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Abstract

We propose a simple architecture for deep reinforcement learning by embedding
inputs into a learned Fourier basis and show that it improves the sample efficiency
of both state-based and image-based RL. We perform infinite-width analysis of our
architecture using the Neural Tangent Kernel and theoretically show that tuning the
initial variance of the Fourier basis is equivalent to functional regularization of the
learned deep network. That is, these learned Fourier features allow for adjusting
the degree to which networks underfit or overfit different frequencies in the training
data, and hence provide a controlled mechanism to improve the stability and
performance of RL optimization. Empirically, this allows us to prioritize learning
low-frequency functions and speed up learning by reducing networks’ susceptibility
to noise in the optimization process, such as during Bellman updates. Experiments
on standard state-based and image-based RL benchmarks show clear benefits of
our architecture over the baselines1.

1 Introduction

Most popular deep reinforcement learning (RL) approaches estimate either a value or Q-value function
under the agent’s learned policy. These functions map points in the state or state-action space to
expected returns, and provide crucial information that is used for improving the policy. However,
optimizing these functions can be difficult, since there are no ground-truth labels to predict. Instead,
they are trained through bootstrapping: the networks are updated towards target values calculated with
the same networks being optimized. These updates introduce noise that accumulates over repeated
iterations of bootstrapping, which can result in highly inaccurate value or Q-value estimates [44, 46].
As a result, these RL algorithms may suffer from lower asymptotic performance or sample efficiency.

Most prior work has focused on making the estimation of target values more accurate. Some
examples include double Q-learning for unbiased target values [16, 47], or reducing the reliance
on the bootstrapped Q-values by calculating multi-step returns with TD(�) [41]. However, it is
impossible to hope that the noise in the target values estimated via bootstrapping will go to zero,
because we cannot estimate the true expectation over infinite rollouts in practical setups. Hence, we
argue that it is equally important to also regularize the function (in this case, the deep Q-network)
that is fitting these noisy target values.

Conventional regularization methods in supervised learning can be associated with drawbacks in RL.
Stochastic methods like dropout [40] introduce more noise into the process, which is tolerable when
ground-truth labels are present (in supervised learning) but counterproductive when bootstrapping. An
alternative approach is early stopping [50], which hurts sample efficiency in reinforcement learning
because a minimum number of gradient steps is required to propagate value information backwards
to early states. Finally, penalty-based methods like L1 [45] and L2 regularization [17, 22] can help in

1Code available at https://github.com/alexlioralexli/learned-fourier-features
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Figure 1: Left: the proposed learned Fourier feature (LFF) architecture. B is a matrix trained through
backpropagation, and is used to create a learned set of Fourier features. The network then passes
the Fourier features through alternating linear layers and ReLU nonlinearities, as is done in vanilla
MLPs. Right: tuning the initialization variance of Bij ⇠ N (0,�2) controls the rate at which target
frequencies are learned. Higher � fits higher frequencies faster, while lower � smooths out noise.
This architecture can be used as functional regularization for a Q-function Q : S ⇥ A ! R, value
function V : S ! R, policy ⇡ : S ! Rdim(A), or model T : S ⇥ A ! S .

RL [26], but regularizing the network in weight space does not disentangle noise from reward signal
and could make it difficult to learn the true Q-function. This leads us to ask: what is the right way to
regularize the RL bootstrapping process?

We suggest that the impact of target value noise can be better reduced by frequency-based functional
regularization: direct control over the frequencies that the network tends to learn first. If the target
noise consists of higher frequencies than the true target values, discouraging high-frequency learning
can help networks efficiently learn the underlying Q-function while fitting minimal amounts of noise.
In this work, we propose an architecture that achieves this by encoding the inputs with learned Fourier
features, which we abbreviate as LFF. In contrast to using fixed Fourier features [34, 42], we train the
Fourier features, which helps them find an appropriate basis even in high dimensional domains. We
analyze our architecture using the Neural Tangent Kernel [18] and theoretically show that tuning the
initial variance of the Fourier basis controls the rate at which networks fit different frequencies in the
training data. Thus, LFF’s initial variance provides a controlled mechanism to improve the stability
and performance of RL optimization (see Figure 1). Tuned to prioritize learning low frequencies,
LFF filters out bootstrapping noise while learning the underlying Q-function.

