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Abstract

We propose a new family of adaptive first-order methods for a class of convex mini-
mization problems that may fail to be Lipschitz continuous or smooth. Specifically,
motivated by a recent flurry of activity on non-Lipschitz (NoLips) optimization, we
consider problems that are continuous or smooth relative to a reference Bregman
function – as opposed to a global, ambient norm (Euclidean or otherwise). These
conditions encompass a wide range of problems with singular objectives that can-
not be treated with standard first-order methods for Lipschitz continuous/smooth
problems – such as Fisher markets, Poisson tomography problems, D-optimal
design, and the like. In this setting, the application of existing order-optimal adap-
tive methods – like UNIXGRAD or ACCELEGRAD – is not possible, especially in
the presence of randomness and uncertainty. The proposed method – which we
call adaptive mirror descent (ADAMIR) – aims to close this gap by concurrently
achieving min-max optimal rates in problems that are relatively continuous or
smooth, including stochastic ones.

1 Introduction

Owing to their wide applicability and flexibility, first-order methods continue to occupy the forefront
of research in learning theory and continuous optimization. Their analysis typically revolves around
two basic regularity conditions for the problem at hand: (i) Lipschitz continuity of the problem’s
objective, and / or (ii) Lipschitz continuity of its gradient (also referred to as Lipschitz smoothness).
Depending on which of these conditions holds, the lower bounds for first-order methods with perfect
gradient input are Θ(1/

√
T ) and Θ(1/T 2) after T gradient queries, and they are achieved by gradient

descent and Nesterov’s fast gradient algorithm respectively [36, 37, 48]. By contrast, if the optimizer
only has access to stochastic gradients (as is often the case in machine learning and distributed
control), the corresponding lower bound is Θ(1/

√
T ) for both classes [14, 34, 37].

This disparity in convergence rates has led to a surge of interest in adaptive methods that can
seamlessly interpolate between these different regimes. Two state-of-the-art methods of this type
are the ACCELEGRAD and UNIXGRAD algorithms of Levy et al. [26] and Kavis et al. [24]: both
algorithms concurrently achieve an O(1/

√
T ) value convergence rate in non-smooth problems, an

O(1/T 2) rate in smooth problems, and an O(1/
√
T ) average rate if run with bounded, unbiased

stochastic gradients (the smoothness does not affect the rate in this case). In this regard, UNIXGRAD
and ACCELEGRAD both achieve a “best of all worlds” guarantee which makes them ideal as off-the-
shelf solutions for applications where the problem class is not known in advance – e.g., as in online
traffic routing, game theory, etc.

At the same time, there have been considerable efforts in the literature to account for problems that do
not adhere to these Lipschitz regularity requirements – such as Fisher markets, quantum tomography,
D-design, Poisson deconvolution / inverse problems, and many other examples [7, 10, 11, 28, 29, 45].
The reason that the Lipschitz framework fails in this case is that, even when the problem’s domain
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is bounded, the objective function exhibits singularities at the boundary, so it cannot be Lipschitz
continuous or smooth. As a result, no matter how small we pick the step-size of a standard gradient
method (adaptive or otherwise), the existence of domains with singular gradients can – and typically
does – lead to catastrophic oscillations (especially in the stochastic case).

A first breakthrough in this area was provided by Birnbaum et al. [10] and, independently, Bauschke
et al. [7] and Lu et al. [29], who considered a “Lipschitz-like” gradient continuity condition for
problems with singularities.1 At around the same time, Lu [28] and Teboulle [45] introduced a
“relative continuity” condition which plays the same role for Lipschitz continuity. Collectively,
instead of using a global norm as a metric, these conditions employ a Bregman divergence as a
measure of distance, and they replace gradient descent with mirror descent [14, 34].

In these extended problem classes, non-adaptive mirror descent methods achieve an O(1/
√
T )

value convergence rate in relatively continuous problems [2, 28], an O(1/T ) rate in relatively
smooth problems [7, 10], and an O(1/

√
T ) average rate if run with stochastic gradients in relatively

continuous problems [2, 28]. Importantly, the O(1/T ) rate for relatively smooth problems does not
match the O(1/T 2) rate for standard Lipschitz smooth problems: in fact, even though [20] proposed
a tentative path towards faster convergence in certain non-Lipschitz problems, Dragomir et al.
[17] recently established an Ω(1/T ) lower bound for problems that are relatively-but-not-Lipschitz
smooth.

Our contributions. Our aim in this paper is to provide an adaptive, parameter-agnostic method that
simultaneously achieves order-optimal rates in the above “non-Lipschitz” framework. By design, the
proposed method – which we call adaptive mirror descent (ADAMIR) – has the following desirable
properties:

1. When run with perfect gradients, the trajectory of queried points converges, and the method’s
rate of convergence in terms of function values interpolates between O(1/

√
T ) and O(1/T ) for

relatively continuous and relatively smooth problems respectively.
2. When run with stochastic gradients, the method attains anO(1/

√
T ) average rate of convergence.

3. The method applies to both constrained and unconstrained problems, without requiring a finite
Bregman diameter or knowledge of a compact domain containing a solution.

The only thing we assume known in the above is the reference Bregman function with respect to
which the problem’s objective is relatively continuous/smooth; other than that, we assume no prior
information on the problem’s regularity class / modulus and/or the oracle model being accessed
(deterministic or stochastic).2 The enabling apparatus for these properties is an adaptive step-size
policy in the spirit of [6, 18, 30]. However, a major difference – and technical difficulty – is that
the relevant definitions cannot be stated in terms of global norms, because the variation of non-
Lipschitz function explodes at the boundary of the problem’s domain (put differently, gradients may
be unbounded even over bounded domains). For this reason, our policy relies on the aggregation of
a suitable sequence of “Bregman residuals” that stabilizes seamlessly when approaching a smooth
solution, thus enabling the method to achieve faster convergence rates.

Related work. Beyond the references cited above, problems with singular objectives were treated
in a recent series of papers in the context of online and stochastic optimization [2, 49]; however, the
proposed methods are not adaptive, and they do not interpolate between different problem classes.

In the context of adaptive methods, the widely used ADAGRAD algorithm of Duchi et al. [18] and
McMahan and Streeter [30] was recently shown to interpolate between an O(1/

√
T ) and O(1/T )

rate of convergence [26, 27]. More precisely, Li and Orabona [27] showed that a specific, “one-lag-
behind” variant of ADAGRAD with prior knowledge of the smoothness modulus achieves an O(1/T )

1This condition was first examined by Birnbaum et al. [10] in the context of Fisher markets. The analysis of
Bauschke et al. [7] and Lu et al. [29] is much more general, but several ideas are already present in [10].

2The reference function has to do with the type of gradient singularities that develop at the boundary of the
problem’s domain. For example, the Fisher market models that we discuss later in the paper always exhibit
Θ(log x) gradient singularities at the boundary, so the appropriate choice for such models is the negative entropy,
and this is true whether the specific market model is everywhere differentiable or not. Likewise, Poisson inverse
problems always exhibit Θ(1/x) gradient singularities at the boundary of the positive orthant, which means that
the log-entropy is the appropriate reference function for such problems.
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Constr. / Uncon. Stoch. (L) RC RS Stoch. (R)

ADAGRAD [18] ✓/✓ ✓ ✕ ✕ ✕

ACCELEGRAD [26] ✕/✓ ✓ ✕ ✕ ✕

UNIXGRAD [24] ✓/ ✕ ✓ ✕ ✕ ✕

UPGD [39] ✓/✓ ✕ ✕ ✕ ✕

GMP [44] ✓/✓ ✕ ✕ 1/T ✕

ADAPROX [3] ✓/✓ ✕ partial partial ✕

ADAMIR [ours] ✓/✓ ✓ 1/
√
T 1/T 1/

√
T

Table 1: Overview of related work. For the purposes of this table, (L) refers to “Lipschitz” and (R) to
“relative” continuity or smoothness respectively. In the case of ADAPROX, “partial” means that the non-Lipschitz
conditions under which it guarantees convergence form a subset of the RC/RS conditions. Logarithmic factors
are ignored throughout; we also note that the O(1/T ) rate in the RS column is, in general, unimprovable [17].

rate in smooth, unconstrained problems; concurrently, Levy et al. [26] obtained the same rate in a
parameter-agnostic context. In either case, ADAGRAD achieves an O(1/

√
T ) rate of convergence in

stochastic problems (though with somewhat different assumptions for the randomness).

In terms of rate optimality for Lipschitz smooth problems, ADAGRAD is outperformed by ACCELE-
GRAD [26] and UNIXGRAD [24]: these methods both achieve an O(1/T 2) value convergence rate
in Lipschitz smooth problems, and an O(1/

√
T ) rate in stochastic problems with bounded gradient

noise. By employing an efficient line-search step, the universal primal gradient descent (UPGD)
algorithm of Nesterov [39] achieves order-optimal guarantees in the wider class of Hölder continuous
problems (which includes the Lipschitz continuous and smooth cases as extreme cases); however,
UPGD does not cover stochastic problems or problems with relatively continuous / smooth objectives.

As far as we are aware, the closest works to our own are the generalized mirror-prox (GMP) algorithm
of [44] and the ADAPROX method of [2], both designed for variational inequality problems. The GMP
algorithm can achieve interpolation between different classes of Hölder continuous problems and can
adapt to the problem’s relative smoothness modulus, but it does not otherwise interpolate between
the relatively smooth and relatively continuous classes. Moreover, GMP requires knowledge of a
“domain of interest” containing a solution of the problem; in this regard, it is similar to ACCELEGRAD
[26] (though it does not require an extra projection step). The recently proposed ADAPROX method
of Antonakopoulos et al. [3] also achieves a similar interpolation result under a set of assumptions
that are closely related – but not equivalent – to the relatively continuous/smooth setting of our paper.
Moreover, neither of these papers covers the stochastic case; to the best of our knowledge, ADAMIR
is the first method in the literature capable of adapting to relatively continuous / smooth objectives,
even under uncertainty. For convenience, we detail these related works in Table 1 above.

2 Problem setup and preliminaries

Problem statement. Throughout the sequel, we will focus on convex minimization problems of
the general form

minimize f(x),

subject to x ∈ X . (Opt)

In the above, X is a convex subset of a normed d-dimensional space V ∼= Rd, and f : V → R ∪ {∞}
is a proper lower semi-continuous (l.s.c.) convex function with dom f = {x ∈ V : f(x) <∞} = X .
Compared to standard formulations, we stress that X is not assumed to be compact, bounded, or even
closed. This lack of closedness will be an important feature for our analysis because we are interested
in objectives that may develop singularities at the boundary of their domain; for a class of relevant
examples of this type, see [1, 2, 7, 9–11, 22, 29, 49] and references therein.

