= C2K
2c−1 − a2C2

2
K−1 + C1K

−1

(32)

We have the flexibility to choose a such that a2C2 ≥ 2C1, hence we have ‖µk−µ
βk+1
pos ‖2 ≤ C2K

2c−1.
This completes the proof for ‖µk−1 − µβkpos‖2.
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Now, we bound ‖Λk−1 −Λβk
pos‖2. It suffices to prove that ‖Σk−1 −Σβk

pos‖2 = O(K2c−1) because
‖Λk−1 −Λβk

pos‖2 ≤ ‖Λk−1‖2‖Σk−1 −Σβk
pos‖2‖Λβk

pos‖2. For k = 1, we have Σ0 = Σp and obtain

‖Σ0 −Σβ1
pos‖2 = ‖Σβ0

pos −Σβ1
pos‖2 = O(K−1) (33)

by (28). Next, we assume ‖Σk−1 −Σβk
pos‖2 ≤ C4K

2c−1 for k ≥ 1. Subtracting Σ
βk+1
pos from both

sides of (75) yields

Σk −Σ
βk+1
pos =

(
I− η2

2
Λβk

pos

)
(Σk−1 −Σβk

pos)

(
I− η2

2
Λβk

pos

)
+ Σβk

pos −Σ
βk+1
pos − η4

4
Λβk

pos +
η6

16
(Λβk

pos)
2. (34)

By invoking Λβk
pos � I, we have

‖Σk −Σ
βk+1
pos ‖2 ≤

(
1− η2

2

)2

‖Σk−1 −Σβk
pos‖2 + ‖Σβk

pos −Σ
βk+1
pos ‖2 +

η4

4

∥∥∥∥Λβk
pos −

η2

4
(Λβk

pos)
2

∥∥∥∥
2

≤ C4K
2c−1 − a2C4K

−1 +
a4C4

4
K−2c−1 + C3K

−1 + a4C5K
−4c.

(35)
To finish the proof, we can choose a and C4 to ensure a2C4 − C3 − a4C5 − a4C4

4 > 0.

Theorem 1. Given equally spaced βk, running DAIS with γ = 0 and η ∼ 1
Kc where c ≥ 1

4 yields

log p(D)− LDAIS = O(K2c−1).

With c = 1
4 , we have the convergence rate O(1/

√
K).

Proof. By Lemma 1, we have the first two terms in (17) upper bounded as follows,∣∣∣∣12‖µK − µpos‖2Λpos
+

1

2
Tr(ΛposΣK)− d

2

∣∣∣∣ ≤ 1

2
‖µK − µpos‖2Λpos

+
1

2
|Tr(Λpos(ΣK −Σpos))|

= O(K4c−2) +O(K2c−1) = O(K2c−1)
(36)

where we use the identity that |Tr(AB)| ≤ d‖A‖2‖B‖2.

Now, it suffices to show the term 3 vanishes as K → ∞. To put it differently, we only need
to show that limK→∞ Eq

[∑K
k=1 log

π(v̂k)
π(vk−1)

]
= 1

2 log
|Σpos|
|Σp| . To this end, we could first simplify

Eq
[∑K

k=1 log
π(v̂k)
π(vk−1)

]
as we know v̂k follows a Gaussian distribution N (µv

k ,Σ
v
k).

Eq

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
=

K∑
k=1

[
−1

2
‖µv

k‖22 −
1

2
Tr(Σv

k) +
d

2

]
(37)

According to (16), we have µv
k = −ηΛβk

pos(µk − µβkpos). Then by Lemma 1, we obtain ‖µv
k‖22 =

O(K2c−2) and
∑K
k=1[

1
2‖µ

v
k‖22] = O(K2c−1). Again, this term would vanish if we choose c < 1

2 .
From (77), we can write Tr(Σv

k) as

Tr(Σv
k) = Tr

(
η2Λβk

posΣk−1Λ
βk
pos + (I− η2

2
Λβk

pos)
2

)
= η2Tr

(
Λβk

posΣk−1(Λ
βk
pos −Λk−1)