We evaluate LFF, which only requires changing a few lines of code, on state-space and image-space
DeepMind Control Suite environments [43]. We find that LFF produces moderate gains in sample
efficiency on state-based RL and dramatic gains on image-based RL. In addition, we empirically
demonstrate that LFF makes the value function bootstrapping stable even in absence of target
networks, and confirm that most of LFF’s benefit comes through regularizing the Q-network. Finally,
we provide a thorough ablation of our architectural design choices.

2 Preliminaries

The reinforcement learning objective is to solve a Markov Decision Process (MDP), which is
defined as a tuple (S,A, P,R, �). S and A denote the state and action spaces. P (s0|s, a) is
the transition function, R(s, a) is the reward function, and � 2 [0, 1] is the discount factor. We
aim to find an optimal policy ⇡

⇤(a|s) that maximizes the expected sum of discounted rewards.
Q-learning finds the optimal policy by first learning a function Q

⇤(s, a) such that Q⇤(s, a) =
Es0⇠P (·|s,a)[R(s, a)+�maxa0 Q

⇤(s0, a0)]. The optimal policy is then ⇡
⇤(a|s) = argmaxa Q

⇤(s, a).
To find Q

⇤, we repeatedly perform Bellman updates to Q, which uses the Q-network itself to bootstrap
target values on observed transitions (s, a, r, s0) [6]. The most basic way to estimate the target
values is target = r + �maxa0 Q(s0, a0), but a popular line of work in RL aims to find more
accurate target value estimation methods [12, 16, 32, 41, 47]. Once we have these target value
estimates, we update our Q-network’s parameters ✓ via gradient descent on temporal difference
error: �✓ = �⌘r✓ (Q✓(s, a) � target)2. Our focus is on using the LFF architecture to prevent
Q-networks from fitting irreducible, high-frequency noise in the target values during these updates.
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True Q-function Noisy targets LFF, σ = 0.003MLP

Figure 2: Filtering noise with LFF input embedding. The bootstrapped targets in RL are a mix
between signal and noise. Right side: we fit different networks to these noisy targets and display their
predictions. While the MLP overfits, LFF learns the Q-function and ignores almost all of the noise.

3 Reinforcement Learning with Learned Fourier Features

We present a visualization of the noisy target value problem in Figure 2. The target value estimates
can be noisy due to stochastic transitions, replay buffer sampling, or unintended generalization across
state-action pairs due to function approximation [48]. We simulate this in Figure 2 by adding noise
to the optimal Q-function of a small gridworld. MLPs are susceptible to fitting the noise, resulting in
inaccurate Q-values that could diverge after repeated bootstrapping. In contrast, our LFF architecture
controls how quickly low- and high-frequency signals are learned. Tuned properly, LFF filters out the
noise and learns the ground truth Q-function almost perfectly (Figure 2, right).

The problem is that MLPs provide no control over how quickly they learn signals of different
frequencies. Prior work in computer vision found this a problem when MLPs blurred desired high
frequencies in low-dimensional (3-5 dimensions) graphics regression problems [28, 42]. They
fixed this blurring problem by transforming the input using a random Fourier feature embedding
of the input [34, 42]. Specifically, the idea is to map a low-dimensional input x to an embedding
�(x) = sin(2⇡Bx)|| cos(2⇡Bx), where B is a dfourier/2⇥dinput matrix, || denotes concatenation, and
sin and cos act elementwise. The embedding �(x) directly provides a mix of low- and high-frequnecy
functions a MLP f✓ can use to learn a desired function. Tancik et al. [42] use this to improve fidelity
in coordinate-based graphics problems.

Intuitively, the row vectors bi are responsible for capturing desired frequencies of the data. If they
capture only low frequencies, then the MLP will be biased towards only learning the low-frequency
signals in the data. Conversely, if the Fourier features capture sufficient high-frequency features, then
a MLP can fit high frequency functions by computing simple nonlinear combinations of the features.
In these low-dimensional graphics problems, initializing fixed entries Bij ⇠ N (0,�2) with large �

was enough to learn desired high frequency functions; training B did not improve performance.

