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A Theoretical Analysis

A.1 Functional Convergence Rate

We provide Lemma 2 and a quick proof sketch as background for readers who are not familiar with
the neural tangent kernel literature.
Lemma 2. When training an infinite width neural network via gradient flow on the squared error,
the training residual at time t is:

f✓t(x) � y = e
�⌘Kt(f✓0(x) � y) (11)

where f✓t(x) is the column vector of model predictions for all xi, y is the column vector of stacked
training labels, ⌘ is the multiplier for gradient flow, and K is the NTK kernel matrix with Kij =
hr✓f✓0(xi),r✓f✓0(xj)i.

Proof. The squared error L(✓, x) = kf✓(x) � yk22 has gradient:

r✓L(✓, x) = r✓f✓(x)
>(f✓(x) � y) (12)

Since we train with gradient flow, the parameters change at rate:

d✓t

dt
= �⌘r✓tL(✓t, x) (13)

= �⌘r✓tf✓t(x)
>(f✓t(x) � y) (14)

By the chain rule,

df✓t(x)

dt
=

df✓t(x)

d✓t

d✓t

dt
(15)

= �⌘r✓tf✓t(x)r✓tf✓t(x)
>(f✓t(x) � y) (16)

= �⌘K✓t(f✓t(x) � y) (17)

where K is the NTK kernel matrix at time t, with entries Kij = hr✓tf✓t(xi),r✓tf✓t(xj)i. Since y

is a constant, and K✓t ⇡ K✓0 , K due to the infinite-width limit, we can write this as:

d(f✓t(x) � y)

dt
= �⌘K(f✓t(x) � y) (18)

This is a well-known differential equation, with closed form solution:

f✓t(x) � y = e
�⌘Kt(f✓0(x) � y) (19)

A.2 Eigenvalues of the NTK matrix and the Discrete Fourier Transform

Lemma 3. A circulant matrix C 2 Rn⇥n with first row (c0, . . . , cn�1) has eigenvectors {x(k)}nk=1
corresponding to the column vectors of the DFT matrix:

x
(k) = (!0k

n ,!
1k
n , . . . ,!

(n�1)k
n )> (20)

where !n = e
2⇡i
n is the nth root of unity. The corresponding eigenvalue is the kth DFT value

�
(k) = DFT (c0, . . . , cn�1)k.

Proof. This is a well-known property of circulant matrices [3]. Nevertheless, we provide a simple
proof here. First, let’s make clear the structure of the circulant matrix C:

C =

2

66664

c0 c1 c2 . . . cn�1

cn�1 c0 c1 . . . cn�2

cn�2 cn�1 c0 . . . cn�3
...

...
...

. . .
...

c1 c2 c3 . . . c0

3

77775
(21)
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Again, we want to show that an eigenvector of C is x(k), the kth column of the DFT matrix F .

x
(k) = (!0k

n ,!
1k
n , . . . ,!

(n�1)k
n )> (22)

where !n = e
2⇡i
n is the nth root of unity. Note that for all positive integers k, !jk

n is periodic in j

with period n. This is because:

!
nk
n = e

2⇡nki
n (23)

= cos(2⇡k) + i sin(2⇡k) (24)
= 1 (25)

Now, let us show that x(k) is an eigenvector of C. Let y = Cx
(k). The ith element of y is then

yi =
n�1X

j=0

cj�i!
jk
n (26)

= !
ik
n

n�1X

j=0

cj�i!
(j�i)k
n (27)

The remaining sum does not depend on i, since cj�i and !
(j�i)k
n are periodic with period n. This

means we can rearrange the indices of the sum to get:

yi = !
ik
n

n�1X

j=0

cj!
jk
n (28)

= x
(k)
i �k (29)

where �k =
Pn�1

j=0 cj!
jk
n is exactly the kth term in the DFT of the signal (c0, c1, . . . , cn�1).

