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A Model

A.1 Procedure of Stein path distance

We first present the procedures of Stein path distance calculation in Algorithm 1. The calculation
of Stein path distance mainly has three steps. First, adopting kernel density estimation [4, 3] with
radial basis function kernel to estimate the source probability of W and V (line 1). Second, finding
the Stein mirror point of the cold item auxiliary embeddings through SVGD (line 2-line 8). Third,
calculating the Stein path distance (line 9).

A.2 Procedure of multiple-proxies

As mentioned in Section 2.3.3, the multiple-proxies algorithm is given by:

min
M ,ψi1=1,ψij≥0

N∑
i=1

H∑
j=1

ψij ||ci −mj ||22 + α

N∑
i=1

H∑
j=1

ψij logψij , (1)

where ci denotes the i-th cold item auxiliary embeddings and mj denotes the j-th corresponding
proxy. We now provide the optimization details on the multiple-proxies algorithm. Alternatively
updating M and Ψ can solve Equation (1) efficiently.

Update Ψ. We first fix the variable M and update Ψ. By using Lagrangian multiplier to minimize
the objective function, we have:

min
Ψ

L =

N∑
i=1

H∑
j=1

ψij ||ci −mj ||22 + α

N∑
i=1

H∑
j=1

ψij logψij +

N∑
i=1

$i

 H∑
j=1

ψij − 1

 . (2)

Taking the differentiation of Equation (2) w.r.t. ψij and setting it to 0, we obtain:
∂L

∂ψij
= ||ci −mj ||22 + α(logψij + 1) +$i = Ωij + α(logψij + 1) +$i = 0. (3)

By solving and simplifying Equation (3), we have:

ψij = exp

(
−α+$i + Ωij

α

)
= exp

(
−α+$i

α

)
exp

(
−Ωij
α

)
. (4)

Meanwhile, taking
H∑
j=1

ψij = 1 into Equation (4), we have:

H∑
j=1

exp

(
−α+$i + Ωij

α

)
= exp

(
−α+$i

α

) H∑
j=1

exp

(
−Ωij
α

)
= 1. (5)
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Algorithm 1 The procedure scheme of Stein path distance (XS ,XT )

Input: T : training iteration; N : batchsize; D: latent dimension; σ: bandwidth in Gaussian Kernel
function; XS ∈ RN×D: source samples; XT ∈ RN×D: target samples.
Procedure:

1: Estimate pXS through Kernel Density Estimation;
2: Initialize XTi,0 = XTi ;
3: for l = 1 to T do
4: for i = 1 to N do
5: For all j = 1, 2, · · · , N , calculate k(XTi,l−1,X

T
j,l−1) = exp

(
− ||X

T
i,l−1−X

T
j,l−1||

2
2

σ2

)
;

6: XTi,l = XTi,l−1+ 1
N

N∑
j=1

[
k(XTi,l−1,X

T
j,l−1)∇XTi,l−1

log pXS (XTi,l−1) +∇XTi,l−1
k(XTi,l−1,X

T
j,l−1)

]
;

7: end for
8: end for

9: Calculate the Stein Path PT→S(XT ) = 1
N

N∑
i=1

||XTi,t −XTi,0||22;

10: Return: PT→S(XT );

That is,

exp

(
−α+$i

α

)
=

1
H∑
j=1

exp
(
−Ωij

α

) . (6)

Thus, the final solution of ψij is given by:

ψij =
exp

(
−Ωij

α

)
H∑
k=1

exp
(
−Ωik

α

) . (7)

Update M . After we have updated Ψ, we fix it as a constant and update M . Thus, Equation (1)
becomes

min
M

N∑
i=1

H∑
j=1

ψij ||ci −mj ||22. (8)

Taking the differentiation of Equation (8) w.r.t. mj and setting it to 0, we can update M as:

mj =

N∑
i=1

ψijci

N∑
i=1

ψij

. (9)

We finally summarize the optimization of multiple-proxies in Algorithm 2.

Algorithm 2 The procedure scheme of Multiple-proxies
Input: t: training iteration; N : batch size; D: latent dimension; α: the hyper parameter between the
main objective loss and regularization term; C ∈ RN×D: cold item auxiliary embedding;
Procedure:

1: Random initialize the proxies M .
2: for i = 1 to t do
3: Updating Ψ through Equation.(7)
4: Updating M through Equation.(9)
5: end for
6: Return: Ψ, M .
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Figure 1: The t-SNE visualization of Amazon Movie→Amazon Music. Amazon Movie is the
warm domain with blue dots and Amazon Music is the cold-start domain with red dots.

A.3 Procedure of proxy Stein path loss

As we have presented in Section 2.3.3, the proxy Stein path distance is defined as:

P∗T→S(M) =
1

H

H∑
i=0

||mi,t −mi,0||22 =
1

H

H∑
i=0

||mi,t−1 + εφS(mi,t−1)−mi,0||22 , (10)

where mi,t denotes the i-th proxy mi at the t-th iteration. Notably, in each batch, proxy Stein path
only needs to move the number of proxy samples (H) in the target domain rather than the total number
of samples (N ). We now briefly demonstrate that the original target samples C can be updated by
the typical proxies M through gradient descend. By taking the gradient of P∗C→W (M) w.r.t. ci,0,
we have:

∂P∗C→W (M)

∂ci,0
=

H∑
j=1

∂P∗C→W (M)

∂mj,0

∂mj,0

∂ci,0
=

H∑
j=1

(
− 2

H
(mj,t −mj,0)

)
ψij
N∑
i=1

ψij

=

H∑
j=1

− 2

H

mj,t −

N∑
i=1

ψijci,0

N∑
i=1

ψij


 ψij

N∑
i=1

ψij

.