In the following section, we propose our learned Fourier feature architecture for deep RL, which
allows practitioners to tune the range of frequencies that the network should be biased towards
learning. We propose several key enhancements that help Fourier features learn in high-dimensional
environments. Our work uses learned Fourier features to improve deep RL, in contrast to prior
work focused on simple environments with fixed, hand-designed Fourier features and linear function
approximation [20, 21]. Although we focus on prioritizing low-frequency signals to reduce bootstrap
noise, we also present cases in Appendix F.1 where biasing networks towards high-frequency learning
with learned Fourier features enables fast convergence and high asymptotic performance in RL.

3.1 Learned Fourier Feature Architecture

Standard MLPs can be written as the repeated, alternating composition of affine transformations
Li(x) = Wix+ bi and nonlinearity ⌧ , which is usually the ReLU ⌧(x) = max(0, x):

f✓(x) = Ln � ⌧ � Ln�1 � ⌧ � · · · � L1(x) (1)
We propose a novel architecture based on Fourier features, shown in Figure 1. We define a new layer:

FB(x) = sin(2⇡Bx)|| cos(2⇡Bx)||x (2)
where B is a dfourier/2 ⇥ dinput matrix and || denotes concatenation. dfourier is a hyperparameter
that controls the number of Fourier features we can learn; increasing dfourier increases the degree to
which the model relies on the Fourier features. Following Tancik et al. [42], we initialize the entries
Bij ⇠ N(0,�2), where �

2 is a hyperparameter. Contrary to prior work, B is a trainable parameter.
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Algorithm 1 LFF PyTorch-like pseudocode.

class LFF():
def __init__(self, input_size, output_size,

n_hidden=1, hidden_dim=256,
sigma=1.0, f_dim=256):

# create B
b_shape = (input_size, f_dim // 2)
self.B = Parameter(normal(zeros(*b_shape),

sigma * ones(*b_shape)))
# create rest of network
self.mlp = MLP(in_dims=f_dim + input_size,

out_dims=output_size,
n_hidden=n_hidden,
hidden_dim=hidden_dim)

def forward(self, x):
proj = (2 * np.pi) * matmul(x, self.B)
ff = cat([sin(proj), cos(proj), x], dim=-1)
return self.mlp.forward(ff)

normal: sample from Gaussian with specified mean and std dev;
matmul: matrix multiplication; cat: concatenation.

The resulting LFF MLP can be written:

f✓ = Ln � ⌧ � · · · � L1 � FB(x) (3)

We can optimize this the same way we optimize
a standard MLP, e.g. regression would be:

argmin
✓,B

NX

i=1

(Ln � · · · � FB(xi) � yi)
2 (4)

We propose two key improvements to random
Fourier feature input embeddings [34, 42]: train-
ing B and concatenating the input x to the
Fourier features. We hypothesize that these
changes help preserve information in high-
dimensional RL problems, where it is increas-
ingly unlikely that randomly initialized B pro-
duces Fourier features well-suited for the task.
Training B alleviates this problem by allowing the network to discover them on its own. Appendix
G shows that training B does change its values, but its variance remains close to the initial �2.
This indicates that � is an important knob that controls the network behavior throughout training.
Concatenating x to the Fourier features is another key improvement for high dimensional settings. It
preserves all the input information, which has been shown to help in RL [38]. We further analyze
these improvements in Section 6.4.

4 Theoretical Analysis

By providing periodic features (which are controlled at initialization by the variance �
2), LFF biases

the network towards fitting a desired range of frequencies. In this section, we hope to understand
why the LFF architecture provably controls the rate at which various frequencies are learned. While
Tancik et al. [42] analyze different weightings of a full set of Fourier basis frequencies, we examine
the effect of the initialization variance of randomly initialized Gaussian Fourier features.