To formalize our assumptions for (Opt), we will write ∂f(x) for the subdifferential of f at x, and
X◦ ≡ dom ∂f = {x ∈ X : ∂f(x) ̸= ∅} for the domain of subdifferentiability of f . Formally,
elements of ∂f will be called subgradients, and we will treat them throughout as elements of the dual
space V∗ of V . By standard results, we have riX ⊆ X◦ ⊆ X , and any solution x∗ of (Opt) belongs
to X◦ [42, Chap. 26]; to avoid trivialities, we will make the following blanket assumption.
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Assumption 1. The solution set X ∗ ≡ argmin f ⊆ X◦ of (Opt) is nonempty.

Two further assumptions that are standard in the literature (but which we relax in the sequel) are:

1. Lipschitz continuity: there exists some G > 0 such that

|f(x′)− f(x)| ≤ G∥x′ − x∥ for all x, x′ ∈ X . (LC)

2. Lipschitz smoothness: there exists some L > 0 such that

f(x′) ≤ f(x) + ⟨v, x′ − x⟩+ L

2
∥x′ − x∥2 for all x, x′ ∈ X and all v ∈ ∂f(x). (LS)

Remark. For posterity, we note that the smoothness requirement (LS) does not imply that ∂f(x)
is a singleton.3 The reason for this more general definition is that we want to concurrently treat
problems with smooth and non-smooth objectives, and also feasible domains that are contained in
lower-dimensional subspaces of V . We also note that we will be mainly interested in cases where the
above requirements all fail because f and/or its derivatives blow up at the boundary of X . By this
token, we will not treat (LC)/(LS) as “blanket assumptions”; we discuss this in detail in the sequel.

The oracle model. From an algorithmic point of view, we aim to solve (Opt) by using iterative
methods that require access to a stochastic first-order oracle (SFO) [37]. This means that, at each
stage of the process, the optimizer can query a black-box mechanism that returns an estimate of
the objective’s gradient (or subgradient) at the queried point. Formally, when called at x ∈ X , an
SFO is assumed to return a random (dual) vector g(x;ω) ∈ V∗ where ω belongs to some (complete)
probability space (Ω,F ,P). In practice, the oracle will be called repeatedly at a (possibly) random
sequence of points Xt ∈ X generated by the algorithm under study. Thus, once Xt has been
generated at stage t, the oracle draws an i.i.d. sample ωt ∈ Ω and returns the dual vector:

gt ≡ g(Xt;ωt) = ∇f(Xt) + Ut (1)

with Ut ∈ V∗ denoting the “measurement error” relative to some selection ∇f(Xt) of ∂f(Xt). In
terms of measurability, we will write Ft for the history (natural filtration) of Xt; in particular, Xt is
Ft-adapted, but ωt, gt and Ut are not. Finally, we will also make the statistical assumption that

E[Ut | Ft] = 0 and ∥Ut∥2∗ ≤ σ2 for all t = 1, 2, . . . (SFO)

where ∥·∥∗ denotes the dual norm on V∗. This assumption is standard in the analysis of parameter-
agnostic adaptive methods, cf. [6, 24, 26, 46] and references therein. For concreteness, we will
refer to the case σ = 0 as deterministic – since, in that case, Ut = 0 for all t. Otherwise, if
lim inft∥Ut∥∗ > 0, the noise will be called persistent and the model will be called stochastic.

3 Relative Lipschitz continuity and smoothness

3.1. Bregman functions. We now proceed to describe a flexible template extending the standard
Lipschitz continuity and Lipschitz smoothness conditions – (LC) and (LS) – to functions that are
possibly singular at the boundary points of X . The main idea of this extension revolves around the
non-Lipschitz (NoLips) framework that was first studied by Birnbaum et al. [10] and then rediscovered
independently by Bauschke et al. [7] and Lu et al. [29]. The key notion in this setting is that of a
suitable “reference” Bregman function, which is assumed known to the optimizer, and which provides
a geometry-adapted measure of divergence on X . This is defined as follows:
Definition 1. A convex l.s.c. function h : V → R ∪ {∞} is a Bregman function on X , if

1. dom ∂h ⊆ X◦ ⊆ domh.

2. The subdifferential of h admits a continuous selection∇h(x) ∈ ∂h(x) for all x ∈ dom ∂h.

3. h is strongly convex, i.e., there exists some K > 0 such that

h(x′) ≥ h(x) + ⟨∇h(x), x′ − x⟩+ K

2
∥x′ − x∥2 (2)

for all x ∈ dom ∂h, x′ ∈ dom ∂h.
3For example, the function f : R2 → R with f(x1, 0) = x1 and f(x1, x2) = ∞ for x2 ̸= 0 is perfectly

smooth on its domain (x2 = 0); however, ∂f(x1, 0) = {(1, v2) : v2 ∈ R}, and this set is never a singleton.
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The induced Bregman divergence of h is then defined for all x ∈ dom ∂h, x′ ∈ domh as

D(x′, x) = h(x′)− h(x)− ⟨∇h(x), x′ − x⟩. (3)

Remark. The notion of a Bregman function was first introduced by Bregman [13]. Our definition
follows [5, 23, 35, 38] and leads to the smoothest presentation, but there are variant definitions where
h is not necessarily assumed strongly convex, cf. [8, 15] and references therein.

Some standard examples of Bregman functions are as follows:
• Euclidean regularizer: Let X be a convex subset of Rd endowed with the Euclidean norm ∥·∥2.

Then, the Euclidean regularizer on X is defined as h(x) = ∥x∥22/2 and the induced Bregman
divergence is the standard square distance D(x′, x) = ∥x′ − x∥22 for all x, x′ ∈ X

• Entropic regularizer: LetX = {x ∈ Rd
+ :
∑d

i=1 xi = 1} be the unit simplex of Rd endowed with
the L1-norm ∥·∥1. Then, the entropic regularizer on X is h(x) =

∑
i xi log xi and the induced

divergence is the relative entropy D(x′, x) =
∑

i x
′
i log(x

′
i/xi) for all x′ ∈ X x ∈ riX .

• Log-barrier: Let X = Rd
++ denote the (open) positive orthant of Rd. Then, the log-barrier on X

is defined as h(x) = −
∑d

i=1 log xi for all x ∈ Rd
++. The corresponding divergence is known as

the Itakura-Saito divergence and is given by D(x, x′) =
∑d

i=1(xi/x
′
i − log(xi/x

′
i)− 1) [15].

3.2. Relative continuity. With this background in hand, we proceed to discuss how to extend
the Lipschitz regularity assumptions of Section 2 to account for problems with singular objective
functions. We begin with the notion of relative continuity (RC), as introduced by Lu [28] and
extended further in a recent paper by Zhou et al. [49]:
Definition 2. A convex l.s.c. function f : V → R ∪ {∞} is said to be relatively continuous if there
exists some G > 0 such that

f(x)− f(x′) ≤ ⟨∇f(x), x− x′⟩ ≤ G
√

2D(x′, x) for all x′ ∈ domh, x ∈ dom ∂h. (RC)

In the literature, there have been several extensions of (LC) to problems with singular objectives.
Below we discuss some of these variants and how they can be integrated in the setting of Definition 2.
▶ Example 1 (W[f, h] continuity). This notion intends to single out sufficient conditions for the
convergence of “proximal-like” methods like mirror descent. Specifically, following Teboulle [45], f
is said to be W[f, h]-continuous relative to h on X (read: “f is weakly h-continuous”) if there exists
some G > 0 such that, for all t > 0, we have

t⟨∇f(x), x− x′⟩ −D(x′, x) ≤ t2

2
G2 for all x′ ∈ domh, x ∈ dom ∂h. (W)

By rearranging the above quadratic polynomial in t, we note that its discriminant is ∆ =

[⟨∇f(x), x− x′⟩]2 − 2G2D(x′, x), so it is immediate to check that (RC) holds.

▶ Example 2 (Riemann–Lipschitz continuity). Concurrently to the above, Antonakopoulos et al.
[2] introduced a Riemann-Lipschitz continuity condition extending (LC) as follows. Let ∥·∥x be
a family of local norms on X (possibly induced by an appropriate Riemannian metric), and let
∥v∥x,∗ = max∥x′∥x≤1⟨v, x′⟩ denote the corresponding dual norm. Then, f is Riemann–Lipschitz
continuous relative to ∥·∥x if there exists some G > 0 such that:

∥∇f(x)∥x,∗ ≤ G for all x ∈ X . (RLC)

As we show in the paper’s supplement, (RLC) =⇒ (RC) so (RC) is more general in this regard.

3.3. Relative smoothness. As discussed above, the notion of relative smoothness (RS) was intro-
duced by [10] and independently rediscovered by [7, 29]. It is defined as follows:
Definition 3. A convex l.s.c. function f : V → R ∪ {∞} is said to be relatively smooth with respect
to h if

Lh− f is convex for some L > 0. (RS)

The main motivation behind this elegant definition is the following variational characterizations:
Proposition 1. The following statements are equivalent for all x, x′ ∈ dom ∂h:
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1. f satisfies (RS).
2. f satisfies the inequality f(x) ≤ f(x′) + ⟨∇f(x′), x− x′⟩+ LD(x, x′),

3. f satisfies the inequality ⟨∇f(x)−∇f(x′), x− x′⟩ ≤ L [D(x, x′) +D(x′, x)] .

A close variant of Proposition 1 appears in [7, 10, 29], so we do not prove it here. Instead, we discuss
below a different extension of (LS) that turns out to be a special case of (RS).

▶ Example 3 (Metric smoothness). Similar in spirit to (RLC), Antonakopoulos et al. [3] introduced
an extension of (LS) that replaces the global norm ∥·∥ with a local norm ∥·∥x, x ∈ X◦. In particular,
given such a norm, we say that f is metrically smooth (relative to ∥·∥x) if

∥∇f(x)−∇f(x′)∥x,∗ ≤ L∥x− x′∥x′ for all x, x′ ∈ dom ∂f. (MS)

An observation that seems to have been overlooked by [3] is that (MS) =⇒ (RS), so (RS) is more
general. We prove this observation in the appendix.

3.4. More examples. Some concrete examples of problems satisfying (RC), (RS) or both (but not
their Euclidean counterparts) are Fisher markets [10, 43], Poisson inverse problems [2, 7], support
vector machines [28, 49], D-design [11, 29], etc. Because of space constraints, we do not detail
these examples here; however, we provide an in-depth presentation of a Fisher market model in the
appendix, along with a series of numerical experiments used to validate the analysis to come.

4 Adaptive mirror descent

We are now in a position to define the proposed adaptive mirror descent (ADAMIR) method. In
abstract recursive form, ADAMIR follows the basic mirror descent template

x+ = Px(−γg), (MD)

where P is a generalized Bregman proximal operator induced by h (see below for the detailed
definition), g is a search direction determined by a (sub)gradient of f at x, and γ > 0 is a step-size
parameter. We discuss these elements in detail below, starting with the prox-mapping P .

4.1. The prox-mapping. Given a Bregman function h, its induced prox-mapping is defined as

Px(v) = argminx′∈X {⟨v, x− x′⟩+D(x′, x)} for all x ∈ dom ∂h, v ∈ V∗, (4)

where D(x′, x) denotes the Bregman divergence of h. Of course, in order for (4) to be well-defined,
the argmin must be attained in dom ∂h. Indeed, we have:
Proposition 2. The recursion (MD) satisfies x+ ∈ dom ∂h for all x ∈ dom ∂h and all g ∈ V∗.

