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Abstract

Graph Neural Networks (GNNs) often suffer from weak-generalization due to
sparsely labeled data despite their promising results on various graph-based tasks.
Data augmentation is a prevalent remedy to improve the generalization ability of
models in many domains. However, due to the non-Euclidean nature of data space
and the dependencies between samples, designing effective augmentation on graphs
is challenging. In this paper, we propose a novel framework Metropolis-Hastings
Data Augmentation (MH-Aug) that draws augmented graphs from an explicit target
distribution for semi-supervised learning. MH-Aug produces a sequence of aug-
mented graphs from the target distribution enables flexible control of the strength
and diversity of augmentation. Since the direct sampling from the complex target
distribution is challenging, we adopt the Metropolis-Hastings algorithm to obtain
the augmented samples. We also propose a simple and effective semi-supervised
learning strategy with generated samples from MH-Aug. Our extensive experiments
demonstrate that MH-Aug can generate a sequence of samples according to the
target distribution to significantly improve the performance of GNNs.

1 Introduction

Graph Neural Networks (GNNs) [1] have been widely used for representation learning on graph-
structured data due to their superior performance in various applications such as node classification [2–
4], link prediction [5–7] and graph classification [8, 9]. They have been proven effective by achieving
impressive performance for diverse datasets such as social networks [10], citation networks [4],
physics [11], molecules [12], and knowledge graphs [10]. However, GNNs often suffer from weak-
generalization due to their small and sparsely labeled graph datasets. One prevalent remedy to address
the problem is data augmentation. Data augmentation increases the diversity of data and improves
the generalization power of machine learning models trained on randomly augmented samples. It
is widely used to enhance the generalization ability of models in many domains. For instance, in
image recognition, advanced methods like [13–15] as well as simple transformations such as random
cropping, cutout, Gaussian noise, or blurring have been used to achieve competitive performance.

However, unlike image recognition, designing effective and label-preserving data augmentation for
individual samples on graphs is challenging due to their non-Euclidean nature and the dependencies
between data samples. In image recognition, it is straightforward to identify operations that preserve
labels. For instance, human can verify that rotation, translation, and small color jittering do not
change the labels in image classification. In contrast, graphs are less interpretable and it is non-trivial
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for even human to check whether the augmented samples belong to the original class or not. In
addition, due to the dependencies between nodes and edges in a graph, it is hard to control the
degree of augmentation for individual samples. For instance, a simple operation on a graph, e.g.,
dropping a node, may result in a completely different degree of augmentation depending on the graph
structure. If a hub node is removed, the single perturbation affects a substantial amount of other
nodes, which are data samples in node classification. To address these challenges, learning-based data
augmentation methods for graphs have been proposed. AdaEdge [16] optimizes the graph topology
based on the model prediction. [17] proposes GAug-M and GAug-O that generate augmented graphs
via a differentiable edge predictor. GraphMix [18] presents interpolation-based regularization by
jointly train a fully connected network and graph neural networks. However, they require additional
models for augmentation and more importantly do not explicitly guarantee that augmentation has a
proper strength and diversity.

In this paper, we proposed a novel framework called Metropolis-Hastings Data Augmentation (MH-
Aug) that draws augmented graphs from an ‘explicit’ target distribution with the desired strength
and diversity for semi-supervised learning. Since the direct sampling from the complex distribution
is challenging, we adopt the Metropolis-Hastings algorithm to obtain the augmented samples. Re-
cently, the importance of leveraging unlabeled data as well as adopting advanced augmentation has
emerged [19, 20]. Inspired by that, we also adopt the consistency training by utilizing the regularizers
for unlabeled data. Our extensive experiments demonstrate that MH-Aug can generate a sequence of
samples according to the desired distribution and be combined with the consistency training and it
significantly improves the performance of graph neural networks.

Our contributions are summarized as follows:

• We proposed a novel framework Metropolis-Hastings Data Augmentation that draws aug-
mented samples from an ‘explicit’ target distribution. To the best of our knowledge, this is
the first work that studies data augmentation for graph-structured data from a perspective of
a Markov chain Monte Carlo sampling.

• We theoretically and experimentally prove that our MH-Aug generates the augmented
samples according to the desired distribution with respect to the strength and diversity.