)
+ d+

η4

4
Tr
(
(Λβk

pos)
2
) (38)

In addition, we have the recurrence for Σk:

Σk =

(
I− 1

2
η2Λβk

pos

)
Σk−1

(
I− 1

2
η2Λβk

pos

)
+ η2

(
I− 1

2
η2Λβk

pos +
η4

16
(Λβk

pos)
2

)
(39)
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This immediately leads to

Tr
(
(Σk −Σk−1)Λ

βk
pos

)
= −η2Tr

(
Λβk

posΣk−1(Λ
βk
pos −Λk−1)

)
+
η4

4
Tr
(
Λβk

posΣk−1(Λ
βk
pos)

2
)
− η4

2
Tr
(
(Λβk

pos)
2
)
+
η6

16
Tr
(
(Λβk

pos)
3
) (40)

where we used the identity Tr(AB) = Tr(BA). Plugging (40) back into (38), we have

Tr(Σv
k) = d− Tr

(
(Σk −Σk−1)Λ

βk
pos

)
+
η4

4
Tr
(
(Λβk

pos −Λk−1)Σk−1(Λ
βk
pos)

2
)
+
η6

16
Tr
(
(Λβk

pos)
3
)

(41)
Further, if we sum over all timesteps, we get

K∑
k=1

[
−1

2
Tr(Σv

k) +
d

2

]
=

1

2

K∑
k=1

[Tr ((Σk −Σk−1)Λk−1)]︸ ︷︷ ︸
= 1

2 log
|ΣK |
|Σp|

+O(K−1)

+
1

2

K∑
k=1

[
Tr
(
(Σk −Σk−1)(Λ

βk
pos −Λk−1)

)]
︸ ︷︷ ︸

=O(K2c−1)

− η4

8

K∑
k=1

[
Tr
(
(Λβk

pos −Λk−1)Σk−1(Λ
βk
pos)

2
)]

︸ ︷︷ ︸
=O(K−2c)

− η6

32

K∑
k=1

[
Tr
(
(Λβk

pos)
3
)]

︸ ︷︷ ︸
=O(K−6c+1)

(42)

For the first term, we used the Riemann sum approximation for the integral∫ ΣK

Σp

Tr(Σ−1dΣ) =

∫ ΣK

Σp

d log |Σ| = log |ΣK | − log |Σp|. (43)

Importantly, the integral is independent of the path Σ(t) and we could choose the path to go
through all Σk. By the same argument of Riemann sum, the approximation error is bounded by
O
(∑K

k=1 ‖Σk −Σk−1‖22
)

. By (75), one can show that ‖Σk−Σk−1‖2 = O(K−1), so we have the

approximation error O(K−1). For the second term, we used that fact that |Tr(AB)| ≤ d‖A‖2‖B‖2.
Therefore, the whole term will converge to 1

2 log
|ΣK |
|Σp| if 1

4 ≤ c <
1
2 . Finally, by Lemma 1, we have

log
|ΣK |
|Σp|

= log
|Σpos|
|Σp|

+ log
|Λpos|
|ΛK |

= log
|Σpos|
|Σp|

+O(K2c−1) (44)

Hence, we have 3 = O(K2c−1) if c ≥ 1
4 . Therefore, we have

log p(D)− LDAIS = 1 + 2 + 3 = O(K2c−1). (45)

This completes the proof.

Theorem 2. For stochastic DAIS with full momentum refreshment (γ = 0 in Algorithm 1) and any
stepsize scheme, we have

lim inf
K→∞

|log p(D)− LDAIS| > 0. (20)

Proof. Recall the suboptimality gap

log p(D)− LDAIS =

1

2
‖µK − µpos‖2Λpos︸ ︷︷ ︸

1

+
1

2
Tr(ΛposΣK)− d

2︸ ︷︷ ︸
2

+
1

2
log
|Σpos|
|Σp|

− Eq

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
︸ ︷︷ ︸

3

. (46)