We draw upon linear neural network approximations in the infinite width limit, which is known as
the neural tangent kernel approach [18]. This approximation allows us to understand the training
dynamics of the learned neural network output function. While NTK analysis has been found
to diverge from real-world behavior in certain cases, particularly for deeper convolutional neural
networks [2, 10], it has also been remarkably accurate in predicting directional phenomena [4, 5,
42]. We provide background on the NTK in Section 4.1, and discuss the connection between the
eigenvalues of the NTK kernel matrix and the rate at which different frequencies are learned in
Section 4.2. We then analyze the NTK and frequency learning rate for Fourier features in networks
with 2 layers (Section 4.3) or more (Section 4.4).

4.1 Neural Tangent Kernel

We can approximate a neural network using a first-order Taylor expansion around its initialization ✓0:

f✓(x) ⇡ f✓0(x) + r✓f✓0(x)
>(✓ � ✓0) (5)

The Neural Tangent Kernel [18] line of analysis makes two further assumptions: f✓ is an infinitely
wide neural network, and it is trained via gradient flow. Under the first condition, a trained network
stays very close to its initialization, so the Taylor approximation is good (the so-called “lazy training”
regime [8]). Furthermore, f✓0(x) = 0 in the infinite width limit, so our neural network is simply a
linear model over features �(x) = r✓f✓0(x). This gives rise to the kernel function:

k(xi, xj) = hr✓f✓0(xi),r✓f✓0(xj)i (6)

The kernel function k is a similarity function: if k(xi, xj) is large, then the predictions f✓(xi) and
f✓(xj) will tend to be close. This kernel function is deterministic and does not change over the course
of training, due to the infinite width assumption. If we have n training points (xi, yi), k defines a
PSD kernel matrix K 2 Rn⇥n

+ where each entry Kij = k(xi, xj). When we train this infinite width
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(a) Quality of NTK approximation (b) NTK kernel function (c) Eigenvalue spectrum

Figure 3: NTK of the 2-layer Fourier feature model. We plot the NTK k(x, 0) for points x that lie
on the unit circle. In (a) and (b), ✓ 2 [�⇡,⇡] denotes the offset from a reference point with ✓0 = 0.
Note that our NTK is shift invariant, so these figures are valid for any reference point ✓0. Left:
we compare the NTK infinite-width limit to the kernel function of 10 randomly initialized 2-layer
Fourier feature networks with width 1024. The NTK limit is quite accurate for realistically wide
networks. Middle: NTK kernel function k for varying settings of the Fourier feature variance �

2.
Larger � enables sharp, local learning, while smaller � induces smoother function learning. Right:
The y-axis shows eigenvalues of the NTK kernel matrix K, and the x-axis indicates the frequency of
the corresponding eigenvector. High frequencies are not fit with low �, since their eigenvalues vanish.
Increasing � increases the higher frequencies’ eigenvalues, so they can be learned faster.

neural network with gradient flow on the squared error, we precisely know the model output at any
point in training. At time t, we have training residual:

f✓t(x) � y = e
�⌘Kt(f✓0(x) � y) (7)

where f✓t(x) is the column vector of model predictions for all xi, and y is the column vector of
stacked training labels (see Appendix A.1 for proof sketch). Eq. 7 is critical because it describes how
different components of the training loss decrease over time. Section 4.2 will build on this result and
examine the training residual in the eigenbasis of the kernel matrix K. This analysis will reveal that
each frequency present in the labels y will be learned at its own rate, determined by K’s eigenvalues.

4.2 Eigenvalues of the LFF NTK

Consider applying the eigendecomposition of K = Q⇤Q⇤ to Eq. 7, noting that e�⌘Kt = Qe
�⌘⇤

Q
⇤

as the matrix exponential is defined e
X :=

P1
k=0

1
k!X

k, so Q and Q
⇤ will repeatedly cancel in the

middle of Xk since Q is unitary.

Q
⇤(f✓t(x) � y) = e

�⌘⇤t
Q

⇤(f✓0(x) � y) (8)

Note that the ith component of the residual Q⇤(f✓t(x) � y) decreases with rate e
�⌘�i .