• We propose a target distribution that flexibly controls the strength and diversity of augmen-
tation. This includes an efficient way to measure the strength of augmentation reflecting the
structural changes of ego-graphs (or samples in node classification).

• Lastly, we propose a simple and effective semi-supervised learning strategy leveraging
sequentially generated samples from our method.

2 Related Works

Semi-Supervised Learning on Graphs. GNNs have been widely adopted in representation learning
on graphs [2–4]. However, existing works only utilize a small subset of nodes. To fully utilize a large
amount of unlabeled data, recent studies for semi-supervised learning have emerged inspired by semi-
supervised frameworks in other domains [19, 20]. GraphMix [18] is a regularization method based on
semi-supervised learning by linear interpolation between two data on graphs, and SSL [21] proposes
self-supervised learning strategies to exploit available information from graph structure. BVAT [22]
promotes the smoothness of GNNs by generating virtual adversarial perturbations. Likewise, we
follow semi-supervised strategy to leverage unlabeled data while considering sequentially generated
samples from our augmentation.

Data Augmentation on Graphs. Data augmentation is an effective technique to improve general-
ization by increasing the diversity of data. It is becoming the de facto necessity for model training
to employ simple data augmentation (e.g., image rotation, flipping, translation, and so on). Despite
the effectiveness of data augmentation, few approaches have been explored in graph domain due
to its non-Euclidean nature and dependencies between data samples. Simple approaches exist such
as DropEdge [23] to randomly remove a certain number of edges and AdaEdge [16] to adaptively
control the inter-class/intra-class edges. Similarly, a method to propagate the perturbed node features
by randomly dropping on a node-based was proposed in [24]. GAug [17] proposes the neural edge
predictors as an augmentation module. Unlike existing methods employing simple perturbation [23]
or extra augmentor model [17, 25], we propose the sampling-based augmentation, where a sequence
of augmented samples are drawn from the explicitly designed target distribution for augmentation.
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Figure 1: Sampling process of MH-Aug. MH-Aug produces augmented samples in two steps. First, it draws
a candidate graph G′ from a proposal distribution Q (green). Then, it decides whether to accept or reject the
candidate by the acceptance ratio A calculated by P (blue) and Q. The left box shows the details of sampling a
candidate graph G′ from the proposal distribution Q(G′|G(t)) given a current sample G(t): (1) Change Ratio
Sampling draws the change ratios ∆G′E and ∆G′V of a candidate graph w.r.t. edges and nodes from the Gaussian
distributions truncated to the range [0, 1], (2) Graph Modification generates G′E and G′V by applying the change
ratio to the original graph G, and (3) Candidate augmented graph G′ is constructed by merging two augmented
graphs G′E and G′V .

3 Method

We present a novel data augmentation framework for graph-structured data via Metropolis-Hastings
algorithm. MH-Aug is a sampling-based augmentation, where a sequence of augmented samples are
drawn from the explicit target distribution that enables flexible control of strength and diversity of
augmentation. The overall sampling process of MH-Aug is described in Figure 1. In this section, we
first summarize the basics for our framework and delineate the components of MH-Aug. Then, we
outline the training procedure with proposed consistency regularizers for semi-supervised learning.
Lastly, we theoretically prove the distribution of augmented samples by MH-Aug converges to the
desired target distribution.

3.1 Preliminaries

Ego-graph, Gi. A graph is denoted as G = (V, E), where V and E are the sets of nodes and edges.
A k-hop ego-graph Gi [26] is a subgraph of G centered at node vi ∈ V , consisting of neighbors
within k hops from node vi and all edges between the neighbors including vi. In other words,
the k-hop ego-graph of a node vi is defined as Gi = (Vi, Ei), Vi = {u|S(u, vi) ≤ k, u ∈ V},
Ei = {(u, v)|(u, v) ∈ E and u, v ∈ Vi}, where S(u, v) is the length of the shortest path between
nodes u and v. In this paper, we do not explicitly specify k for ego-graphs since 2-hop ego-graphs are
used in all experiments.