Thus, Cx
(k) = �kx

(k), so x
(k) is an eigenvector of C with corresponding eigenvalue �

(k) =
DFT (c0, . . . , cn�1)k.

A.3 Proof of Lemma 1: NTK for 2 layer Fourier feature model

Proof. The gradient consists of two parts: the gradient with respect to B and the gradient with
respect to W . We can calculate the NTK for each part respectively and then sum them.

For W :

rW f(x) =

r
2

m


sin(Bx)
cos(Bx)

�
(30)

The width-m kernel is then:

k
W
m (x, x0) =

2

m

m/2X

i=1

cos(b>i x) cos(b
>
i x

0) + sin(b>i x) sin(b
>
i x

0) (31)

Using the angle difference formula, this reduces to:

k
W
m (x, x0) =

2

m

m/2X

i=1

cos(b>i (x � x
0)) (32)

As m ! 1, this converges to a deterministic kernel kW (x, x0) = EBij⇠N (0,⌧)[cos(b
>
i (x � x

0))].

Using the fact that EX⇠N (0,⌃)[cos(t
>
X)] = exp{� 1

2 t
>⌃t} for fixed vector t and the fact that

⌃ = diag(�2
,�

2) in our case, this kernel function simplifies to:

k
W (x, x0) = exp

⇢
��

2

2
kx � x

0k22
�

(33)
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For B:

rbif(x) =

r
2

m

�
Wi cos(b

>
i x) � Wi+m/2 sin(b

>
i x)

�
x (34)

The width-m kernel for B is then:

k
B
m(x, x0) =

2x>
x
0

m

m/2X

i=1

W
2
i

�
cos(b>i x) cos(b

>
i x

0)
�
+W

2
i+m/2

�
sin(b>i x) sin(b

>
i x)

�

� WiWi+m/2

�
cos(b>i x) sin(b

>
i x

0) + sin(b>i x) cos(b
>
i x

0)
�

(35)

As we take m ! 1, recall that Wj ⇠ N (0, 1) i.i.d.. Thus, E[W 2
j ] = 1 and E[WjWk] = 0 for j 6= k.

The NTK is then

k
B(x, x0) = x

>
x
0E
⇥
cos(b>i x) cos(b

>
i x

0) + sin(b>i x) sin(b
>
i x)

⇤
(36)

The interior of the expectation is exactly the same as the summand in Equation 31. Following the
same steps, we get the simplified kernel function:

k
B(x, x0) = x

>
x
0 exp

⇢
��

2

2
kx � x

0k22
�

(37)

Finally, our overall kernel function k(x, x0) = k
W (x, x0) + k

B(x, x0) is:

k(x, x0) =
�
1 + x

>
x
0� exp

⇢
��

2

2
kx � x

0k22
�

(38)

Since x, x0 2 Sd�1, they have unit norm, with kx � x
0k22 = 2(1 � x

>
x
0) = 2(1 � cos ✓). This gives

us two equivalent forms of the NTK:

k(x, x0) =

✓
2 � kx � x

0k22
2

◆
exp

⇢
��

2

2
kx � x

0k22
�

(39)

= (1 + cos ✓) exp
�
�
2(cos ✓ � 1)

 
(40)

A.4 When is the Bellman Update a Contraction?

Here, we examine LFF’s stability under Bellman updates by using results from Achiam et al. [1],
who used the NTK approximation to prove that the Bellman update is a contraction in finite MDPs if

8i, ↵Kii⇢i < 1 (41)

8i, (1 + �)
X

j 6=i

|Kij |⇢j  (1 � �)Kii⇢i (42)

where K is the NTK of the Q-network and ⇢i is the density of transition i in the replay buffer.
Intuitively, Kij measures the amount that a gradient update on transition j affects the function output
on transition i. In order for the Bellman update to be a contraction, the change at (si, ai) due to
gradient contributions from all other transitions should be relatively small. This suggests that LFF,
with very large �, could fulfill the conditions in Equation 43 and 44. We formalize this in Theorem 1:
Theorem 1. For a finite MDP with the state-action space as a finite, uniform subset of Sd, and when
we have uniform support for each transition in the replay buffer, the Bellman update on a 2 layer
LFF architecture is a contraction for suitably small learning rate ↵.