First, we note that 1 would stay unchanged for DAIS with stochastic gradient because µK is
independent of gradient noise. Second, the term 2 would only become larger if we use stochastic
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gradient becuase more noise is injected into the system. It is easy for one to show that Σ̂k � Σk

where Σ̂k is the covariance of θk when stochastic gradient is used (Σk is the covariance of θk in the
full-batch setting). We will prove this by induction. By (19) and (16), we have

Σ̂k = (I− η2

2
Λβk

pos)Σ̂k−1(I−
η2

2
Λβk

pos) + η2(I− η2

2
Λβk

pos +
η4

16
(Λβk

pos)
2) +

η4

4
Σε (47)

Σk = (I− η2

2
Λβk

pos)Σk−1(I−
η2

2
Λβk

pos) + η2(I− η2

2
Λβk

pos +
η4

16
(Λβk

pos)
2) (48)

At k = 1, we know Σ̂0 = Σ0 = Σp, so we retrieve the base case Σ̂1 − Σ1 = η4

4 Σε � 0. Now
assume Σ̂k−1 � Σk−1, then

Σ̂k −Σk = (I− η2

2
Λβk

pos)(Σ̂k−1 −Σk−1)(I−
η2

2
Λβk

pos)︸ ︷︷ ︸
�0

+
η4

4
Σε � 0 (49)

which completes the induction.

Therefore, we only need to compare 3 of the stochastic gradient variant to its deterministic counter-
part. It suffices to show that 3 becomes larger once we use stochastic gradient for the updates. To
this end, we let Σ̃v

k to be the covariance of v̂k and have the following recursion (by (19))

Σ̃v
k = η2kΛ

βk
posΣ̂k−1Λ

βk
pos + (I− η2k

2
Λβk

pos)
2 + η2kΣε. (50)

For notational convenience, we let Σ̂v
k , η2kΛ

βk
posΣ̂k−1Λ

βk
pos +(I− η2k

2 Λβk
pos)2. Here, we used Σ̃v

k , Σ̂v
k

and Σ̂k to avoid confusion with Σv
k and Σk in the full-batch setting. For convenience, we further

assume ε is Gaussian (appealing to the central limit theorem) and get

Eq

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
=

K∑
k=1

[
−1

2
‖µv

k‖22 −
1

2
Tr(Σ̂v

k) +
d

2

]
−

K∑
k=1

[
1

2
η2kTr(Σε)

]
. (51)

Importantly, we notice that Σ̂v
k � Σv

k because Σ̂k � Σk. So the suboptimality gap (46) increases at
least by

∑K
k=1

[
1
2η

2
kTr(Σε)

]
with stochastic gradient update in DAIS. This immediately implies the

necessary condition of DAIS being consistent is

lim
K→∞

K∑
k=1

η2k = 0, (52)

where we assume Tr(Σε) > 0. We now show that for µK to converge to posterior mean µpos (so
that 1 vanishes), a major requirement is limK→∞

∑K
k=1 η

2
k =∞. To prove that, we observe that

the mean of θk evolves as follows:

µk − µβkpos ←
(

I− η2k
2

Λβk
pos

)
(µk−1 − µβkpos) (53)

Since ηk is o(1) by (52) and we know Λβk
pos is upper bounded by CI for some constant C. One can

show the following by induction:

‖µK − µpos‖2 ≥

∥∥∥∥∥
(

K∏
k=1

(
1− Cη2k

2

))
(µ0 − µpos)

∥∥∥∥∥
2

(54)

For ‖µK − µpos‖2 → 0 in the worst case, it requires the following to hold:

lim
K→∞

K∏
k=1

(
1− Cη2k

2

)
= 0. (55)

This is equivalent to

lim
K→∞

K∑
k=1

log

(
1− Cη2k

2

)
ηk=o(1)≈ − lim

K→∞

K∑
k=1

Cη2k
2

= −∞ (56)

This completes the proof.
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B Other Derivations

B.1 DAIS Update

Here, we derive the DAIS updates for the position and (pre-refreshment) momentum of the parameter
particles for the Bayesian linear regression setting. Recall that the update from step k − 1 to step k
takes the general form