(11)

Obviously, mj,0 is the weighted sum of C according to Equation (9), therefore the cold item auxiliary
embedding C can be updated through the typical proxies M . We present the procedure of proxy
Stein path loss in Algorithm 3.

Algorithm 3 The procedure scheme of proxy Stein path loss
Input: N : batchsize; D: latent dimension; V ∈ RN×D: warm item preference embedding;
W ∈ RN×D: warm item auxiliary embedding; C ∈ RN×D: cold item auxiliary embedding;
Procedure:

1: Finding Multiple Proxies M on C through Algorithm 2.
2: Calculating the Stein Path distance P∗C→W (M) through Algorithm 1.
3: Calculating the Stein Path distance P∗C→V (M) through Algorithm 1.
4: Return: LPSP = P∗C→W (M) + P∗C→V (M) + ||P∗C→W (M)− P∗C→V (M)||22.

B Experiment

B.1 Datasets

We conduct extensive experiments on two popularly used real-world datasets, i.e., Douban [6, 7] and
Amazon [5, 2]. The details of Douban and Amazon datasets are shown in Table 1 and Table 2.

B.2 Visualization

To show feature transferability, we visualize the t-SNE embeddings [1] of the source item aux-
iliary embeddings (W ) and the target item auxiliary embeddings (C). The results of Amazon
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Table 1: Experimental datasets and tasks on Douban and Amazon datasets

Datasets Items Users Interactions Density

Douban Movie 34,893 2,712 1,278,401 1.35%
Douban Book 6,777 2,110 96,041 0.67%
Douban Music 5,567 1,672 69,709 0.75%

Amazon Movie (Movies and TV) 12,287 27,822 779,376 0.228%
Amazon Music (CDs and Vinyl) 7,710 11,053 296,188 0.348%

Table 2: Statistics on different CDCSR tasks

Source datasets Target datasets #Overlap users

Douban Book Douban Movie 2,106
Douban Music Douban Movie 1,666
Douban Music Douban Book 1,562

Amazon Movie (Movies and TV) Amazon Music (CDs and Vinyl) 2,782

Table 3: Ablation test on H

(Amazon) Music→Movie H =
√
N H = 1

4N H = 1
3N H = 1

2N H = 2
3N H = 3

4N H = N

HR 0.3447 0.3461 0.3471 0.3485 0.3480 0.3455 0.3428
Recall 0.2518 0.2524 0.2539 0.2542 0.2535 0.2522 0.2505
NDCG 0.1612 0.1624 0.1633 0.1644 0.1639 0.1625 0.1609

Movie→Amazon Music are shown in Figure 1. From it, we find that the conclusion is similar as
Douban Movie→Douban Book, as we have reported in Section 3.2. That is: (1) Heater does not
has the ability to bridge the gap across different domains, and thus the embeddings are separated in
source and target domains, as shown in Figure 1(a); (2) ESAM and DARec have the tendency to draw
the source and target embeddings closer, while they still have a certain distance, as shown in Figure
1(b) and Figure 1(c). This indicates that they can only align the marginal probability distribution;
(3) DisAlign-SP in Figure 1(d) depicts that the embeddings trained through Stein path alignment
achieve more closer gap between source and target domains.

B.3 Parameter Sensitivity

We also study the effect of hyper-parameters λSP and λPSP on our proposed DisAlign-SP and
DisAlign-PSP. We vary λSP and λPSP in {0.1, 0.3, 0.5, 0.7, 1, 3, 10} on two CDCSR tasks, i.e.,
Douban Movie→Douban Book and Douban Book→Douban Movie. Figure 2 shows the bell-
shaped curve, indicating that choosing the proper hyper-parameters to balance the embedding
distribution alignment loss and rating prediction loss can effectively improve the model performance.
When λSP , λPSP → 0, the embedding distribution module cannot play a part of role in the training
process, causing the discrepancy between the source and target domains. Finding the proper trade-off
between the rating prediction loss and embedding distribution alignment loss when λSP = 0.5 and
λPSP = 0.5 can obtain the best performance on both datasets. Moreover, we even conduct the
experiments on theH = {

√
N, N4 ,

N
3 ,

N
2 ,

2
3N,

3
4N,N} respectively on Amazon Music→ Amazon

Movie. The result has been shown in Table 3. In most cases, when the cold-item embedding space
is clustered, the accuracy will gradually increase with the increase of H (e.g., from H =

√
H to

H = N
2 ). However, when H further approaches N , the accuracy will decrease since some outliers

may cause side-effects. Meanwhile bigger H will cause longer time consumption. In our paper,
to achieve a good balance between time complexity and prediction performance, we set H = [N2 ].
In fact, one can set to a smaller value, e.g., H =

√
N , where the time complexity will decrease to

O(N2). Naturally, this comes with some accuracy loss. However, the prediction accuracy of Proxy
Stein path alignment still slightly outperforms Stein path alignment when the cold-item embedding
space is clustered.
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Figure 2: Effect of sensitivity λSP and λPSP on model performance.
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Figure 3: Effect of embedding dimension D on model performance.

B.4 Embedding Dimension

We finally analysis the effect of latent embedding dimension D on the performance of our pro-
posed DisAlign-SP and DisAlign-PSP on two tasks, i.e., Douban Movie→Douban Book and
Douban Book→Douban Movie. The results are shown in the Figure 3, where we range D in
{8, 16, 32, 64, 128}. From it, we can see that, the recommendation accuracy of DisAlign-SP and
DisAlign-PSP increase withD, which indicates that a larger embedding can provide a more accurate
latent embeddings for both users or items.
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