Proof. We need our kernel to satisfy two conditions [1]:

8i, ↵Kii⇢i < 1 (43)

8i, (1 + �)
X

j 6=i

|Kij |⇢j  (1 � �)Kii⇢i (44)
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Equation 43 is easy to satisfy, as we assumed that all transitions appear uniformly in our buffer, and
we know from Lemma 1 that k(x, x) = 2. Thus, we only need to make the learning rate ↵ small
enough such that ↵ <

1
2⇢i

.

For Equation 44, we can prove a loose lower bound on the variance �2 that is required for the Bellman
update to be a contraction. As stated in the main text, we assume that we have N + 1 datapoints xi

that are distributed approximately uniformly over Sd�1. Here, uniformly simply implies that we have
an upper bound x

>
i xj = cos ✓ < 1 � � for all i 6= j and fixed positive � > 0.

First, we bound |Kij | for all i 6= j. Using the expression from Lemma 1 and our upper bound on
cos ✓, we have |Kij |  (2 � �) exp

�
���

2)
 
, 8i 6= j. Then, plugging this into Equation 44 and

cancelling the buffer frequencies ⇢i, which are equal by assumption,

N(1 + �)(2 � �) exp
�
���

2
 

 2(1 � �) (45)

Rearranging gives us:

�
2 � 1

�
log

N(1 + �)(2 � �)

2(1 � �)
(46)

As long as ↵ is small enough and � < 1, an infinite-width LFF architecture initialized with a suitably
large ⌧ will enjoy Bellman updates that are always contractions in the sup-norm.

Note However, this does not align with what we see in practice, where small � yields the best
performance, and increasing � leads to worse performance. This is because Achiam et al. [1] makes
the assumption that the replay buffer assigns positive probability to every possible transition, which
is impossible in our continuous MDPs. We also do stochastic optimization with minibatches, which
further deviates from the theory. Finally, guarantee of a contraction does not imply sample efficiency.
Indeed, an algorithm that contracts slowly at every step can be much worse than an algorithm that
greatly improves in expectation.
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B On-policy Results
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Figure 11: On-Policy Evaluation: We train PPO on 4 OpenAI Gym environments with our LFF
architecture and a vanilla MLP, both of which have roughly the same number of parameters. LFF
does not produce a consistent gain in sample efficiency here, which is consistent with our hypothesis
that LFF helps only for off-policy RL.

B.1 On-policy LFF Setup

We evaluate proximal policy optimization (PPO, Schulman et al. [36]) on 4 environments from
OpenAI gym [7]. These environments range from easy, e.g. HalfCheetah-v2, to difficult, e.g.
Humanoid-v2. Just as we did in the off-policy setup, we modify only the architecture. keeping the
hyperparameters fixed. We compare MLPs with 3 hidden layers to LFF with our Fourier feature input
layer followed by 2 hidden layers. We use dfourier = 1024 and � = 0.001 for all environments and
also test what happens if we use LFF for only the policy or only the critic.

B.2 LFF architecture for on-policy RL

In Figure 11, we show the results of using LFF for PPO. Unlike LFF on SAC, LFF did not yield
consistent gains for PPO. The best setting was to use LFF for only the critic, which does as well as
MLPs on 3 environments (HalfCheetah, Hopper, and Humanoid) and better on Walker2d, but this is
only a modest improvement. This is not surprising and is likely because policy gradient methods
have different optimization challenges than those based on Q-learning. For one, the accuracy of
the value function baseline is less important for policy gradient methods. The on-policy cumulative
return provides a lot of reward signal, and the value function baseline mainly reduces variance in the
gradient update. In addition, generalized advantage estimation [35] further reduces variance. Thus,
noise in the bootstrapping process is not as serious of a problem as in off-policy learning.
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C Performance Under Added Noise
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Figure 12: State-based with Added Noise: We add zero-mean Gaussian noise to the targets. As the
standard deviation of the added noise increases, LFF maintains its performance better than MLPs.
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D Noise Amplification vs Implicit Underparameterization in Gridworld
MDP
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Figure 13: Measuring noise amplification vs implicit underparameterization on GRID16SMOOTHOBS.