θk− 1
2
= θk−1 +

η

2
M−1vk−1 (57)

v̂k = vk−1 + η∇ log fβk(θk− 1
2
) (58)

θk = θk− 1
2
+
η

2
M−1v̂k (59)

Under a geometric annealing scheme, the log annealed unnormalized posterior at step k has the form

log fβk(θ) = log
(
p(θ|M)p(D|θ,M)βk

)
= −1

2
(θ − µp)>Λp(θ − µp)−

βk
2σ2

(y −Xθ)>(y −Xθ) + C,
(60)

where C comprises terms constant w.r.t. θ. The gradient of this is then

∇θ log fβk(θ) = −Λp(θ − µp) +
βk
σ2

X> (y −Xθ) . (61)

Substituting, we have

∇θ
k− 1

2

log fβk(θk− 1
2
) = −Λp

(
θk−1 +

ηk
2

vk−1 − µp
)

+
βk
σ2

X>
(
y −X

(
θk−1 +

ηk
2

vk−1

)) (62)

Define the likelihood precision, annealed posterior precision, and annealed posterior mean as

Λlld =
1

σ2
X>X (63)

Λβk
pos = Λp + βkΛlld = Λp +

βk
σ2

X>X (64)

µβkpos =
(
Λβk

pos

)−1 (
Λpµp + βkΛlld

(
X>X

)−1
X>y

)
. (65)

For the updated pre-refreshment momentum, we have

v̂k = vk−1 + ηk∇θ
k− 1

2

log fβk(θk− 1
2
)

= vk−1 − ηkΛpθk−1 −
η2k
2

Λpvk−1 + ηkΛpµp

+
βkηk
σ2

X>y − βkηk
σ2

X>Xθk−1 +
βkη

2
k

2σ2
X>Xvk−1

=

(
I− η2k

2

(
Λp +

βk
σ2

X>X

))
vk−1 − ηk

(
Λp +

βk
σ2

X>X

)
θk−1

+ ηk

(
Λpµp +

βk
σ2

X>y

)
=

(
I− η2k

2
Λβk

pos

)
vk−1 − ηkΛβk

posθk−1 + ηkΛ
βk
posµ

βk
pos,

(66)

and for the updated position, we have

θk = θk− 1
2
+
ηk
2

v̂k

= θk−1 +
ηk
2

vk−1 +
ηk
2

((
I− η2k

2
Λβk

pos

)
vk−1 − ηkΛβk

posθk−1 + ηkΛ
βk
posµ

βk
pos

)
=

(
I− η2k

2
Λβk

pos

)
θk−1 +

(
ηkI−

η3

4
Λβk

pos

)
vk−1 +

η2k
2

Λβk
posµ

βk
pos.

(67)
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B.2 Expected DAIS for Bayesian Linear Regression

In this section, we derive the gap between the exact log marginal likelihood and the lower bound
given in expectation by DAIS.

If y is distributed as a Gaussian with mean Xθ and covariance σ2I, and q(θ) is the density of a
random variable with mean µq and covariance Σq , then the expected log-likelihood is

Eq [log p(y|X,θ)] = Eq
[
−n
2
log(2πσ2)− 1

2σ2
(y −Xθ)>(y −Xθ)

]
= Eq

[
−n
2
log(2πσ2)− 1

2σ2

(
y>y − 2θ>X>y + θ>X>Xθ

)]
= −n

2
log(2πσ2)− 1

2σ2

(
y>y − 2µ>q X>y +Tr(X>XΣq) + µqX

>Xµq
)

= −n
2
log(2πσ2)− 1

2σ2
(y −Xµq)

>
(y −Xµq)−

1

2
Tr(ΛlldΣq).

(68)
If p(θ) is the density of a Gaussian with mean µp and covariance Σp, and if q(θ) is the density of
another random variable with mean µq and covariance Σq , then

Eq [log p(θ)] = Eq
[
−d
2
log(2π)− 1

2
log |Σp| −

1

2
(θ − µp)>Λp(θ − µp)

]
= Eq

[
−d
2
log(2π)− 1

2
log |Σp| −

1

2
(θ>Λpθ − 2µ>p Λpθ + µ>p Λpµp)

]
= −d

2
log(2π)− 1

2
log |Σp| −

1

2

(
Tr(ΛpΣq) + µ

>
q Λpµq − 2µ>p Λpµq + µ

>
p Λpµp

)
= −d

2
log(2π)− 1

2
log |Σp| −

1

2
Tr(ΛpΣq)−

1

2
(µq − µp)>Λp(µq − µp).