To streamline our discussion, we postpone the proof of Proposition 2 to the supplement. For now, we
only note that it implies that the abstract recursion (MD) is well-posed, i.e., it can be iterated for all
t = 1, 2, . . . to generate a sequence Xt ∈ X .

4.2. The method’s step-size. The next important element of (MD) is the method’s step-size. In the
unconstrained case, a popular adaptive choice is the so-called “inverse-sum-of-squares” policy

γt = 1
/√∑t

s=1∥∇f(Xs)∥2∗, (5)

whereXt is the series of iterates produced by the algorithm. However, in relatively continuous/smooth
problems, this definition encounters two crucial issues. First, because the gradient of f is unbounded
(even over a bounded domain), the denominator of (5) may grow at an uncontrollable rate, leading to
a step-size policy that vanishes too fast to be of any practical use. The second is that, if the problem is
constrained, the extra terms entering the denominator of γt do not vanish as the algorithm approaches
a solution, so the (5) may still be unable to exploit the smoothness of the objective.

We begin by addressing the second issue. In the Euclidean case, the key observation is that the
difference ∥x+ − x∥ must always vanish near a solution (even near the boundary), so we can use it as
a proxy for ∇f(x) in constrained problems. This idea is formalized by the notion of the gradient
mapping [37] that can be defined here as

δ = ∥x+ − x∥
/
γ. (6)
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On the other hand, in a Bregman setting, the prox-mapping tends to deflate gradient steps, so the
norm difference between two successive iterates x+ and x of (MD) could be very small relative to the
oracle signal that was used to generate the update. As a result, the Euclidean residual (6) could lead
to a disproportionately large step-size that would be harmful for convergence. For this reason, we
consider a gradient mapping that takes into account the Bregman geometry of the method and we set

δ =
√
D(x, x+) +D(x+, x)

/
γ. (7)

Obviously, when h(x) = (1/2)∥x∥22, we readily recover the definition of the Euclidean gradient
mapping (6). In general however, by the strong convexity of h, the value of this “Bregman residual”
exceeds the corresponding Euclidean definition, so the induced step-size exhibits smoother variations
that are more adapted to the framework in hand.

4.3. The ADAMIR algorithm. We are finally in a position to put everything together and define the
adaptive mirror descent (ADAMIR) method. In this regard, combining the abstract template (MD)
with the Bregman residual and “inverse-sum-of-squares” approach discussed above, we will consider
the recursive policy

Xt+1 = PXt
(−γtgt) (8)

with gt, t = 1, 2, . . . , coming from a generic oracle model of the form (SFO), and with γt defined as

γt =
1√∑t−1
s=0 δ

2
s

with δ2s =
D(Xs, Xs+1) +D(Xs+1, Xs)

γ2s
. (ADAMIR)

In the sequel, we will use the term “ADAMIR” to refer interchangeably to the update Xt ← Xt+1

and the specific step-size policy used within. The convergence properties of ADAMIR are discussed
in detail in the next two sections (in both deterministic and stochastic problems); in the supplement,
we also perform a numerical validation of the method in the context of a Fisher market model.

5 Deterministic analysis and results

We are now in a position to state our main convergence results for ADAMIR. We begin with the
deterministic analysis (σ = 0), treating both the method’s “time-average” as well as the induced
trajectory of query points; the analysis for the stochastic case (σ > 0) is presented in the next section.

5.1. Ergodic convergence and rate interpolation. We begin with the convergence of the method’s
“time-averaged” state, i.e., X̄T = (1/T )

∑T
t=1Xt.

Theorem 1. Let Xt, t = 1, 2, . . . , denote the sequence of iterates generated by ADAMIR, and let
D1 = D(x∗, X1). Then, ADAMIR simultaneously enjoys the following guarantees:

1. If f satisfies (RC), we have:

f(X̄T )−min f ≤
√
2G
[
D1 + 8G2/δ20 + 2 log(1 + 2G2T/δ20)

]
√
T

+
3
√
2G+ 4G2/δ20

T
. (9)

2. If f satisfies (RS), we have f(X̄T )−min f = O(D1/T ).

3. If f satisfies (RS) and (RC), we have:

f(X̄T )−min f ≤
[
f(X1)−min f +

(
2 +

8G2

δ20
+ 2 log

4L2

δ20

)
L

]2
D1

T
. (10)

Theorem 1 shows that, up to logarithmic factors, ADAMIR achieves the min-max optimal bounds for
functions in the RC ∪RS oracle complexity class.4 The starting point of the proof (which we detail
in the supplement), is the following regret bound:
Proposition 3. With notation as in Theorem 1, ADAMIR enjoys the regret bound

T∑
t=1

[f(Xt)− f(x∗)] ≤
D1

γT
+

∑T
t=1 γ

2
t δ

2
t

γT
+

T∑
t=1

γtδ
2
t . (11)

4We recall here that, in contrast to (LS), the O(1/T ) rate is optimal in (RS), cf. Dragomir et al. [17].
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The proof of Proposition 3 hinges on the specific definition of ADAMIR’s step-size, and the exact
functional form of the regret bound (11) plays a crucial role in the sequel. Specifically, under the
regularity conditions (RC) and (RS), we respectively obtain the following key lemmas:

Lemma 1. Under (RC), the sequence of the Bregman residuals δt of ADAMIR is bounded as
δ2t ≤ 2G2 for all t ≥ 1.

Lemma 2. Under (RS), the sequence of the Bregman residuals δt of ADAMIR is square-summable,
i.e.,

∑
t δ

2
t <∞. Consequently, the method’s step-size converges to a strictly positive limit γ∞ > 0.

As we explain below, the boundedness estimate of Lemma 1 is necessary to show that the iterates
of the method do not explode; however, without further assumptions, it is not possible to sharpen
this bound.5 The principal technical difficulty – and an important novelty of our analysis – is the
stabilization of the step-size to a strictly positive limit in Lemma 2. This property of ADAMIR plays
a crucial role because the method is not slowed down near a solution. To the best of our knowledge,
there is no comparable result for the step-size of parameter-agnostic methods in the literature.6

Armed with these two lemmas, we obtain the following series of estimates:

1. Under (RC), the terms in the RHS of (11) can be bounded respectively as O(G
√
T ),

O(log(G2T )
√
T ), and O(G

√
T ). As a result, we obtain an Õ(1/

√
T ) rate of convergence.

2. Under (RS), all terms in the RHS of (11) can be bounded as O(1), so we obtain an O(1/T )
convergence rate for X̄T .

For the details of these calculations (including the explicit constants and logarithmic terms that appear
in the statement of Theorem 1), we refer the reader to the supplement.

5.2. Other modes of convergence. In complement to the analysis above, we provide below a
spinoff result for the method’s “last iterate”, i.e., the actual trajectory of queried points. The formal
statement is as follows.

Theorem 2. Suppose that f satisfies (RC) or (RS). Then Xt converges to argmin f .

The main idea of the proof (which we detail in the appendix) consists of two steps. The first key
step is to show that, under (RC) ∪ (RS), the iterates of ADAMIR have lim inf f(Xt) = min f ; we
show this in Proposition C.1. Now, given the existence of a convergent subsequence, the rest of our
proof strategy branches out depending on whether f satisfies (RC) or (RS). Under (RS), the analysis
relies on arguments that involve a quasi-Fejér argument as in [12, 16]. However, under (RC), the
quasi-Fejér property fails, so we prove the convergence of Xt via a novel induction argument that
shows that the method’s iterates remain trapped within a Bregman neighborhood of x∗ if they enter it
with a sufficiently small step-size; we provide the relevant details in the supplement.

Non-convex objectives. We close this section with two remarks on non-convex objectives. First,
Theorem 2 applies verbatim to non-convex functions satisfying the “secant inequality” [12, 32, 33, 50]

inf{⟨∇f(x), x− x∗⟩ : x∗ ∈ argmin f, x ∈ K} > 0 (SI)

for every closed subsetK of X that is separated by neighborhoods from argmin f . In the supplement,
our results have all been derived based on this more general condition (it is straightforward to verify
that (SI) always holds for convex functions).

Even more generally, Lemma 2 also allows us to derive results for general non-convex problems.
Indeed, the proof of Proposition 1 shows that min1≤t≤T δ

2
t = O(1/T ) without requiring any

5The only comparable result that we are aware of in the literature is Lemma 3.2 of [6] which, however,
concerns a mirror-prox algorithm with two gradient queries per iteration, functions with bounded gradients, and
a step-size defined in terms of a global norm. The specific bound of Lemma 1 is only possible thanks to the
exact form of γt: since the gradient of f can become arbitrarily large in terms of global norms, bounding δt
would not have been possible otherwise.

6In more detail, Levy et al. [26], Li and Orabona [27] and Kavis et al. [24] establish the summability of a
suitable residual sequence to sharpen the O(1/

√
T ) rate in their respective contexts, but this does not translate

to a step-size stabilization result. Under (RC)/(RS), controlling the method’s step-size is of vital importance
because the gradients that enter the algorithm may be unbounded even over a bounded domain; this crucial
difficulty does not arise in any of the previous works on adaptive methods for ordinary Lipschitz problems.
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properties on f other than relative smoothness. As a result, we conclude that the “best iterate” of the
method – i.e., the iterate with the least residual – decays as O(1/T ). This fact partially generalizes
a similar result obtained in [27, 46] for ADAGRAD applied to non-convex problems; however, an
in-depth discussion of this property would take us too far afield, so we do not attempt it.

6 Stochastic analysis

In this last section, we focus on the stochastic case (σ > 0). Our main results here are as follows.
Theorem 3. Let Xt, t = 1, 2, . . . , denote the sequence of iterates generated by ADAMIR, and let
D1 = D(x∗, X1) and Gσ = G+ σ/

√
K. Then, under (RC), we have

E
[
f(X̄T )− f(x∗)

]
≤ (D1 +H)

√
δ20 + 2G2

σ

T
(12)

where H = 8G2
σ/δ

2
0 + 2 log(1 + 2G2

σT/δ
2
0).

Finally, if (RS) kicks in, we have the sharper guarantee:
Theorem 4. With notation as above, if f satisfies (RS), ADAMIR enjoys the bound

E[f(X̄T )− f(x∗)] ≤ (2 +D1 +H)

[
A

T
+
Bσ√
T

]
(13)

where:

a) A = δ0 + 2[f(X1)−min f ] + L
(
2 + 8G2

σ

/
δ20 + 2 log(4L2/δ20)

)
. (14a)

b) B =
√
(4 + 2H)/K. (14b)

The full proof of Theorems 3 and 4 is relegated to the supplement, but the key steps are as follows:

Step 1: We first show that, under (RC), the method’s residuals are bounded as δ2t ≤ 2G2
σ (a.s.).