We want to examine whether noise amplification is indeed a problem that off-policy deep RL
methods suffer from. Furthermore, if it is happening, Kumar et al. [23] hypothesize that it is
being caused by underfitting (“implicit underparameterization”), which would contradict our claim
that LFF improves learning by regularizing the training dynamics. We test this in Figure 13 by
performing Fitted Q-iteration (FQI) on the GRID16SMOOTHOBS environment from Kumar et al.
[23]. GRID16SMOOTHOBS is a discrete environment with 256 states and 5 actions, so we can use
Q-iteration to calculate the optimal Q⇤ and compare that with our learned Q✓. T denotes the number
of gradient steps per FQI iteration; increasing the number of gradient steps is empirically more likely
to cause divergence for MLP Q-functions. Note that we use a log scale for the y-axis in (a,b,e).

Noise amplification (a) shows that MLP-based Q-functions steadily blow up to orders of magnitude
above the true Q

⇤, whose average value is around 15 in this environment. In contrast, LFF-based
Q-functions either converge stably to the correct magnitude, or resist increasing as much. (b) shows
that the MLP target values are in a positive feedback loop with the Q-values. (c) shows that divergence
coincides with a drop in the returns. Together, these results indicate that there can be a harmful
feedback loop in the bootstrapping process, and that methods like LFF, which reduce fitting to noise,
can help stabilize training.

Implicit Underparameterization We run Fitted Q-iteration and calculate the effective rank of
the Q-network, which we parameterize using either a MLP or LFF network. We follow the
procedure from Kumar et al. [23]: sample 2048 states from the replay buffer and calculate the
singular values �i of the aggregated feature matrix �. The effective rank is then defined as

srank�(�) = min

⇢
k :

Pk
i=1 �i(�)Pd
j=1 �j(�)

� 1 � �

�
. (d) shows that the MLP’s effective rank does not

actually drop over training. Furthermore, LFF is able to avoid diverging Q-values, even though it
has signficantly lower srank than its MLP counterpart. Thus, noise amplification for MLPs in this
setting is likely not related to any underfitting measured by the effective rank. (e) shows that the
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largest singular value blows up for MLPs, but stabilizes when training LFF for a reasonable number
of gradient steps. (f) shows that the minimum singular value stays at zero over the course of training.
In the context of Kumar et al. [23], this implies that their penalty �max(�)2 � �min(�)2 is exactly
equivalent to penalizing only the maximum singular value �max(�)2 when using gradient descent.
This is because the gradient of the second term is zero when the smallest singular value is zero. Thus,
Kumar et al. [23]’s penalty works by constraining the largest singular value and regularizing the
magnitude of the feature matrix. Overall, these results support our hypothesis that noise amplification
is a problem that is not caused by underfitting and can be ameliorated by regularization.

E Sensitiviy Analyses
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Figure 14: Sensitivity to �. � = 0.001 is a good default across all of these state-based environments.
Results are averaged over 5 seeds, using a Fourier dimension of 1024, and the shaded region denotes
1 standard error.
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Figure 15: Sensitivity to the Fourier dimension. A Fourier dimension of 1024 is a good default
across all of these state-based environments. Results are averaged over 5 seeds, using � = 0.001, and
the shaded region denotes 1 standard error.
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F High Frequency Learning with Learned Fourier Features

Figure 16: Potential Underfitting in RL. Left: gridworld structure. Red squares are lava, green are
goals, gray are walls, and white squares are empty. Middle left: ground truth value function V

⇤(s).
Middle right: we fit Q⇤(s, a) with an MLP, then display maxa Q✓(s, a). The result is blurry and
cannot properly distinguish between critical high and low value states. Right: we fit Q⇤(s, a) with
our proposed learned Fourier feature architecture, then display maxa Q✓(s, a). It is able to exactly
reproduce the ground truth, even with the same number of parameters and gradient steps.