(69)
Given the above results, we now compute the DAIS lower bound:

LDAIS = Eqfwd

[
log fK(θK)− log p0(θ0) +

K∑
k=1

log
π(v̂k)

π(vk−1)

]

= Eqfwd

[
log p(D|θK) + log p0(θK)− log p0(θ0) +

K∑
k=1

log
π(v̂k)

π(vk−1)

]

=

(
−n
2
log(2πσ2)− 1

2σ2
y>y +

1

σ2
µ>KX>y − 1

2
Tr(ΛlldΣK)− 1

2
µ>KΛlldµK

)
(
−1

2
Tr(ΛpΣK)− 1

2
µ>KΛpµK + µ>p ΛpµK −

1

2
µ>p Λpµp

)
+
d

2
+ Eqfwd

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]

= −n
2
log(2πσ2)− 1

2σ2
y>y +

1

σ2
µ>KX>y − 1

2
Tr(ΛposΣK)− 1

2
µ>KΛposµK

+ µ>p ΛpµK −
1

2
µ>p Λpµp +

d

2
+ Eqfwd

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
(70)
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For comparison, we compute the log marginal likelihood by completing the square and recognizing
the normalization of a Gaussian density:

log p(D) = log

∫
p(D|θ)p0(θ)dθ

= log

∫
(2πσ2)−n/2 exp

(
−1

2
(θ − µ∗)>Λlld(θ − µ∗) +

1

2
µ>∗ Λlldµ∗ −

1

2σ2
y>y

)
(2π)−d/2|Σp|−1/2 exp

(
−1

2
(θ − µp)>Λp(θ − µp)

)
dθ

= log

∫
(2πσ2)−n/2(2π)−d/2|Σp|−1/2 exp

(
−1

2
(θ − µpos)

>Λpos(θ − µpos)

+
1

2
µ>posΛposµpos −

1

2σ2
y>y − 1

2
µ>p Λpµp

)
dθ

= −n
2
log(2πσ2)

���
���

−d
2
log(2π)− 1

2
log |Σp|+

1

2
µ>posΛposµpos −

1

2σ2
y>y − 1

2
µ>p Λpµp

+ log

∫
exp

(
−1

2
(θ − µpos)

>Λpos(θ − µpos)

)
dθ︸ ︷︷ ︸

�����
+ d

2 log(2π)+ 1
2 log |Σpos|

= −n
2
log(2πσ2) +

1

2
log
|Σpos|
|Σp|

+
1

2
µ>posΛposµpos −

1

2σ2
y>y − 1

2
µ>p Λpµp

(71)

The gap is thus

log p(D)− LDAIS =
�������
−n
2
log(2πσ2) +

1

2
log
|Σpos|
|Σp|

+
1

2
µ>posΛposµpos −

�
���1

2σ2
y>y

������−1

2
µ>p Λpµp +������n

2
log(2πσ2) +

��
��1

2σ2
y>y − 1

σ2
µ>KX>y +

1

2
Tr(ΛposΣK)

+
1

2
µ>KΛposµK − µ>p ΛpµK +

���
��1

2
µ>p Λpµp −

d

2
− Eqfwd

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]

=
1

2
µ>KΛposµK −

1

σ2
µ>KX>y − µ>p ΛpµK +

1

2
µ>posΛposµpos︸ ︷︷ ︸

1
2‖µK−µpos‖2Λpos

+
1

2
Tr(ΛposΣK)− d

2
+

1

2
log
|Σpos|
|Σp|

− Eqfwd

[
K∑
k=1

log
π(v̂k)

π(vk−1)

]
(72)

B.3 DAIS Update under Full Momentum Refreshment

The following quantities are used in our convergence analysis for DAIS, which assumes full momen-
tum refreshment, i.e. that γ = 0.