Consider the scenario where the training inputs xi are evenly spaced on the d-dimensional sphere
Sd�1. When k is isotropic, which is true for most networks whose weights are sampled isotropically,
the kernel matrix K is circulant (each row is a shifted version of the row above). In this special
case, K’s eigenvectors correspond to frequencies from the discrete Fourier transform (DFT), and the
corresponding eigenvalues are the DFT values of the first row of K (see Appendix A.2). Combining
this fact with Eq. 8, where we looked at the residual in K’s eigenbasis, shows that each frequency
in the targets is learned at its own rate, determined by the eigenvalues of K. For a ReLU MLP,
these eigenvalues decay approximately quadratically with the frequency [4]. This decay rate is
slow, so MLPs often fit undesirable medium and high frequency signals. We hypothesize that LFF
controls the frequency-dependent learning rate by tuning the kernel matrix K’s eigenvalues.
We examine LFF’s kernel matrix eigenvalues in Sections 4.3 and 4.4 and verify this hypothesis.

4.3 NTK Analysis of 2-layer Network with Fourier Features

To simplify our LFF NTK analysis, we consider a two layer neural network f : Rd ! R:

f(x) =

r
2

m
W

>

sin(Bx)
cos(Bx)

�
(9)
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Figure 4: Left: we compare the NTK eigenvalue spectrum (which determines the frequency-specific
learning rate) of deep networks with Fourier features to those of a vanilla MLP. Right: we initialize
finite-width LFF networks with 2 hidden layers of 1024 units each and compare their kernels (dashed)
to the corresponding NTK infinite-width limit (solid). We find that the NTK is accurate (note the log
scale) and that decreasing � indeed results in lower convergence rates for higher frequencies.

where each row of B is a vector b
>
i 2 R1⇥d, and there are m rows of B. Wi ⇠ N (0, 1) and

Bij ⇠ N (0,�2), where � is a hyperparameter. Note that concatenating x is omitted for this two-layer
model. This is because any contribution from concatenation goes to zero as we increase the layer
width m. Lemma 1 determines an analytical expression for the LFF kernel function k(x, x0).

Lemma 1. For x, x0 2 Sd�1 with angle ✓ = cos�1(x>
x
0), we have the NTK kernel function:

k(x, x0) =

✓
2 � kx � x

0k22
2

◆
exp

⇢
��

2

2
kx � x

0k22
�

(10)

Proof: see Appendix A.3. This closed form expression for k(x, x0) elucidates several desirable
properties of Fourier features. � directly controls the rate of the exponential decay of k, which is the
similarity function for points x and x

0. For large �, k(x, x0) rapidly goes to 0 as x and x
0 get farther

apart, so their labels only affect the learned function output in a small local neighborhood. This
intuitively corresponds to high-frequency learning. In contrast, small � ensures k(x, x0) is large, even
when x and x

0 are relatively far apart. This induces smoothing behavior, inhibiting high-frequency
learning. We plot the NTK for varying levels of � in Figure 3(b) and show that � directly controls the
frequency learning speed in Figure 3(c). Figure 3(a) also verifies that the NTK limit closely matches
the empirical behavior of realistically sized networks at initialization.

4.4 NTK of Deeper Networks

Figure 3(c) shows that larger initialization variance �
2 corresponds to larger eigenvalues for high

frequencies in the 2-layer model. This matches empirical results that small � leads to underfitting
and large � leads to overfitting [42]. However, Figure 3(c) indicates that only extremely large �, on
the order of 102 � 103, result in coverage of the high frequencies. This contradicts Tancik et al. [42],
who fit fine-grained image details with � 2 [1, 10]. We suggest that the 2-layer model, even though
it accurately predicts the directional effects of increasing or decreasing �, fails to accurately model
learning in realistically sized networks. Manually computing the kernel functions of deeper MLPs
with Fourier feature input embeddings is difficult. Thus, we turn to Neural Tangents [30], a library
that can compute the kernel function of any architecture expressible in its API .