Step 2: With this at hand, the workhorse for our analysis is the following boxing bound for the mean
“weighted” regret

∑T
t=1 E[γt⟨∇f(Xt), Xt − x∗⟩]:

E

[
γT

T∑
t=1

[f(Xt)− f(x∗)]

]
≤ E

[
T∑

t=1

γt⟨∇f(Xt), Xt − x∗⟩

]
≤ D1 + E

[
T∑

t=1

γ2t δ
2
t

]
We prove this bound in the supplement, where we also show that E[

∑T
t=1 γ

2
t δ

2
t ] = O(log T ).

At this point the analysis between Theorems 3 and 4 branches out. First, in the case of Theorem 3,
we show that the method’s step-size is bounded from below as γt ≥ 1/

√
(δ20 + 2G2

σ)t; the guarantee
(12) then follows by the boxing bound. Instead, in the case of Theorem 4, the analysis is more
involved and relies crucially on the lower bound γt ≥ 1/(A+Bσ

√
t). The bound (13) then follows

by combining this lower bound for γt with the regret boxing bound above.

In the supplement, we also conclude a series of numerical experiments in random Fisher markets that
illustrate the method’s adaptation properties in an archetypal non-Lipschitz problem.

7 Fisher markets: A case study

In this last section, we illustrate the convergence properties of ADAMIR in a Fisher equilibrium
problem with linear utilities – both stochastic and deterministic. Following [40], a Fisher market
consists of a setN = {1, . . . , n} of n buyers – or players – that seek to share a setM = {1, . . . ,m}
of m perfectly divisible goods (ad space, CPU/GPU runtime, bandwidth, etc.). The allocation
mechanism for these goods follows a proportionally fair price-setting rule that is sometimes referred
to as a Kelly auction [25]: each player i = 1, . . . , n bids xik per unit of the k-th good, up the player’s
individual budget; for the sake of simplicity, we assume that this budget is equal to 1 for all players,
so
∑m

k=1 xik ≤ 1 for all i = 1, . . . , n. The price of the k-th good is then set to be the sum of the
players’ bids, i.e., pk =

∑
i∈N xik; then, each player gets a prorated fraction of each good, namely

wik = xik/pk.
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(b) Ergodic convergence

Figure 1: Statistics for the convergence speed of entropic gradient descent, the proportional response algorithm
and ADAMIR in a stochastic Fisher market with marginal utilities drawn i.i.d. at each epoch. The marked lines
are the observed means from S = 50 realizations, whereas the shaded areas represent a 95% confidence interval.

As was observed by Shmyrev [43] (and discussed in more detail in the paper’s supplement), the
equilibrium points of a Fisher market can be obtained by solving the convex problem

minimize F (x; θ) ≡
∑
k∈M

pk log pk −
∑
i∈N

∑
k∈M

xik log θik

subject to pk =
∑
i∈N

xik,
∑
k∈M

xik = 1, and xik ≥ 0 for all k ∈M, i ∈ N ,
(Opt)

where θik denotes the marginal utility of the i-th player per unit of the k-th good. Accordingly, if
these utilities fluctuate stochastically over time, the corresponding optimization problem involves the
mean objective

f(x) = E[F (x;ω)]. (15)

Because of the logarithmic terms involved, F (and, a fortiori, f ) cannot be Lipschitz continuous
or smooth in the standard sense. However, as was shown by Birnbaum et al. [10], the problem
satisfies (RS) over X = {x ∈ Rnm

+ :
∑

k∈M xik = 1} relative to the negative entropy function
h(x) =

∑
ik xik log xik. As a result, mirror descent methods based on this Bregman function are

natural candidates for solving (15).

In Fig. 1, we report the performance of the (non-adaptive) entropic gradient descent and proportional
response algorithms studied by Birnbaum et al. [10], and we compare it to the performance of
ADAMIR, which consistently outperforms both methods, in terms of both last-iterate and ergodic
value convergence rates. We provide a more detailed analysis in the paper’s supplement.

8 Concluding remarks

Our theoretical analysis confirms that ADAMIR concurrently achieves optimal rates of convergence
in relatively continuous and relatively smooth problems, both stochastic or deterministic, constrained
or unconstrained, and without requiring any prior knowledge of the problem’s smoothness/continuity
parameters. These appealing properties open the door to several future research directions, especially
regarding the method’s convergence properties in non-convex problems. The “best-iterate” discussion
of Section 5 is a first step along the way, but many questions and problems remain open in this
direction, especially regarding the convergence of the method’s “last iterate” in stochastic, non-convex
settings. We defer these questions to future work.
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A Bregman regularizers and mirror maps

Our goal in this appendix is to derive some basic properties for the class of Bregman proximal maps
and mirror descent methods considered in the main body of our paper. Versions of the properties that
we derive are known in the literature [see e.g., 8, 15, 21, 31, 38, and references therein].

To begin, we introduce two notions that will be particularly useful in the sequel. The first is the
convex conjugate of a Bregman function h, i.e.,

h∗(y) = max
x∈domh

{⟨y, x⟩ − h(x)} (A.1)

and the associated primal-dual mirror map Q : V∗ → dom ∂h:

Q(y) = argmax
x∈domh

{⟨y, x⟩ − h(x)} (A.2)

That the above is well-defined is a consequence of the fact that h is proper, l.s.c., convex and coercive;7
in addition, the fact that Q takes values in dom ∂h follows from the fact that any solution of (A.2)
must necessarily have nonempty subdifferential (see below). For completeness, we also recall here
the definition of the Bregman proximal mapping

Px(v) = argmin
x′∈domh

{⟨v, x− x′⟩+D(x′, x)} (prox)

valid for all x ∈ dom ∂h and all v ∈ V∗.

We then have the following basic lemma connecting the above notions:
Lemma A.1. Let h be a regularizer in the sense of Definition 1 with K-strong convexity modulus.
Then, for all x ∈ dom ∂h and all v, y ∈ V∗ we have:

1. x = Q(y) ⇐⇒ y ∈ ∂h(x).

2. x+ = Px(v) ⇐⇒ ∇h(x) + v ∈ ∂h(x) ⇐⇒ x+ = Q(∇h(x) + v).

3. Finally, if x = Q(y) and p ∈ X , we get:

⟨∇h(x), x− p⟩ ≤ ⟨y, x− p⟩. (A.3)

Proof. For the first equivalence, note that x solves (A.1) if and only if 0 ∈ y − ∂h(x) and hence if
and only if y ∈ ∂h(x). Working in the same spirit for the second equivalence, we get that x+ solves
(prox) if and only if ∇h(x) + v ∈ ∂h(x+) and therefore if and only if x+ = Q(∇h(x) + v).

For our last claim, by a simple continuity argument, it is sufficient to show that the inequality holds
for the relative interior riX of X (which, in particular, is contained in dom ∂h). In order to show
this, pick a base point p ∈ riX , and let

ϕ(t) = h(x+ t(p− x))− [h(x) + ⟨y, t(p− x)⟩] for all t ∈ [0, 1]. (A.4)

Since, h is strongly convex and y ∈ ∂h(x) due to the first equivalence, it follows that ϕ(t) ≥ 0 with
equality if and only if t = 0. Since, ψ(t) = ⟨∇h(x+ t(p− x))− y, p− x⟩ is a continuous selection
of subgradients of ϕ and both ϕ and ψ are continuous over [0, 1], it follows that ϕ is continuously
differentiable with ϕ′ = ψ on [0, 1]. Hence, with ϕ convex and ϕ(t) ≥ 0 = ϕ(0) for all t ∈ [0, 1], we
conclude that ϕ′(0) = ⟨∇h(x)− y, p− x⟩ ≥ 0 and thus we obtain the result. □

As a corollary, we have:

Proof of Proposition 2. Our claim follows directly from a tandem application of items (1) and (2) in
Lemma A.1. □

To proceed, the basic ingredient for establishing connections between Bregman proximal steps is a
generalization of the rule of cosines which is known in the literature as the “three-point identity” [15].
This will be our main tool for deriving the main estimates for our analysis. Being more precise, we
have the following lemma:

7The latter holds because h is strongly convex relative to ∥·∥x, and ∥·∥x has been tacitly assumed bounded
from below by a multiple µ∥·∥ of ∥·∥.
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Lemma A.2. Let h be a regularizer in the sense of Definition 1. Then, for all p ∈ domh and all
x, x′ ∈ dom ∂h, we have:

D(p, x′) = D(p, x) +D(x, x′) + ⟨∇h(x′)−∇h(x), x− p⟩. (A.5)

Proof. By definition:
D(p, x′) = h(p)− h(x′)− ⟨∇h(x′), p− x′⟩
D(p, x) = h(p)− h(x)− ⟨∇h(x), p− x⟩
D(x, x′) = h(x)− h(x′)− ⟨∇h(x′), x− x′⟩.

(A.6)

The lemma then follows by adding the two last lines and subtracting the first. □

Thanks to the three-point identity, we obtain the following estimate for the Bregman divergence
before and after a mirror descent step:

Proposition A.1. Let h be a regularizer in the sense of Definition 1 with strong convexity modulus
K > 0. Fix some p ∈ domh and let x+ = Px(v) for some x ∈ dom ∂h and v ∈ V∗. We then have:

D(p, x+) ≤ D(p, x)−D(x+, x) + ⟨v, x+ − p⟩ (A.7)
and

D(p, x+) ≤ D(p, x) +D(x, x+)− ⟨v, x− p⟩. (A.8)

Proof. By the three-point identity established in Lemma A.2, we have:

D(p, x) = D(p, x+) +D(x+, x) + ⟨∇h(x)−∇h(x+), x+ − p⟩ (A.9)

Rearranging terms then yields:

D(p, x+) = D(p, x)−D(x+, x) + ⟨∇h(x+)−∇h(x), x+ − p⟩ (A.10)

By (A.3) and the fact that x+ = Px(v) so ∇h(x) + v ∈ ∂h(x+), the first inequality follows; the
second one is obtained similarly. □

B Convergence analysis of ADAMIR

In this appendix, we will illustrate in detail the convergence analysis of ADAMIR, which we present
in pseudocode form as Algorithm 1 below. For ease of presentation we shall divide our analysis, as in
the main body of our paper, into two sections: the deterministic and the stochastic one.