Change ratio of graph, ∆G′. The change ratio of graph G to G′ = (V ′, E ′) is measured by the
number of added/deleted edges (or nodes) divided by the number of original edges (or nodes), i.e.,
∆G′E = (|E ′−E|+|E−E ′|)/|E| and ∆G′V = (|V ′−V|+|V−V ′|)/|V|. Since, in this work, we consider
only subgraphs of the original input graph as augmented samples, which is similar to DropEdge [23]
and DropNode [24], the change ratio can be equivalently written as ∆G′E = 1 − |E ′|/|E| and
∆G′V = 1− |V ′|/|V|. Thereby ∆G′E and ∆G′V are always ranged in [0, 1].

Metropolis-Hastings (MH) algorithm. MH algorithm is a Markov chain Monte Carlo method
to draw random samples from a target distribution when direct sampling is difficult [27]. The
algorithm comprises three components: the target distribution P , the proposal distribution Q, and
the acceptance ratio A. The MH algorithm iteratively draws samples from the target distribution P
being only dependent on the current sample. The MH algorithm uses a proposal distribution Q to
draw a candidate sample and evaluates the acceptance ratio A to decide whether to accept or reject
the candidate sample. The accepted samples by the MH algorithm follow the target distribution P .
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(a) Message Propagation of vi on Gi (b) ∆G′i,(E) = 1− 13
15

(c) ∆G′i,(E) = 1− 6
15

Figure 2: Calculation of ∆G′i,(E). (a) displays the message propagation of vi on ego-graph Gi in
order. The received message of vi is 15 in the original 2-hop Gi. In case of dropping distant (2-hop)
edges (b), the received message of vi is 13 and ∆G′i,(E) becomes 0.13. In case of dropping same
number of near (1-hop) edges (c), the received message of vi is 6 and ∆G′i,(E) becomes 0.6.

3.2 Metropolis-Hastings Data Augmentation

Our objective is to sample the augmented graph G′ from the target distribution P given the original
graph G and can be written as

G′ ∼ P (G′;G). (1)
Since direct sampling from the target distribution P is challenging, we propose a novel data augmen-
tation method based on Metropolis-Hastings algorithm.

Target Distribution. We design the target distribution P to control the strength and diversity of
augmentation for effective learning. The strength and diversity can be discussed from two perspectives:
a full graph and ego-graphs. In our framework, the strength of augmentation is measured by the change
ratio of ego-graphs, i.e., ∆G′i, since most existing GNNs with k-layers learn node representations
based on their k-hop ego-graphs. On the other hand, the diversity of augmentation is controlled by
∆G′ and ∆G′i from both full graph and ego-graph perspectives. The diversity of augmentation is
adaptively adjusted for each ego-graph by the standard deviation σ(εi) that is a simple linear function
of the entropy εi of the prediction at node vi. Given the expected strength µE ∈ R and ego-graph
level diversity σE(εi) ∈ R, the target distribution P w.r.t. edges is given as follows:

PE(G′) ∝

 |V|∏
i

exp

(
−

(∆G′i,(E) − µE)
2

2{σE(εi)}2

)λ1

·

 1( |E|
|E|·∆G′E

)
λ2

, (2)

where ∆G′i,(E) is the change ratio of G′i w.r.t. E and λs are hyperparamters for controlling the influence
of the two components. To have various full graph change ratios ∆G′E , the normalization by the
number of possible augmented graphs corresponding to the same change ratio,

( |E|
|E|·∆G′E

)
, is necessary.

As the size of graph increases, without the normalization, it becomes extremely difficult to generate
augmented samples with a low (or high) full graph change ratio. For more details, see Section 4.2.
Similarly, The target distribution P with respect to nodes can be written as follows:

PV(G′) ∝

 |V|∏
i

exp

(
−

(∆G′i,(V) − µV)2

2{σV(εi)}2

)λ3

·

 1( |V|
|V|·∆G′V

)
λ4

, (3)

where ∆G′i,(V) is the change ratio of G′i w.r.t. the nodes, V . With combining the two distributions, the
overall target distribution is defined as:

P (G′) = PE(G′) · PV(G′). (4)

In our experiment, unlike the change ratio of the full graph ∆G′E (and ∆G′V ), we define the ego-graph
change ratio ∆G′i,(E) (and ∆G′i,(V)) with the change of the number of received messages from k-hop
ego-graphs. Figure 2 illustrates the calculation of ∆G′i,(E) regarding two different cases: (b) dropping
distant (2-hop) edges and (c) dropping near (1-hop) edges. In this definition, even if the number of
dropped edges is the same, dropping edges connecting nodes closer to the center node vi leads to a
larger ∆G′i,(E) than the case of distant nodes (0.6 > 0.13), which can be regarded as a much stronger
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augmentation. It indicates that the amount of received messages depends on not only the number
of removed edges but also which edges are dropped. This structural property can only be properly
handled from ego-graph perspective. In practice, this definition allows time and memory efficient
implementation using matrix multiplications as