We initialize random Fourier features of size 1024 with different variances �2 and build an infinite-
width ReLU MLP on top with 3 hidden layers using the Neural Tangents library. As in Figure 3, we
take input data x evenly spaced on the 2D unit circle and evaluate the corresponding kernel function
k(x, 0) between the point (1, 0) and the point x = (cos ✓, sin ✓). Figure 4 shows the eigenvalues of
Fourier features and vanilla MLPs in this scenario. We see the same trend, where increasing � leads
to larger eigenvalues for higher frequencies, as we saw in Figure 3. Furthermore, Figure 4 shows that
this trend also holds for the exact finite-width architectures that we use in our experiments (Section 6).
These results now reflect the empirical behavior where � 2 [1, 10] results in high frequency learning.
This indicates that deeper networks are crucial for understanding the behavior of Fourier features.
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Figure 5: Off-policy State-based Evaluation: Soft Actor Critic (SAC) experiments on 8 DM Control
environments. We emphasize that these results are produced using the same hyperparameters (e.g.
learning rate, Polyak averaging parameter, and batch size) tuned for MLPs. These results show that
plugging in our LFF architecture can yield more sample-efficient learning on most environments.

5 Experimental Setup

We treat the learned Fourier feature network as a drop-in replacement for MLP and CNN architectures.
We show that just adding Fourier features improves the performance of existing state-of-the-art
methods on existing standard benchmark environments from DeepMind Control Suite [43]. We will
release the code, which involves only changing a few lines of code in existing RL algorithms.

State-based LFF Architecture Setup We use soft actor-critic (SAC), an entropy-regularized off-
policy RL algorithm [14], to learn 8 environments from the DeepMind Control Suite [43]. We keep
the default hyperparameters fixed, varying only the architecture for the policy and Q-function. Our
LFF architecture uses our learnable Fourier feature input layer, followed by 2 hidden layers of 1024
units. We use Fourier dimension dfourier of size 1024. We initialize the entries of our trainable Fourier
basis with Bij ⇠ N (0,�2), with � = 0.01 for all environments except Cheetah, Walker, and Hopper,
where we use � = 0.001. To make the parameter count roughly equal, we compare against an
MLP with three hidden layers. The first MLP hidden layer is slightly wider, about 1100 units, to
compensate for the extra parameters in LFF’s first layer due to input concatenation. Learning curves
are averaged over 5 seeds, with the shaded region denoting 1 standard error.

Image-based LFF Architecture Setup We test image-based learning on 4 DeepMind Control
Suite environments [43] with SAC + RAD [24], which uses data augmentation to improve the sample
efficiency of image-based training. The vanilla RAD architecture, which uses the convolutional
architecture from Srinivas et al. [39], is denoted as “CNN” in Figure 6. To apply LFF to images,
we observe that computing Bx at each pixel location is equivalent to a 1x1 convolution without
bias. This 1x1 convolution maps the the RGB channels at each pixel location from 3 dimensions to
dfourier/2 channels. We then compute the sin and cos of those channels and concatenate the original
RGB values, so our image goes from H ⇥ W ⇥ 3 to a H ⇥ W ⇥ (dfourier + 3) embedding. The 1x1
conv weights are initialized from N (0,�2) with � = 0.1 for Hopper and Cheetah and � = 0.01 for
Finger and Quadruped. As we did in the state-based setup, we make the CNN baseline fair by adding
an additional 1x1 convolution layer at the beginning. This ensures that the “CNN” and “CNN+LFF”
architectures have the same parameter count, and that performance gains are solely due to LFF.

6 Results

We provide empirical support for the approach by investigating the following questions:

1. Does LFF improve the sample efficiency of off-policy state-based or image-based RL?
2. Do learned Fourier features make the Bellman update more stable?
3. Does LFF help more when applied to the policy or the Q-function?
4. Ablation: How important is input concatenation or training the Fourier basis B?
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Figure 6: Off-policy Image-based Evaluation: SAC experiments on learning 4 DMControl envi-
ronments from pixels. LFF can yield dramatic improvements in sample-efficiency over CNNs.
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Figure 7: State-based with Added Noise: We add zero-mean Gaussian noise to the targets. As the
standard deviation of the added noise increases, LFF maintains its performance better than MLPs.

6.1 LFF Architecture for Off-policy RL

We show the results of using the LFF architecture for state-based RL with SAC in Figure 5. LFF does
clearly better than MLPs in 6 out of 8 environments, and slightly better in the remaining 2. Figure 6
shows even stronger results on image-based RL with SAC and RAD. This is especially promising
because these results use the hyperparameters that were tuned for the MLP or CNN baseline. We find
that the return consistently starts increasing much earlier with LFF. We hypothesize that LFF reduces
noise propagation due to bootstrapping, so less data is required to overcome incorrect targets. SAC
can use these more accurate Q-values to quickly begin exploring high-reward regions of the MDP.