While the main paper focused on using LFF with small � to bias networks towards mainly learning
low frequency functions, we can still use larger � to encourage faster high-frequency learning. Prior
theoretical work [4, 9, 33, 49] found that ReLU MLPs suffer from spectral bias – they can take an
impractically long time to fit the highest frequencies. In the reinforcement learning setting, this can
cause underfitting when fitting high frequencies is desirable.

F.1 Gridworld

We demonstrate that underfitting is indeed happening in RL. We create a toy 64 ⇥ 64 gridworld task
[11] in Figure 16, where each square can be one of five types: start state, goal state, empty, wall, or
lava. The agent starts at the start state and receives +1 reward for every timestep at a goal state, -1
penalty for every timestep at a lava square, and 0 reward otherwise. It cannot enter cells with a wall.
The agent has five actions available: up, down, left, right, or no-op. Whenever the agent takes a step,
there is a 20% chance of a random action being taken instead, so it is important for the agent to stay
far from lava, lest it accidentally fall in. We use a discount of � = 0.9. To create the environment, we
randomly initialize it with 25% lava squares and 10% wall squares. We learn the optimal Q⇤ using
Q-iteration, then attempt to fit various neural network architectures with parameters ✓ to the ground
truth Q

⇤ values through supervised learning:

✓
⇤ = argmin

✓

X

s2S,a2A
(Q✓(s, a) � Q

⇤(s, a))2 (47)

We then try to fit Q⇤ using a standard MLP with 3 layers and 256 hidden units, and using our proposed
architecture with an equivalent number of parameters and � = 3. Due to the challenge of visualizing
Q(s, a) with 5 actions, we instead show V (s) = maxa Q(s, a) in Figure 16.

Surprisingly, MLPs have extreme difficulty fitting Q
⇤(s, a), even when doing supervised learning on

this low-dimensional toy example. Even without the challenges of nonstationarity, bootstrapping,
and exploration, the deep neural network has trouble learning the optimal Q-function. The learned
Q-function blurs together nearby states, making it impossible for the agent to successfully navigate
narrow corridors of lava. Prior work has described this problem as state aliasing [27], where an agent
conflates separate states in its representation space. We anticipate that this problem is worse in higher
dimensional and continuous MDPs and is pervasive throughout reinforcement learning.

In contrast, our LFF embedding with � = 3 is able to perfectly learn the ground-truth Q-function.
This indicates that LFF with large � can help our Q-networks and policies fit key high-frequency
details in certain RL settings. We believe that there are two promising applications for high-frequency
learning with LFF: model-based RL and tabular problems. Model-based RL requires modeling the
dynamics, which can have sharp changes, such as at contact points. Modeling transition dynamics
is also supervised, so there are no bootstrap noise problems exacerbated by accelerating the rate at
which high-frequencies are learned. Tabular problems are also suited for high-frequency learning, as
they often have sharp changes in dynamics or rewards (e.g. gridworld squares with walls, cliffs, or
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lava). Capturing high-frequencies with LFF could improve both the sample-efficiency and asymptotic
performance in this setting.

G Fourier Basis Variance After Training

Figure 17: Change in the standard deviation of Fourier basis entries Bij . The curves on the
left show how the standard deviation changes from � at initialization as state-based SAC training
progresses. The confidence interval indicates the standard deviation of the standard deviation,
measured across 5 seeds. The histograms in the middle and left show the distribution of entries within
B for the policy and Q-networks at the end of training.