For the mean of the updated position, we have

µk = Eqfwd

[(
I− η2k

2
Λβk

pos

)
θk−1 +

(
ηkI−

η3

4
Λβk

pos

)
vk−1 +

η2k
2

Λβk
posµ

βk
pos

]
=

(
I− η2k

2
Λβk

pos

)
µk−1 +

η2k
2

Λβk
posµ

βk
pos

(73)

as Eqfwd [vk−1] = 0 under full momentum refreshment.

For the covariance of the updated position, we have

θk − µk =

(
I− η2

2
Λβk

pos

)
(θk−1 − µk−1) +

(
ηI− η3

4
Λβk

pos

)
vk−1 (74)
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and so

Σk = Eqfwd [(θk − µk)(θk − µk)>]

=

(
I− η2

2
Λβk

pos

)
Σk−1

(
I− η2

2
Λβk

pos

)>
+

(
ηI− η3

4
Λβk

pos

)
E[vk−1v>k−1]

(
ηI− η3

4
Λβk

pos

)>
=

(
I− η2

2
Λβk

pos

)
Σk−1

(
I− η2

2
Λβk

pos

)>
+ η2I− η4

4
Λβk

pos −
η4

4
Λβk

pos +
η6

16

(
Λβk

pos

)2
=

(
I− η2

2
Λβk

pos

)
(Σk−1 −Σβk

pos)

(
I− η2

2
Λβk

pos

)
+ Σβk

pos −
η4

4
Λβk

pos +
η6

16

(
Λβk

pos

)2
(75)

where we leverage the fact that µk−1 and vk−1 are independent and hence uncorrelated under full
momentum refreshment, and that vk−1 ∼ N (0, I) so E[vk−1v>k−1] = I.

For the mean of the updated momentum, we have

µv
k = Eqfwd

[(
I− η2k

2
Λβk

pos

)
vk−1 − ηkΛβk

posθk−1 + ηkΛ
βk
posµ

βk
pos

]
= ηkΛ

βk
pos(µ

βk
pos − µk−1) (76)

where we again use Eqfwd [vk−1] = 0.

For the covariance of the updated momentum, we have

Σv
k = Eqfwd

[
(v̂k − µv

k)(v̂k − µv
k)
>]

=

(
I− η2k

2
Λβk

pos

)
Eqfwd

[
vk−1v

>
k−1
](

I− η2k
2

Λβk
pos

)
+ η2kΛ

βk
posΣk−1Λ

βk
pos

=

(
I− η2k

2
Λβk

pos

)2

+ η2kΛ
βk
posΣk−1Λ

βk
pos

(77)

where we again leverage the independence of vk−1 and θk, and E[vk−1v>k−1] = I.

B.4 Noisy Model for Bayesian Linear Regression

In this section, we justify the additive noise model we used in analyzing the stochastic version of
DAIS. In particular, the mini-batch gradient has the following form:

∇̃θ log fβk(θ) = −Λp(θ − µp) +
βkn

σ2
x
(
y − x>θ

)
, (78)

where (x, y) is one training sample and n is the number of training samples in the dataset. Compared
to the full-batch gradient in (61), we have

∇̃θ log fβk(θ)−∇θ log fβk(θ) =
βk
σ2

(
nxx> −X>X

)
θ +

βk
σ2

(
nxy −X>y

)
(79)

As long as the problem is not linearly solvable, i.e., y = Xµ∗ + ε, we have

∇̃θ log fβk(θ)−∇θ log fβk(θ) =
βk
σ2

(
nxx> −X>X

)
(θ − µ∗) +

βk
σ2

(
nxε−X>ε

)
(80)

We typically refer to the first term in (80) as multiplicative noise as it depends on θ − µ∗ and the
second term as additive noise.