Algorithm 1: Adaptive mirror descent (ADAMIR)

1: Initialize X0 ̸= X1 ∈ dom ∂h; set δ0 = [D(X0, X1) +D(X1, X0)]
1/2

2: for t = 1, 2, . . . , T − 1 do

3: set γt =
(∑t−1

s=0 δ
2
s

)−1/2 # step
4: get gt ← g(Xt;ωt) # feedback
5: set Xt+1 = PXt(−γtgt) # Bregman step

6: set δt = [D(Xt, Xt+1) +D(Xt+1, Xt)]
1/2/γt # Bregman residual

7: end for
8: return X̄T ← (1/T )

∑T
t=1 Xt # candidate solution

B.1. The deterministic case. We begin with the proof of Lemma 1 which provides an upper bound
to the Bregman residuals generated by ADAMIR:

Proof of Lemma 1. By the definition of the Bregman proximal step in (MD) and Proposition A.1, we
have:

D(Xt, Xt+1) +D(Xt+1, Xt) = ⟨∇h(Xt)−∇h(Xt+1), Xt −Xt+1⟩
≤ γt⟨gt, Xt −Xt+1⟩. (B.1)
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Hence, by applying the (RC) condition of the objective we get:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γtG
√
2D(Xt+1, Xt)

≤ γtG
√

2 [D(Xt+1, Xt) +D(Xt, Xt+1)] (B.2)

We thus get:
D(Xt, Xt+1) +D(Xt+1, Xt) ≤ 2γ2tG

2. (B.3)

Hence, by the definition (7) of δ2t , we conclude that

δ2t =
D(Xt, Xt+1) +D(Xt+1, Xt)

γ2t
≤ 2G2. (B.4)

□

Proof of Lemma 2. Since the adaptive step-size policy γt is decreasing and bounded from below
(γt) ≥ 0 we get that its limit exist,i.e.,

lim
t→+∞

γt = γ∞ for some γ∞ ≥ 0 (B.5)

Assume that γ∞ = 0. By Proposition 1, we obtain:

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt), Xt+1 −Xt⟩+ LD(Xt+1, Xt)

≤ f(Xt)−
1

γt
D(Xt, Xt+1)

− 1

γt
D(Xt+1, Xt) + L [D(Xt, Xt+1) +D(Xt+1, Xt)] (B.6)

whereas by recalling the definition of the residuals (ADAMIR) the above can be rewritten as follows:

f(Xt+1) ≤ f(Xt)− γtδ2t + Lγ2t δ
2
t = f(Xt)−

1

2
γtδ

2
t −

1

2
γtδ

2
t + Lγ2t δ

2
t (B.7)

Moreover, by rearranging and factorizing the common term γtδ
2
t we get:

1

2
γtδ

2
t ≤ f(Xt)− f(Xt+1) + γtδ

2
t

[
Lγt −

1

2

]
(B.8)

Now, by combing that
[
Lγt − 1

2

]
≤ 0 for γt ≤ 1/2L and the fact that γt converges to 0 by

assumption, we get that there exists some t0 ∈ N such that:[
Lγt −

1

2

]
≤ 0 for all t > t0 (B.9)

Hence, by telescoping for t = 1, 2, . . . , T for sufficiently large T , we have

1

2

T∑
t=1

γtδ
2
t ≤ f(X1)− f(XT+1) +

t0∑
t=1

[
Lγt −

1

2

]
γtδ

2
t

≤ f(X1)−min
x∈X

f(x) +

t0∑
t=1

[
Lγt −

1

2

]
γtδ

2
t (B.10)

Now, by applying the (LHS) of Lemma D.4 we get:

1

2

[
1

γT
− δ0

]
≤ 1

2

√√√√δ20 +

T−1∑
t=1

γtδ2t ≤
T∑

t=1

γtδ
2
t ≤ f(X1)−min

x∈X
f(x) +

t0∑
t=1

[
Lγt −

1

2

]
γtδ

2
t

(B.11)
Now, since γt → 0 we get that 1/γt → +∞ and hence the above yields that +∞ ≤ f(X1) −
minx∈X f(x) +

∑t0
t=1

[
L
K γt −

1
2

]
γtδ

2
t ; a contradiction. Therefore we get that:

lim
t→+∞

γt = γ∞ > 0 (B.12)
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Moreover, by recalling the definition of the adaptive step-size policy γt:

γt =
1√

δ20 +
∑t−1

s=1 δ
2
s

(B.13)

whereas after rearranging we obtain:
t−1∑
s=1

δ2s =
1

γ2t
− δ20 (B.14)

and therefore by taking limit on both sides we obtain:
+∞∑
t=1

δ2t = lim
t→+∞

t−1∑
s=1

δ2s = lim
t→+∞

1

γ2t
− δ20 =

1

γ2∞
− δ20 < +∞ (B.15)

and hence the result follows. □

We proceed by providing an upper bound in terms of the Bregman divergence for the distance of the
algorithm’s iterates from a solution of (Opt):
Lemma B.1. For all x∗ ∈ X ∗, the iterates of Algorithm 1 satisfy the bound

D(x∗, Xt) ≤ D(x∗, X1) +

T∑
s=1

γ2sδ
2
s . (B.16)

Proof. By the second part of Proposition A.1, we have:

D(x∗, Xs+1) ≤ D(x∗, Xs)− γt⟨gt, Xt − x∗⟩+D(Xs, Xs+1)

≤ D(x∗, Xs) +D(Xs, Xs+1)

≤ D(x∗, Xs) +D(Xs+1, Xs) +D(Xs, Xs+1) (B.17)

Thus, by telescoping through s = 1, 2, . . . , t, we obtain:

D(x∗, Xt) ≤ D(x∗, X1) +

t∑
s=1

[D(Xs, Xs+1) +D(Xs+1, Xs)]

≤ D(x∗, X1) +

T∑
s=1

[D(Xs, Xs+1) +D(Xs+1, Xs)]

= D(x∗, X1) +

T∑
s=1

γ2sδ
2
s (B.18)

where the last equality follows from the definition (7) of δt. □

With these intermediate results at our disposal, we are finally in a position to prove the core estimate
(11) for ADAMIR:

Proof of Proposition 3. By the convexity of f , the definition of the Bregman proximal step in Algo-
rithm 1 and Proposition A.1, we have:

f(Xt)− f(x∗) ≤ ⟨gt, Xt − x∗⟩ ≤
1

γt
⟨∇h(Xt)−∇h(Xt+1), Xt − x∗⟩. (B.19)

Hence, by applying again the three-point identity (Lemma A.2), we obtain:

f(Xt)− f(x∗) ≤
D(x∗, Xt)−D(x∗, Xt+1)

γt
+
D(Xt, Xt+1)

γt

≤ D(x∗, Xt)−D(x∗, Xt+1)

γt
+
D(Xt, Xt+1) +D(Xt+1, Xt)

γt

=
D(x∗, Xt)−D(x∗, Xt+1)

γt
+ γtδ

2
t (B.20)
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where the last equality follows readily from the definition (7) of δt. Therefore, by summing through
t = 1, 2, . . . , T , we obtain:

T∑
t=1

[f(Xt)− f(x∗)] ≤
D(x∗, X1)

γ1
+

T∑
t=2

[
1

γt
− 1

γt−1

]
D(x∗, Xt) +

T∑
t=1

γtδ
2
t . (B.21)

Now, by Lemma B.1, the second term on the right-hand side (RHS) of (B.21) becomes:
T∑

t=2

[
1

γt
− 1

γt−1

]
D(x∗, Xt) ≤

T∑
t=2

[
1

γt
− 1

γt−1

](
D(x∗, X1) +

T∑
s=1

γ2sδ
2
s

)

≤ D(x∗, X1)

γT
− D(x∗, X1)

γ1
+

T∑
s=1

γ2sδ
2
s ·

T∑
t=1

[
1

γt
− 1

γt−1

]

≤ D(x∗, X1)

γT
− D(x∗, X1)

γ1
+

∑T
t=1 γ

2
t δ

2
t

γT
. (B.22)

Hence, by combining the above with (B.21), our claim follows. □

With the regret bound (11) at our disposal, we may finally proceed with the proof of our main result
concerning the universality of ADAMIR, i.e., Theorem 1 :

Proof of Theorem 1. Repeating the statement of Proposition 3, the iterate sequence Xt generated by
ADAMIR enjoys the bound:

T∑
t=1

[f(Xt)− f(x∗)] ≤
D(x∗, X1)

γT
+

∑T
t=1 γ

2
t δ

2
t

γT
+

T∑
t=1

γtδ
2
t (11)

We now proceed to bound each term on the RHS of (11) from above. We consider three separate
cases, first only under (RC),then under (RS) and finally when (RC) and (RS) holds.

Case 1. We begin with problems satisfying (RC).

• For the first term, Lemma 1 gives:

D(x∗, X1)

γT
= D(x∗, X1)

√√√√T−1∑
t=0

δ2t ≤ D(x∗, X1)
√
2G2T . (B.23)

• For the second term, we have:
T∑

t=1

γ2t δ
2
t ≤

T∑
t=1

δ2t∑t−1
s=0 δ

2
s

=

T∑
t=1

δ2t

δ20 +
∑t−1

s=1 δ
2
s

. (B.24)

Hence, by Lemmas 1 and D.5, we get:
T∑

t=1

γ2t δ
2
t ≤ 2 +

8G2

δ20
+ 2 log

(
1 +

T−1∑
t=1

δ2t
δ20

)

= 2 +
8G2

δ20
+ 2 log

(
T−1∑
t=0

δ2t
δ20

)

≤ 2 +
8G2

δ20
+ 2 log

2G2T

δ20
. (B.25)

• Finally, for the third term, we get:
T∑

t=1

γtδ
2
t =

T∑
t=1

δ2t√∑t−1
s=0 δ

2
t

=

T∑
t=1

δ2t√
δ20 +

∑t−1
s=1 δ

2
t

. (B.26)
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Hence, Lemmas 1 and D.4 again yield:

T∑
t=1

γtδ
2
t ≤

4G2

δ0
+ 3
√
2G+ 3

√√√√δ20 +

T−1∑
t=1

δ2t

≤ 4G2

δ0
+ 3
√
2G+ 3

√√√√T−1∑
t=0

δ2t

≤ 4G2

δ0
+ 3
√
2G+ 3

√
2G2T . (B.27)

The claim of Theorem 1 then follows by combining the above within the regret bound (11).

Case 2. We now turn to problems satisfying (RS). Recalling Lemma 2, we shall revisit the terms of
(11). In particular, we have:

• For the first term, we have:

D(x∗, X1)

γT
= D(x∗, X1)

√√√√T−1∑
t=0

δ2t ≤
D(x∗, X1)

γ∞
(B.28)

• For the second term, we have:
T∑

t=1

γ2t δ
2
t ≤

1

δ20

T∑
t=1

δ2t ≤
1

δ20γ
2
∞
− 1 (B.29)

• Finally, for the third term, we get:
T∑

t=1

γtδ
2
t ≤

1

δ0

T∑
t=1

δ2t ≤
1

δ0γ2∞
− δ0 (B.30)

Combining all the above, the result follows.