For the state-space experiments, we also test several baselines:

• MLP with weight decay, tuned over the values {10�3
, 3 ⇥ 10�4

, 10�4
, 3 ⇥ 10�4

, 10�5}.
Weight decay helps learning in most environments, but it can hurt performance (Acrobot,
Hopper) or introduce instability (Cheetah). Weight decay strong enough to reduce overfitting
may simultaneously bias the Q-values towards 0 and cause underestimation bias.

• MLP with dropout [40]. We add a dropout layer after every nonlinearity in the MLP. We
search over [0.05, 0.2] for the drop probability, and find that lower is better. Dropout does
help in most environments, although occasionally at the cost of asymptotic performance.

• MLP with functional regularization [31]. Instead of using a target network to compute target
values, we use the current Q-network, but regularize its values from diverging too far from
the Q-values calculated by a lagging snapshot of the Q-network.

• MLP with spectral normalization [13]. We add spectral normalization to the second-to-last
layer of the network, as is done in [13], but find that this works very poorly. It is likely
necessary to tune the other hyperparameters (learning rate, target update frequency, Polyak
averaging) in order to make spectral normalization work.

Overall, LFF consistently ranks around the top across all of the environments. It can be combined with
weight decay, dropout, or functional regularization for more gains, and has a simple plug-and-play
advantage because a single set of parameters works over all environments.

6.2 Do learned Fourier features improve the stability of the Bellman updates?

Our key hypothesis is that standard ReLU MLP Q-functions tend to fit the noise in the target values,
introducing error into the Q-function at some (s, a). Bootstrapping with this incorrect Q-value to
calculate target values for other (s0, a0) yields even noisier targets, propagates the error to other
states, and causes instability or divergence (see Appendix D for more details). To further test whether
LFF solves this problem by filtering out the noise, we train a SAC agent on state-based DMControl
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Figure 8: Effect of LFF on Stability of Bootstrapping: We train SAC, foregoing a target network, by
bootstrapping directly from the Q-network being trained. The dashed line shows the LFF performance
with a target network after 1M steps. We find that the LFF network is remarkably stable, and even
learns faster on Quadruped Walk than when using target networks. However, LFF fails to learn on
Humanoid, indicating that higher dimensional problems still pose problems.
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Figure 9: LFF Policy vs Q-function. Walker and Quadruped results indicate that only using LFF for
the Q-network is just as good as using LFF for both networks. In contrast, using LFF for the policy
network is about as bad as the MLP baseline. This suggests that LFF primarily improves off-policy
learning by reducing noise in the Q-network optimization.

environments with either of the following modifications: testing the Q-function’s robustness by
adding Gaussian noise to the targets, or removing target networks altogether.

Gaussian noise added to targets In each bootstrap step, we add zero-mean Gaussian noise with
standard deviation 1, 10, or 30 to the targets. LFF maintains higher performance even at significant
noise levels, indicating that it is more robust to bootstrap noise. Full results are in Figure 12.

No target network Target networks, updated infrequently, slow down the propagation of noise
due to bootstrapping [29]. LFF fits less noise to begin with, so it should work even when the target
network is omitted. Here, we bootstrap directly from the network being trained. Figure 8 shows
that MLPs consistently fail to learn on all environments in this setting, while the LFF architecture
still performs well, except when the problem is very high dimensional. LFF even manages to learn
faster in Quadruped Walk than it does when using a target network, since there is no longer Polyak
averaging [25] with a target to slow down information propagation. Omitting the target network
allows us to use updated values for Q✓(s0, a0), instead of stale values from the target network. This
result is in line with recent work that achieves faster learning by removing the target network and
instead penalizing large changes to the Q-values [37].

Overall, Figure 7 and 8 validate our theoretical claims that LFF controls the effect of high-frequency
noise on the learned function, and indicates that LFF successfully mitigates bootstrap noise in most
cases. Tuning the SAC hyperparameters should increase LFF sample efficiency even further, since
we can learn more aggressively when the noise problem is reduced.