∆G′i,(E) = 1− (Ã′k1)i

(Ãk1)i
, and ∆G′i,(V) = 1− (Ãkm)i

(Ãk1)i
, (5)

where Ã and Ã′ are adjacency matrices of the original graph G and the current graph G′, where both
graphs include a self-connection for every node, 1 ∈ R|V| is a vector of ones, and m ∈ R|V| is a
mask vector for DropNode.

Proposal Distribution. For efficient sampling and a theoretical guarantee of convergence to the
target distribution, a proposal distribution is crucial. A proposal distribution Q(G′|G(t)) suggests a
candidate augmented sample G′, given the current sample G(t). To draw diversely augmented graphs
with various edge/node change ratios ∆G′E and ∆G′V , a candidate augmented sample is generated by
three steps: 1) change ratio sampling, 2) graph modification and 3) merging. We first independently
sample change ratios ∆G′(·) for edges and nodes from Gaussian distributions truncated to the range

[0, 1] given mean ∆G(t)
(·) and standard deviation σ∆,(·). Then, we modify the original graph G to

generate augmented samples G′E and G′V , which can be viewed as a uniform sampling from all possible
augmented graphs with ∆G′E and ∆G′V respectively. Finally, the two graphs G′E and G′V are merged to
construct the candidate augmented sample G′. Formally, the proposal distribution is given by:

Q(G′|G(t)) ∝ φ(ξ′E)

Φ(βE)− Φ(αE)
· φ(ξ′V)

Φ(βV)− Φ(αV)
· 1( |E|
|E|·∆G′E

) · 1( |V|
|V|·∆G′V

) , (6)

where α(·) =
a−∆G(t)

(·)
σ∆

, β(·) =
b−∆G(t)

(·)
σ∆

, ξ′(·) =
∆G′(·)−∆G(t)

(·)
σ∆

, φ(x) = 1√
2π

exp(− 1
2x

2) as the
probability density function of the standard normal distribution and Φ(x) = 1

2 (1 + erf( x√
2
)) as its

cumulative distribution function. a and b represent the extremes of Gaussian distribution. Since the
change ratio should be ranged in [0, 1], a is 0 and b is 1. In (6), the first and second terms denote the
likelihood of the change ratios ∆G′E and ∆G′V given ∆G(t). The third and fourth terms are for the
probability of a sample with ∆G′E and ∆G′V .

Acceptance Ratio. Starting with the original graph G, MH-Aug draws the candidate graph G′ from
the proposal distribution Q. Then, with an acceptance ratio A, MH-Aug decides whether to accept or
reject the candidate G′. A is given as:

A = min

{
1,

P (G′)Q(G(t)|G′)
P (G(t))Q(G′|G(t))

}
. (7)

The computation of A with target distribution in (4) and proposal distribution in (6) is described in
the supplement. MH-Aug generates a sequence of augmented graphs {G(t)}0≤t≤T , where T is the
number of accepted samples.

3.3 Consistency Training with MH-Aug

Inspired by recent works [19, 28, 20] that show the importance of advanced augmentation methods
in leveraging unlabeled data, we demonstrate the effectiveness of our augmentation method in both
supervised and semi-supervised settings. Similar to consistency regularization [20], we propose a
simple training strategy with the following regularizers:

Lu =
1

|V|

|V|∑
i

DKL

[
f(G(t)

i ; θ) || f(G(t+1)
i ; θ)

]
, and Lh =

1

|V|

|V|∑
i

[−f(Gi; θ) log(f(Gi; θ))] ,

(8)

where DKL(· || ·) is the Kullback–Leibler divergence, f(·) is the GNNs parameterized by θ and Gi
is the k-hop ego-graph for node i. Lu encourages the consistency of predictions on two consecutive
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augmented samples G(t)
i , and G(t+1)

i . Lh penalizes unconfident predictions and sharpens predictions.
The two regularizers can be applied to both labeled and unlabeled nodes in the node classification
task. With the two regularizers and the standard cross-entropy loss Ls for supervised samples, the
overall loss for semi-supervised learning is given as

L = Ls + γ1Lu + γ2Lh. (9)

Our framework is outlined in Algorithm 1. Starting from original graph G with 0 change ∆G′,
MH-Aug generates new augmented graph data G′ with the change of ∆G′. It decides whether to
accept or reject the candidate G′ with acceptance score A. GNN models are trained with the accepted
augmented data with our loss in (9). Then, the process is repeated until the model converges.