Case 3. Finally, we consider objectives where (RC) and (RS) hold simultaneously. Now, by working
in the same spirit as in the proof of Lemma 2 we get:

1

2
γtδ

2
t ≤ f(Xt)− f(Xt+1) + γtδ

2
t

[
Lγt −

1

2

]
(B.31)

which after telescoping t = 1, . . . , T it becomes:

1

2

T∑
t=1

γtδ
2
t ≤ f(X1)−min

x∈X
f(x) +

T∑
t=1

γtδ
2
t

[
Lγt −

1

2

]
(B.32)

Now, after denoting:

t0 = max{t ∈ N : 1 ≤ t ≤ T such that γt ≥
1

2L
} (B.33)

and decomposing the sum we get:

1

2

T∑
t=1

γtδ
2
t ≤ f(X1)−min

x∈X
f(x) +

t0∑
t=1

γtδ
2
t

[
Lγt −

1

2

]
+

T∑
t=t0+1

γtδ
2
t

[
Lγt −

1

2

]

≤ f(X1)−min
x∈X

f(x) +

t0∑
t=1

γtδ
2
t

[
Lγt −

1

2

]

≤ f(X1)−min
x∈X

f(x) + L

t0∑
t=1

γ2t δ
2
t (B.34)
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On the other hand, by applying Lemma D.5, we have:

t0∑
t=1

γ2t δ
2
t ≤ 2 +

8G2

δ20
+ 2 log

(
1 +

t0−1∑
t=1

δ2t
δ20

)

= 2 +
8G2

δ20
+ 2 log

(
1

δ20

[
δ20 +

t0−1∑
t=1

δ2t

])

= 2 +
8G2

δ20
+ 2 log

1

δ20γ
2
t0

(B.35)

and by definition of t0 we get:
t0∑
t=1

γ2t δ
2
t ≤ 2 +

8G2

δ20
+ 2 log

4L2

δ20
. (B.36)

which yields:
T∑

t=1

γtδ
2
t ≤ f(X1)−min

x∈X
f(x) + L

[
2 +

8G2

δ20
+ 2 log

4L2

δ20

]
(B.37)

The result then follows by plugging in the above bounds in (11). □

B.2. The stochastic case. In this appendix, we shall provide the stochastic part of our analysis. We
start by providing an intermediate lemma concerning the class of (RC) objectives.
Lemma B.2. Assume that f satisfies (RC) and Xt are the ADAMIR iterates run with feedback of the
form (SFO). Then, the sequence of the residuals δ2t is bounded with probability 1. In particular, we
have:

δ2t ≤ G̃2 =

[
√
2G+

√
2

K
σ

]2
for all t = 1, 2, . . . almost surely (B.38)

Proof. By working in the same spirit, we get that:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γt⟨gt, Xt −Xt+1⟩ (B.39)

and by recalling that:
gt = ∇f(Xt) + Ut (B.40)

we get with probability 1:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γt [⟨∇f(Xt), Xt −Xt+1⟩+ ⟨Ut, Xt −Xt+1⟩]

≤ γt
[
G
√
2D(Xt+1, Xt) + ∥Ut∥∗∥Xt −Xt+1∥

]
(B.41)

with the second inequality being obtained by (RC). Now, by invoking the strong convexity assumption
of K, the (LHS) of the above becomes:

γt

[
G
√

2D(Xt+1, Xt) + ∥Ut∥∗∥Xt −Xt+1∥
]
≤ γt[G

√
2(D(Xt+1, Xt) +D(Xt, Xt+1))

+ ∥Ut∥∗

√
2

K
(D(Xt+1, Xt) +D(Xt, Xt+1))] (B.42)

which in turn yields:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γt
√
D(Xt+1, Xt) +D(Xt, Xt+1)

[
√
2G+

√
2

K
∥Ut∥∗

]
(B.43)

Therefore, we get:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γ2t

[
√
2G+

√
2

K
∥Ut∥∗

]2
(B.44)
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and by stochastic first-order oracle (SFO) we get with probability 1:

D(Xt, Xt+1) +D(Xt+1, Xt) ≤ γ2t

[
√
2G+

√
2

K
σ

]2
(B.45)

or equivalently,

δ2t =
D(Xt, Xt+1) +D(Xt+1, Xt)

γ2t
≤

[
√
2G+

√
2

K
σ

]2
(B.46)

and the result follows. □

Finally, we provide the proof of the first theorem for the stochastic setting.

Proof of Theorem 3. By the second part of Proposition A.1, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt⟨gt, Xt − x∗⟩+D(Xt, Xt+1)

≤ D(x∗, Xt)− γt⟨gt, Xt − x∗⟩+D(Xt+1, Xt) +D(Xt, Xt+1)

≤ D(x∗, Xt)− γt⟨gt, Xt − x∗⟩+ γ2t δ
2
t (B.47)

which yields after rearranging and summing t = 1, . . . , T :
T∑

t=1

γt⟨gt, Xt − x∗⟩ ≤ D(x∗, X1) +

T∑
t=1

γ2t δ
2
t (B.48)

and by recalling that gt = ∇f(Xt) + Ut and taking expectations on both sides we get:

E

[
T∑

t=1

γt⟨∇f(Xt), Xt − x∗⟩

]
≤ D(x∗, X1)+E

[
T∑

t=1

γt⟨Ut, Xt − x∗⟩

]
+E

[
T∑

t=1

γ2t δ
2
t

]
(B.49)

First, we shall the (LHS) from below. In particular, we have by convexity:

E

[
T∑

t=1

γt⟨∇f(Xt), Xt − x∗⟩

]
≥ E

[
T∑

t=1

γt(f(Xt)− f(x∗))

]
(B.50)

Moreover, by denoting G̃2 =
[√

2G+
√

2
Kσ
]2

we have with probability 1:

T∑
t=1

γt(f(Xt)− f(x∗) =
T∑

t=1

1√
δ20 +

∑t−1
s=1 δ

2
s

(f(Xt)− f(x∗)

≥
T∑

t=1

1√
δ20 + G̃2t

(f(Xt)− f(x∗))

≥
T∑

t=1

1√
(δ20 + G̃2)t

(f(Xt)− f(x∗)

≥ 1√
(δ20 + G̃2)T

T∑
t=1

(f(Xt)− f(x∗) (B.51)

with the second inequality being obtained by Lemma B.2. Hence, we get:

E

[
T∑

t=1

γt⟨∇f(Xt), Xt − x∗⟩

]
≥ 1√

(δ20 + G̃2)T
E

[
T∑

t=1

(f(Xt)− f(x∗))

]
(B.52)

We now turn our attention towards to the (LHS). In particular, we shall bound each term individually
from above.
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• For the term E
[∑T

t=1 γt⟨Ut, Xt − x∗⟩
]
:

E

[
T∑

t=1

γt⟨Ut, Xt − x∗⟩

]
=

T∑
t=1

E [γt⟨Ut, Xt − x∗⟩]

=

T∑
t=1

E [E [γt⟨Ut, Xt − x∗⟩|Ft]]

=

T∑
t=1

E [γt E [⟨Ut, Xt − x∗⟩|Ft]]

=

T∑
t=1

E [γt⟨E[Ut|Ft], Xt − x∗⟩] = 0 (B.53)

with the third and the fourth equality being obtained by the fact that γt and Xt are Ft−
measurable.

• For the term E
[∑T

t=1 γ
2
t δ

2
t

]
: By applying Lemma D.5 and Lemma B.2, we have with

probability 1:
T∑

t=1

γ2t δ
2
t ≤ 2 +

4G̃2

δ20
+ 2 log(1 +

T∑
t=1

δ2t
δ20

) ≤ 2 +
4G̃2

δ20
+ 2 log(1 +

G̃2

Kδ20
T ) (B.54)

Therefore we get:

E

[
T∑

t=1

γ2t δ
2
t

]
≤ 2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T ) (B.55)

Thus, combining all the above we obtain:

1√
(δ20 + G̃2)T

E

[
T∑

t=1

(f(Xt)− f(x∗))

]
≤ D(x∗, X1) + 2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T ) (B.56)

and hence,

E

[
T∑

t=1

(f(Xt)− f(x∗))

]
≤
√
(δ20 + G̃2)T

[
D(x∗, X1) + 2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
)T )

]
(B.57)

The result follows by dividing both sides by T . □

Proof of Theorem 4. By Proposition 1, we have:

f(Xt+1) ≤ f(Xt) + ⟨∇f(Xt), Xt+1 −Xt⟩+ LD(Xt+1, Xt)

≤ f(Xt) + ⟨∇f(Xt), Xt+1 −Xt⟩+ L [D(Xt+1, Xt) +D(Xt, Xt+1)]

= f(Xt) + ⟨gt, Xt+1 −Xt⟩+ ⟨Ut, Xt −Xt+1⟩+ Lγ2t δ
2
t

≤ f(Xt)−
1

γt
[D(Xt+1, Xt) +D(Xt, Xt+1)] + ∥Ut∥∗∥Xt −Xt+1∥+ Lγ2t δ

2
t

= f(Xt)− γtδ2t + ∥Ut∥∗∥Xt −Xt+1∥+ Lγ2t δ
2
t (B.58)

Now, since h is K− strongly convex we have that:

∥Xt −Xt+1∥ ≤
√

2

K
[D(Xt+1, Xt) +D(Xt, Xt+1)] =

√
2

K
γtδt (B.59)

and using the fact that the noise ∥Ut∥∗ ≤ σ almost surely, we have:

f(Xt+1) ≤ f(Xt)− γtδ2t +
√

2

K
γtδ

2
t + Lγ2t δ

2
t (B.60)
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Therefore, after rearranging and telescoping we get:

T∑
t=1

γtδ
2
t ≤ 2

[
f(X1)−min

x∈X
f(x) +

T∑
t=1

γtδ
2
t (Lγt −

1

2
) + σ

√
2

K

T∑
t=1

γtδt

]
(B.61)

Now, let us bound each term of the (RHS) of the above individually:

• For the term
∑T

t=1 γtδ
2
t (Lγt − 1

2 ) we first set:

t0 = max{1 ≤ t ≤ T : γt ≥
1

2L
} (B.62)

Then, by decomposing the said sum we get:

T∑
t=1

γtδ
2
t (Lγt −

1

2
) =

t0∑
t=1

γtδ
2
t (Lγt −

1

2
) +

T∑
t=t0+1

γtδ
2
t (Lγt −

1

2
)

≤
t0∑
t=1

γtδ
2
t (Lγt −

1

2
)

≤ L
t0∑
t=1

γ2t δ
2
t (B.63)

with the second inequality being obtained by the definition of t0. Now, due to the fact that
δ2t ≤ G̃2 almost surely (by invoking Lemma B.2) we have:

L

t0∑
t=1

γ2t δ
2
t = L

t0∑
t=1

δ2t

δ20 +
∑t−1

s=1 δ
2
s

≤ L

[
2 +

4G̃2

δ20
+ 2 log(1 +

1

δ20

t0−1∑
t=1

δ2t )

]

≤ L

[
2 +

4G̃2

δ20
+ 2 log

1

δ20
(δ20 +

t0−1∑
t=1

δ2t )

]

≤ L

[
2 +

4G̃2

δ20
+ 2 log

1

δ20γ
2
t0

]
(B.64)

Therefore, by the definition of t0 we finally get with probability 1:

T∑
t=1

γtδ
2
t (Lγt −

1

2
) ≤ L

[
2 +

4G̃2

δ20
+ 2 log

4L2

δ20

]
(B.65)

• For the term σ
√

2
K

∑T
t=1 γtδt we have:

σ

√
2

K

T∑
t=1

γtδt = σ

√
2

K

T∑
t=1

√
γ2t δ

2
t ≤ σ

√
2

K

√
T

√√√√ T∑
t=1

γ2t δ
2
t (B.66)

Therefore, by working in the same spirit as above we get:

σ

√
2

K

T∑
t=1

γtδt ≤ σ
√

2

K

√√√√2 +
4G̃2

δ20
+ 2 log(1 +

1

δ20

T∑
t=1

δ2t )

≤ σ
√

2

K

√
T

√
2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T ) (B.67)
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On the other hand, we may the (LHS) from below as follows:
T∑

t=1

γtδ
2
t ≥ γT

T∑
t=1

δ2t ≥ γT

[
δ20 − δ20 +

T∑
t=1

δ2t

]
=

γT
γ2T+1

− δ20γT =
1

γT
− δ20γT (B.68)

So, combining the above:

1

γT
− δ20γT ≤ 2(f(X1)−min

x∈X
f(x) + L

[
2 +

4G̃2

δ20
+ 2 log

4L2

δ20

]

+ σ

√
2

K

√
T

√
2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T )) (B.69)

which finally yields with probability 1:

1

γT
≤ δ0+2(f(X1)−min

x∈X
f(x)+L

[
2 +

4G̃2

δ20
+ 2 log

4L2

δ20

]
+σ

√
2

K

√
T

√
2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T ))

(B.70)
and hence with probability 1:

γT ≥

δ0 + 2(f(X1)−min
x∈X

f(x) + L

[
2 +

4G̃2

δ20
+ 2 log

4L2

δ20

]
+ σ

√
2

K

√
T

√
2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T ))

−1

□
Therefore, by setting:

A = δ0 + 2(f(X1)−min
x∈X

f(x) + L

[
2 +

4G̃2

δ20
+ 2 log

4L2

δ20

]
(B.71)

and

B = σ

√
2

K

√
2 +

4G̃2

δ20
+ 2 log(1 +

G̃2

δ20
T )) (B.72)

we get that:

E

[
T∑

t=1

(f(Xt)− f(x∗))γT

]
≥
(
A+B

√
T
)−1

E

[
T∑

t=1

(f(Xt)− f(x∗))

]
(B.73)

Moreover, working in the same spirit as in Theorem 3 we have:(
A+B

√
T
)−1

E

[
T∑

t=1

(f(Xt)− f(x∗))

]
≤ E

[
T∑

t=1

(f(Xt)− f(x∗))γT

]
≤

(
D1 + E

[
T∑

t=1

γ2t δ
2
t

])
(B.74)

which in turn yields:

E

[
T∑

t=1

(f(Xt)− f(x∗))

]
≤

(
D1 + E

[
T∑

t=1

γ2t δ
2
t

])(
A+B

√
T
)

(B.75)

The result then follows by dividing both sides by T and by the fact that E
[∑T

t=1 γ
2
t δ

2
t

]
= O(log T ).

C Last iterate Convergence

Throughout this section we assume that f satisfies the following weak-secant inequality of the form:

inf{⟨∇f(x), x− x∗⟩ : x∗ ∈ argmin f, x ∈ K} > 0 (SI)

for every closed subset K of X that is separated by neighborhoods from argmin f . More precisely,
our proof is divided in two parts. To begin with, we first show that under (RC) or (RS) the iterates
ofADAMIR possess a convergent subsequence towards the solution set X ∗. Formally stated, we have
the following proposition:
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Proposition C.1. Assume that f is (RC) or (RS) and Xt are the iterates generated byADAMIR.
Then, there exists a subsequence Xkt which converges to the solution set X ∗.

Proof. Assume to the contrary that the sequence Xt generated byADAMIR admits no limit points
in X ∗ = argmin f . Then, there exists a (non-empty) closed set K ⊆ X which is separated by
neighbourhoods from argmin f and is such that Xt ∈ C for all sufficiently large t. Then, by
relabelling Xt if necessary, we can assume without loss of generality that Xt ∈ K for all t ∈ N. Thus,
following the spirit of Lemma B.1, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+D(Xt, Xt+1)

≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ [D(Xt, Xt+1) +D(Xt+1, Xt)]

= D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ γ2t δ
2
t (C.1)

with the last equality being obtained by the definition of (7). Now, applying (SI) we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γtδ(K) + γ2tZ
2
t (C.2)

with δ(K) = inf{⟨∇f(x), x − x∗⟩ : x∗ ∈ argmin f, x ∈ K} > 0. Hence, by telescoping
t = 1, . . . , T , factorizing and setting βt =

∑T
t=1 γt we have:

D(x∗, XT+1) ≤ D(x∗, X1)− βt

[
δ(K)−

∑T
t=1 γ

2
tZ

2
t

βt

]
(C.3)

Now, (C.3) will be the crucial lemma that will walk throughout our analysis. In particular, we will
treat the different regularity conditions of (RC) and (RS) seperately.

Case 1: The (RC) case. Assume that f satisfies (RC). By examining the asymptotic behaviour of
each term individually, we obtain:

• For the term βT =
∑T

t=1 γt, we have:

βT =

T∑
t=1

1√
δ20 +

∑t−1
j=1 δ

2
t

≥
T∑

t=1

1√
δ20 + 2G2t

(C.4)

which yields that βT → +∞ and more precisely βT = Ω(
√
T ).

• For the term
∑T

t=1 γ2
t δ

2
t

βT
, for the numerator we have:

T∑
t=1

γ2t δ
2
t =

T∑
t=1

δ2t

δ20 +
∑t−1

j=1 δ
2
j /δ

2
0

≤ 2 + 8G2/δ20 + 2 log(1 +

T−1∑
t=1

δ2t /δ
2
0)

≤ 2 + 8G2/δ20 + 2 log(1 + 2G2T/δ20) (C.5)

which yields that
∑T

t=1 γ
2
t δ

2
t = O(log T ), and combined with the fact that βt = Ω(

√
T )

we readily get: ∑T
t=1 γ

2
t δ

2
t

βT
→ 0 (C.6)

So, combining all the above and letting T → +∞ in (C.3), we get that D(x∗, XT+1) → −∞, a
contradiction. Therefore, the result under (RC) follows.
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Case 2: The (RS) case. On the other hand, assume that f satisfies (RS). Recalling Lemma 2 and
the fact that γt is decreasing we have:

T∑
t=1

γtδ
2
t ≤

+∞∑
t=1

δ2t < +∞ (C.7)

which by working as in Lemma 2 also yields:

lim
t→+∞

γt = γ∞ > 0 (C.8)

Additionally, since γt is decreasing and bounded we also have that γ∞ = inft γt. Now, we shall
re-examine the terms of (C.3). More precisely, we have:

• For βT we have:

βT =

T∑
t=1

γt ≥ γ∞
T∑

t=1

1 = γ∞T (C.9)

which in turn yields that βT → +∞ and more precisely βT = Ω(T ).

• For the term
∑T

t=1 γ2
t δ

2
t

βT
, for the numerator we have by the fact that γt ≤ 1/δ0 and Lemma 2:

T∑
t=1

γtδ
2
t ≤

1

δ0

T∑
t=1

δ2t < +∞ (C.10)

which yields that
∑T

t=1 γ
2
t δ

2
t = O(1), which combined with (C.9) gives that:∑T

t=1 γ
2
t δ

2
t

βT
→ 0 (C.11)

so, again combing the above and letting T → +∞ in (C.3), we get that D(x∗, XT+1) → −∞, a
contradiction. Therefore, the result follows also under (RS). □

Having all this at hand, we are finally in the position to prove the convergence of the actual iterates of
the method. For that we will need an intermediate lemma that shall allow us to pass from a convergent
subsequence to global convergence (see also [16], [41]).
Lemma C.1. Let χ ∈ (0, 1], (αt)t∈N, (βt)t∈N non-negative sequences and (εt)t∈N ∈ l1(N) such
that t = 1, 2, . . . :

αt+1 ≤ χαt − βt + εt (C.12)

Then, αt converges.

Proof. First, one shows that αt∈N is a bounded sequence. Indeed, one can derive directly that:

αt+1 ≤ χt+1α0 +

t∑
k=0

χt−kεk (C.13)

Hence, (αt)t∈N lies in [0, α0 + ε], with ε =
∑+∞

t=0 εt. Now, one is able to extract a convergent
subsequence (αkt

)t∈N, let say limt→+∞ αkt
= α ∈ [0, α0 + ε] and fix δ > 0. Then, one can find

some t0 such that αkt0
− α < δ

2 and
∑

m>tkt0

εm < δ
2 . That said, we have:

0 ≤ αt ≤ αkt0
+

∑
m>tkt0

εm <
δ

2
+ α+

δ

2
= α+ δ (C.14)

Hence, lim supt αt ≤ lim inft αt + δ. Since, δ is chosen arbitrarily the result follows. □

Proof of Theorem 2. We will divide our proof in two parts by distinguishing the two different regu-
larity cases.
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Case 1: The (RC) case. Given that γt is decreasing and bounded from below we have that its limit
exists, denoted by γ∞ ≥ 0. We shall consider two cases:

1. γ∞ > 0: Following the same reasoning with Lemma 2 we get that:
T∑

t=1

γ2t δ
2
t ≤

+∞∑
t=1

δ2t < +∞ (C.15)

Hence, by recalling the inequality:

D(x∗, Xt+1) ≤ D(x∗, Xt) + γ2t δ
2
t for all x∗ ∈ X ∗ (C.16)

whereas after taking infima on both sides with respect to X ∗, we get:

inf
x∗∈X∗

D(x∗, Xt+1) ≤ inf
x∗∈X∗

D(x∗, Xt) + γ2t δ
2
t (C.17)

and since the sequence γ2t δ
2
t is summable we can directly apply Lemma C.1 which yields that the

sequence infx∗∈X∗ D(x∗, Xt) is convergent. Now, since by Proposition C.1,ADAMIR possesses
a convergent subsequence towards the solution set X ∗ the result follows.

2. γ∞ = 0: Pick some ε > 0 and consider the Bregman zone:

Dε = {x ∈ X : D(X ∗, x) < ε}. (C.18)

Then, it suffices to show that Xt ∈ Dε for all sufficiently large t. In doing so, consider the
inequality:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ γ2t δ
2
t

≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ γ2t
2G2

K
(C.19)

with the second inequality being obtained by Lemma 1. To proceed, assume inductively that
Xt ∈ Dε. By the regularity assumptions of the regularizer h, it follows that there exists a δ−
neighbourhood contained in the closure of Dε/2. So, by the (SI) condition we have:

⟨f(x), x− x∗⟩ ≥ c > 0 for some c ≡ c(ε) > 0 and for all x ∈ Dε \Dε/2 and x∗ ∈ X ∗

(C.20)
We consider two cases:

• Xt ∈ Dε \Dε/2: In. this case, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ γ2t
2G2

K

≤ D(x∗, Xt)− γtc+ γ2t
2G2

K
(C.21)

Thus, provided that γt ≤ cK
2G2 we get that D(x∗, Xt+1) ≤ D(x∗, Xt). Hence, by taking

infima on both sides relative to x∗ ∈ X ∗, we get that D(X ∗, Xt+1) ≤ D(X ∗, Xt) < ε.
• Xt ∈ Dε/2: In this case, we have:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt⟨∇f(Xt), Xt − x∗⟩+ γ2t
2G2

K

≤ D(x∗, Xt) + γ2t
2G2

K
(C.22)

with the second inequality being obtained by the optimality of x∗. Now, provided that
γ2t ≤ εK

4G2 or equivalently γt ≤
√
εK
2G we have:

D(x∗, Xt+1) ≤ D(x∗, Xt) +
ε

2
(C.23)

whereas again by taking infima on both sides we get thatD(X ∗, Xt+1) ≤ D(X ∗, Xt)+
ε
2 <

ε.