6.3 Where Do Learned Fourier Features Help?

In this section, we confirm that our LFF architecture improves RL performance by primarily pre-
venting the Q-network from fitting noise. We train state-based SAC with an MLP policy and LFF
Q-network (LFF Q-net in Figure 9), or with an LFF policy and MLP Q-network (LFF Policy). Fig-
ure 9 shows that solely regularizing the Q-network is sufficient for LFF’s improved sample efficiency.
This validates our hypothesis that the Bellman updates remain noisy, even with tricks like double
Q-networks and Polyak averaging, and that LFF reduces the amount of noise that the Q-network
accumulates. These results suggest that separately tuning � for the Q-network and policy networks
may yield further improvements, as they have separate objectives. The Q-network should be resilient
to noise, while the policy can be fine-grained and change quickly between nearby states. However,
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Figure 10: Ablation analysis: We train SAC on 4 DMControl environments with three variants of
our architecture: LFF, LFF with fixed Fourier features, and LFF without input concatenation. Lower
dimensional environments like Finger and Walker are more forgiving for fixed Fourier features or
omitting input concatenation. However, Humanoid absolutely requires both modifications to learn.

for simplicity, we use LFF for the Q-networks and the policy networks. Finally, we also train vanilla
MLPs where we concatenate the input x to the first layer output. LFF outperforms this variant,
confirming that concatenation is not solely responsible for the improved sample efficiency.

6.4 Architectural Ablations

LFF features two key improvements: learning the Fourier feature basis B and concatenating the input
x to the Fourier features. We perform an ablation on several DMControl environments with SAC in
Figure 10 to investigate the impact of these modifications.

We first find that training the Fourier feature basis B is critical. Across all four environments, learning
is impacted by using a fixed, randomly initialized B. This is because finding the right Fourier features
at initialization is unlikely in our high dimensional RL problems. Training B allows the network to
discover the relevant Fourier features on its own. The relationship with dimension is clear: as the
input dimension increases, the performance gap between LFF and fixed Fourier features grows.

Concatenating the input x to the Fourier features is also important. It maintains all of the information
that was present in x, which is critical in very high dimensional environments. If the Fourier basis
B is poorly initialized and it blends together or omits important dimensions of x, the network takes
a long time to disentangle them, if at all. This problem becomes more likely as the observation
dimension increases. While LLF can learn without concatenation in low-dimensional environments
like Walker and Finger, it has a much harder time learning in Quadruped and Humanoid.

Finally, we test an alternative approach to initializing the values of B. B, which has shape (k ·
dinput)⇥ dinput, is now initialized as B = (I, cI, c2I, . . . , ck�1

I)> where I is the identity matrix, k is
an integer, and 0 < c < 1 is a tuned multiplier. This parallels the axis-aligned, log-uniform spacing
used in NeRF’s positional encoding [28], but we additionally concatenate x and train B. We find
that this initialization method, dubbed “Log-uniform FF” in Figure 10, is consistently worse than
sampling from N (0,�2). This is likely because the initialization fails to capture features that are not
axis-aligned, so most of the training time is used to discover the right combinations of input features.

7 Conclusions and Future Work

We highlight that the standard MLP or CNN architecture in state-based and image-based deep
RL methods remain susceptible to noise in the Bellman update. To overcome this, we proposed
embedding the input using learned Fourier features. We show both theoretically and empirically
that this encoding enables fine-grained control over the network’s frequency-specific learning rate.
Our LFF architecture serves as a plug-and-play addition to any state-of-the-art method and leads to
consistent improvement in sample efficiency on standard state-space and image-space environments.

One shortcoming of frequency-based regularization is that it does not help when the noise and the
signal look similar in frequency space. Future work should examine when this is the case, and test
whether other regularization methods are complementary to LFF. Another line of work, partially
explored in Appendix F, is using LFF with large � to fit high frequencies and reduce underfitting
in model-based or tabular reinforcement learning scenarios. We hope this work will provide new
perspectives on existing RL algorithms for the community to build upon.
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