In Section 4, we used the Neural Tangent Kernel (NTK) perspective to show that the initialization
variance of the Fourier basis B controls the per-frequency learning rate in infinite-width neural
networks. However, the NTK’s infinite-width assumption implies that the entries of the Fourier basis
do not change over the course of training. Since we train B with finite width, we examine how its
variance evolves over training, which affects its per-frequency learning rate at each point in time.
Figure 17 and 18 show how the standard deviation of the Fourier basis change for the policy and
Q-network. The standard deviation generally increases from � = 0.001 or � = 0.003 to about 0.1,
which should still be more biased towards low frequencies than vanilla MLPs are (see Figure 4).
Furthermore, the increase in standard deviation could actually be desirable. Having more data at the
end of training could reduce the impact of bootstrap noise, so there may be less need for smoothing
with small �. Larger � could bias the network towards fitting medium-frequency signals that are
important for achieving full asymptotic efficiency. This could explain the image-based results in
Figure 19, where the standard deviation rises to about 0.5.
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Figure 18: Continuation of Figure 17, which shows how the standard deviation of the Fourier basis
changes over training.
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Figure 19: Change in the standard deviation of Fourier basis entries Bij for image-based ex-
periments. For each of the four environments, we show how the standard deviation of the shared
encoder’s Fourier basis changes over training. The histogram shows the distribution of the entries of
the shared encoder’s B at the end of training.

H Hyperparameters

We list hyperparameters for state-based and image-based SAC experiments in Table 1 and Table 2,
respectively. We also show hyperparameters for PPO experiments from Appendix B in Table 3.

Parameter Value
Algorithm Soft Actor Critic [14]
Starting codebase Yarats and Kostrikov [51]
Optimizer Adam [19]
Adam (�1,�2) (0.9, 0.999)
Discount 0.99
Batch size 1024
Target smoothing coefficient (⌧ ) 0.005
Reward scale Auto-tuned [15]
Actor learning rate 10�4

Critic learning rate 10�4

Reward scale learning rate 10�4

Number of exploratory warmup steps 5000
Number of hidden layers 3 for MLP, 2 for LFF
Hidden size 1024
Hidden nonlinearity ReLU
Fourier dimension 64 for Cheetah, 1024 otherwise
Standard deviation � of Fourier basis initialization 0.003 for Cheetah, 0.001 otherwise

Table 1: Hyperparameters used for the state-basd SAC experiments.

26



Parameter Value
Algorithm Soft Actor Critic [14] + RAD [24]
Starting codebase Laskin et al. [24]
Augmentation Translate: Cheetah. Crop: otherwise.
Observation rendering (100, 100)
Observation down/upsampling Crop: (84, 84). Translate: (108, 108).
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 4
Optimizer Adam [19]
Adam (�1,�2) (0.5, 0.999) for entropy, (0.9, 0.999) otherwise
Learning rate 10�4

Batch size 512
Encoder smoothing coefficient (⌧ ) 0.05
Q-network smoothing coefficient (⌧ ) 0.01
Critic target update freq 2
Convolutional layers (excluding LFF embedding) 4 for LFF, 5 otherwise
Discount 0.99
Fourier dimension 128 for Hopper, 64 otherwise
Initial standard deviation � of Fourier basis 0.1 for Hopper, Cheetah; 0.01 for Finger, Quadruped

Table 2: Hyperparameters used for the image-based SAC experiments.

Parameter Value
Algorithm Proximal Policy Optimization [36]
Learning rate 3 ⇥ 10�4

Learning rate decay linear
Entropy coefficient 0
Value loss coefficient 0.5
Clip parameter 0.2
Environment steps per optimization loop 2048
PPO epochs per optimization loop 10
Batch size 64
GAE � 0.95
Discount 0.99
Total timesteps 106

Number of hidden layers 2
Hidden size 256
Hidden nonlinearity tanh
Fourier dimension 64
Variance of Fourier basis initialization ⌧ 0.01

Table 3: Hyperparameters used for the PPO experiments.
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