C Implementation Details and Additional Results

C.1 Implementation Details for Training Experiments

The prior p(z) is a 50-dimensional standard Gaussian distribution. The conditional distributions
p(xi|z) are independent Bernoulli, with the decoder parameterized by two hidden layers, each with
200 tanh units. The variational posterior q(z|x) is also a 50-dimensional Gaussian distribution with
diagonal covariance, whose mean and variance are both parameterized by two hidden layers with
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200 tanh units. For training, we used Adam [Kingma and Ba, 2015] optimizer for 1,500 epochs with
initial learning rate 0.001 and we decay the learning rate by factor 0.8 every 100 epochs. By default,
we use constant step size and partial meomentum refreshment γ = 0.9 for all iterations. For each
setting, we tune step-size η by grid search with the search range {0.02, 0.04, 0.06, 0.08, 0.10}.
For DAIS (adapt), we learn the annealing scheme along with VAE parameters. In particular, the
annealing scheme is parameterized as βk =

∑k
i=1 pi with p = softmax(z) where z ∈ RK is the

trainable parameters. Using this parameterization, we guarantee that βi ≥ 0, βK = 1 and βi+1 ≥ βi.
To avoid collapse, we add a small amount of entropy regularization on p with a coefficient of 0.01.
With a stronger entropy regularizer, the learned annealing scheme would be closer to linear scheme
βk = k

K . We note that the performance is insensitive to the entropy regularization coefficient.

C.2 Implementation Details for Evaluation Experiments

For AIS, we run 10 leapfrog steps (followed by MH accept-reject steps) for every intermediate
distribution to be consistent with Wu et al. [2016]. By default, we use linear annealing scheme with
βk = k

K . For HAIS and DAIS, we use constant step-size and partial momentum refreshment with
γ = 0.9 for simulations. Importantly, we only tune the step-size for K = 10 and then we employ the
optimal scaling scheme we derived in Theorem 1 with c = 1

4 . By grid search, we find η = 0.08 is
good overall for all the models withK = 10, so we use the step-size η defined as 0.08×(K/10)−0.25

for any run with K intermediate distributions. For AIS, its step-size is adapted throughout the course
of training with a target accept rate of 0.65 in the MH step. We increase the step-size by multiplying
1.02 when the accept rate is larger then 0.65, otherwise we multiply it with factor 0.98. For all curves,
we average over 10 runs.

D Notes on Memory-Efficient DAIS

Algorithm 2 Reversible DAIS (forward)

Require: seed s0, initial state θ0 ∼ p0(θ), v0 ∼ π , N (0,M)
for k = 1, . . . ,K do
θk− 1

2
← θk−1 +

ηk
2 M−1vk−1

v̂k ← vk−1 + ηk∇ log fβk(θk− 1
2
)

θk ← θk− 1
2
+ ηk

2 M−1v̂k
sk ← FORWARD_SEED(sk−1)
εk ∼ N (0,M; sk)

vk ← γv̂k +
√
1− γ2εk

end for
return θK ,vK , sK

Algorithm 3 Reversible DAIS (backward)

Require: sK ,θK ,vK
for k = K, . . . , 1 do
εk ∼ N (0,M; sk)

v̂k ← 1
γk

(
vk −

√
1− γ2εk

)
sk−1 ← BACKWARD_SEED(sk)
θk− 1

2
← θk − ηk

2 M−1v̂k
vk−1 ← v̂k − ηk∇ log fβk(θk− 1

2
)

θk−1 ← θk− 1
2
− ηk

2 M−1vk−1
end for
return θ0,v0, s0
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Algorithms 2 and 3 detail the simulation of DAIS dynamics in a reversible manner. The momentum
refreshment step requires the reversible computation of a seed in order to retrieve noise samples.
Reversibility is sufficient to facilitate reverse-mode differentiation through the chain without ex-
plicitly storing the DAIS trajectory. Hence, DAIS can be made memory-efficient while retaining
differentiability to any of its parameters.

However, as detailed by Maclaurin et al. [2015], the division by γk for the computation of v̂k in the
backward simulation is problematic for finite-precision computation as information is lost with each
step. This is combated with Algorithm 3 [Maclaurin et al., 2015] at the minute cost of log2(1/γ) bits
per parameter per step.
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