Hence, summarizing we have that Xt+1 ∈ Dε whenever Xt ∈ Dε and γt ≤ min{ cK
2G2 ,

√
εK
2G }.

Hence, the result follows by. Proposition C.1 and the fact that γt → 0.
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Case 2: The (RS) case. Recall that we have the following inequality,

D(x∗, Xt+1) ≤ D(x∗, Xt) + γ2t δ
2
t for all x∗ ∈ X ∗ (C.24)

whereas taking infima on both sides relative to X ∗ we readily get:

inf
x∗∈X∗

D(x∗, Xt+1) ≤ inf
x∗∈X∗

D(x∗, Xt) + γ2t δ
2
t (C.25)

Now, by recalling that by Lemma 2, we have γ2t δ
2
t is summable. we can apply directly Lemma C.1.

Thus, we have the sequence infx∗∈X∗ D(x∗, Xt) is convergent. Moreover, Proposition C.1 guarantees
that there a subsequence of infx∗∈X∗∥X−x∗∥2 that converges to 0. We obtain that there exists also a
subsequence of infx∗∈X∗ D(x∗, Xt) that converges to 0 and since infx∗∈X∗ D(x∗, Xt) is convergent,
we readily get that:

inf
x∗∈X∗

∥x∗ −Xt∥2 ≤ inf
x∗∈X∗

D(x∗, Xt)→ 0 (C.26)

and the proof is complete. □

D Lemmas on numerical sequences

In this appendix, we provide some necessary inequalities on numerical sequences that we require for
the convergence rate analysis of the previous sections. Most of the lemmas presented below already
exist in the literature, and go as far back as Auer et al. [4] and McMahan and Streeter [30]; when
appropriate, we note next to each lemma the references with the statement closest to the precise
version we are using in our analysis. These lemmas can also be proved by the general methodology
outlined in Gaillard et al. [19, Lem. 14], so we only provide a proof for two ancillary results that
would otherwise require some more menial bookkeeping.

Lemma D.1 (30, 26). For all non-negative numbers α1, . . . αt, the following inequality holds:√√√√ T∑
t=1

αt ≤
T∑

t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt (D.1)

Lemma D.2 (26). For all non-negative numbers α1, . . . αt, the following inequality holds:

T∑
t=1

αt

1 +
∑t

i=1 αi

≤ 1 + log(1 +

T∑
t=1

αt) (D.2)

Lemma D.3. Let b1, . . . , bt a sequence of non-negative numbers with b1 > 0. Then, the following
inequality holds:

T∑
t=1

bt∑t
i=1 bi

≤ 2 + log

(∑T
t=1 bt
b1

)
(D.3)

Proof. It is directly obtained by applying Lemma D.2 for the sequence αt = bt/b1. □

The following set of inequalities are due to [6]. For completeness, we provide a sketch of their proof.

Lemma D.4 (6). For all non-negative numbers: α1, . . . αt ∈ [0, α], α0 ≥ 0, the following inequality
holds:√√√√α0 +

T−1∑
t=1

αi −
√
α0 ≤

T∑
t=1

αt√
α0 +

∑t−1
i=1 αj

≤ 2α
√
α0

+ 3
√
α+ 3

√√√√α0 +

T−1∑
t=1

αt (D.4)

Lemma D.5. For all non-negative numbers: α1, . . . αt ∈ [0, α], α0 ≥ 0, we have:

T∑
t=1

αt

α0 +
∑t−1

i=1 αi

≤ 2 +
4α

α0
+ 2 log

(
1 +

T−1∑
t=1

αt

α0

)
(D.5)
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Proof. Let us denote
T0 = min

{
t ∈ [T ] :

∑t−1
j=1 αj ≥ α

}
(D.6)

Then, dividing the sum by T0, we get:
T∑

t=1

αt

α0 +
∑t−1

i=1 αi

≤
T0−1∑
t=1

αt

α0 +
∑t−1

i=1 αi

+

T∑
t=T0

αt

α0 +
∑t−1

i=1 αi

≤ 1

α0

T0−1∑
t=1

αt +

T∑
t=T0

αt

1/2α0 + 1/2α+ 1/2
∑t−1

j=1 αj

≤ α

α0
+ 2

T∑
t=T0

αi/α0

1 +
∑t

j=T0
αj/α0

≤ 2α

α0
+ 2 + 2 log

(
1 +

T∑
t=T0

αi/α0

)

≤ 2α

α0
+ 2 + 2 log

(
1 +

T∑
t=1

αi/α0

)
(D.7)

where we used the fact that
∑T0−2

j=1 αj ≤ α as well as for all t ≥ T0,
∑t−1

j=1 αj ≥ α (both follow
from the definition of T0) and Lemma D.2. □

E Fisher markets: A case study

E.1. The Fisher market model. In this appendix, we provide some more details on the Fisher
market model discussed in Section 7.

To begin, if the marginal utility of the i-th player per unit of the k-th good is θik, the agent’s total
utility will be

ui(xi;x−i) =
∑
k∈M

θikwik =
∑
k∈M

θikxik∑
j∈N xjk

, (E.1)

where xi = (xik)k∈M denotes the bid profile of the i-th player, and we use the shorthand (xi;x−i) =
(x1, . . . , xi, . . . , xn). A Fisher equilibrium is then reached when the players’ prices bids follow a
profile x∗ = (x∗1, . . . , x

∗
n) such that

ui(x
∗
i ;x

∗
−i) ≥ ui(xi;x∗−i) (Eq)

for all i ∈ N and all xi = (xik)k∈M such that xik ≥ 0 and
∑

k∈M xik = 1.8

As was observed by Shmyrev [43], the equilibrium problem (Eq) can be rewritten equivalently as

minimize F (x; θ) ≡
∑
k∈M

pk log pk −
∑
i∈N

∑
k∈M

xik log θik

subject to pk =
∑
i∈N

xik,
∑
k∈M

xik = 1, and xik ≥ 0 for all k ∈M, i ∈ N ,
(Opt)

with the standard continuity convention 0 log 0 = 0. In the above, the agents’ marginal utilities are
implicitly assumed fixed throughout the duration of the game. On the other hand, if these utilities
fluctuate stochastically over time, the corresponding reformulation instead involves the mean objective

f(x) = E[F (x;ω)]. (E.2)

Because of the logarithmic terms involved, F (and, a fortiori, f ) cannot be Lipschitz continuous
or smooth in the standard sense. However, as was shown by Birnbaum et al. [10], the problem
satisfies (RS) over X = {x ∈ Rnm

+ :
∑

k∈M xik = 1} relative to the negative entropy function
h(x) =

∑
ik xik log xik. As a result, mirror descent methods based on this Bregman function are

natural candidates for solving (15).
8It is trivial to see that, in this market problem, all users would saturate their budget constraints at equilibrium,

i.e.,
∑

k∈M xik = 1 for all i ∈ N .
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(b) Ergodic convergence

Figure 2: The convergence speed of (EGD), (PR) and ADAMIR in a stationary Fisher market.
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(a) Last-iterate convergence
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(b) Ergodic convergence

Figure 3: The convergence speed of (EGD), (PR) and ADAMIR in a stochastic Fisher market, with marginal
utilities drawn i.i.d. at each epoch.

In more detail, following standard arguments [8], the general mirror descent template (MD) relative
to h can be written as

x+ik =
xik exp(−γgik)∑
l∈M xil exp(−γgil)

(E.3)

where the (stochastic) gradient vector g ≡ g(x; θ) is given in components by

gik = 1 + log pk − log θik. (E.4)

Explicitly, this leads to the entropic gradient descent algorithm

Xik,t+1 =
Xik,t(θik/pk)

γt∑
l∈MXil,t(θil/pl)γt

(EGD)

In particular, as a special case, the choice γ = 1 gives the proportional response (PR) algorithm of
Wu and Zhang [47], namely

Xik,t+1 =
θikwik,t∑
l∈M θilwil,t

, (PR)

where wik,t = Xik,t

/∑
j∈N Xjk,t. As far as we aware, the PR algorithm is considered to be the

most efficient method for solving deterministic Fisher equilibrium problems [10].

E.2. Experimental validation and methodology. For validation purposes, we ran a series of
numerical experiments on a synthetic Fisher market model with n = 50 players sharing m = 5 goods,
and utilities drawn uniformly at random from the interval [2, 8]. For stationary markets, the players’
marginal utilities were drawn at the outset of the game and were kept fixed throughout; for stochastic
models, the parameters were redrawn at each stage around the mean value of the stationary model
(for consistency of comparisons). All experiments were run on a MacBook Pro with a 6-Core Intel i7
CPU clocking in at 2.6GHZ and 16 GB of DDR4 RAM at 2667 MHz.
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Figure 4: Statistics for the convergence speed of (EGD), (PR) and ADAMIR in a stochastic Fisher market, with
marginal utilities drawn i.i.d. at each epoch. The marked lines are the observed means from S = 50 realizations,
whereas the shaded areas represent a 95% confidence interval.

In each regime, we tested three algorithms, all initialized at the barycenter of X : a) an untuned
version of (EGD); b) the proportional response algorithm (PR); and c) ADAMIR. For stationary
markets, we ran the untuned version of (EGD) with a step-size of γ = .1; (PR) was ran “as is”, and
ADAMIR was run with δ0 determined by drawing a second initial condition from X . In the stochastic
case, following the theory of Lu [28] and Antonakopoulos et al. [2], the updates of (EGD) and (PR)
were modulated by a

√
t factor to maintain convergence; by contrast, ADAMIR was run unchanged to

test its adaptivity properties.

The results are reported in Figs. 2–4. For completeness, we plot the evolution of each method in
terms of values of f , both for the “last iterate” Xt and the “ergodic average” X̄t. The results for
the deterministic case are presented in Fig. 2. For stochastic market models, we present a sample
realization in Fig. 3, and a statistical study over S = 50 sample realizations in Fig. 4. In all cases,
ADAMIR outperforms both (EGD) and (PR), in terms of both last-iterate and time-average guarantees.

An interesting observation is that each method’s last iterate exhibits faster convergence than its
time-average, and the convergence speed of the methods’ time-averaged trajectories is faster than
our worst-case predictions. This is due to the specific properties of the Fisher market model under
consideration: more often than not, players tend to allocate all of their budget to a single good, so
almost all of the problem’s inequality constraints are saturated at equilibrium. Geometrically, this
means that the problem’s solution lies in a low-dimensional face of X , which is identified at a very
fast rate, hence the observed accelerated rate of convergence. However, this is a specificity of the
market model under consideration and should not be extrapolated to other convex problems – or other
market equilibrium models to boot.
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