Algorithm 1 Metropolis-Hastings Data Augmentation (MH-Aug) Framework
Input: target distribution P , proposal distribution Q, original graph G
Output: network parameter θ

Initialize t← 0, G(0) ← G
while not convergence do

Draw G′ from Q(G′|G(t)) . Q in Eq.(6)
Draw u from Uniform(0, 1)

if u ≤ A then . A in Eq.(7)
G(t+1) ← G′

Update θ with L(G,G(t),G(t+1); θ) . L in Eq.(9)
t← t+ 1

end if
end while

3.4 Theoretical Analysis

The goal of the Metropolis-Hastings algorithm is to generate a sequence of samples according
to a desired target distribution P . To accomplish this, the Metropolis-Hastings algorithm uses
a Markov process, which asymptotically reaches a unique stationary distribution π(x) such that
π(x) = P (x) [29]. Here, we show that Markov chain of MH-Aug, which has a sequence of augmented
graph as states, converges to the unique and stationary target distribution P (G′) defined in (4).

Lemma 3.1. Let the sequence of augmented graphs {G(t)}0≤t≤T be the Markov chain produced
by MH-Aug. If we define the acceptance ratio A with target distribution P in (4) and proposal
distribution Q in (6), the sequence converges to a unique stationary target distribution P .

This can be drawn from the Convergence theorem of Markov chain [30]. The proof is in the supple-
ment. By Lemma 3.1, we theoretically show augmented samples of MH-Aug converges to our desired
target distribution. Our toy examples show a sequence of augmented graphs actually converges well
to the target distribution (see Section 4.2 for details).

4 Experiments

In this section, we demonstrate the effectiveness of MH-Aug on various benchmark datasets. We
start with describing datasets, baselines, and implementation details for the experiments. Next, we
evaluate our framework for node classification in Section 4.1 and we offer qualitative analyses in
Section 4.2 on three parts: effectiveness of ego-graph perspective for desired target distribution P ,
necessity of normalization term in P , and whether generated samples from MH-Aug converge to P .

Datasets. We evaluate our method on five benchmark datasets in three categories: (1) Citation
networks: CORA and CITESEER [31], (2) Amazon product networks: Computers and Photo [32],
and (3) Coauthor Networks: CS [32]. We follow the standard data split protocol in the transductive
settings for node classification, e.g., [4] for CORA and CITESEER and [32] for the rest.

Baselines. As backbone models to validate MH-Aug, we adopt three standard graph neural networks:
GCN [4], GraphSAGE [1], and GAT [3]. We compare our method with vanilla models (without
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Table 1: Node classification results. Mean accuracy and standard deviation from 10 repetitions are
reported. We compare our methods with baselines of two categories: 1) supervised learning with
augmentation (e.g., DropEdge and AdaEdge), which are comparable to our MH-Aug (w/o Reg) and
2) semi-supervised learning (e.g., GAug, SSL, BVAT, UDA* and GraphMix) that are comparable to
our MH-Aug (w/ Reg). For each dataset and baseGNN the highest score is marked in bold.

BaseGNNs Method DATASET
CORA CITESEER Compu. Photo CS

GCN

Vanilla 81.54±0.76 71.64±0.31 79.68±2.16 89.02±1.49 91.45±0.28

DropEdge [23] 82.21±0.71 71.93±0.31 80.59±1.75 89.33±1.58 91.69±0.43

AdaEdge [16] 82.30±0.80† 69.70±0.90† 80.66±1.22 89.94±0.84 90.30±0.40†

MH-Aug (w/o Reg) 83.55±0.34 72.96±0.48 80.95±2.03 89.65±1.67 91.81±0.33

GAug-M [17] 83.50±0.40† 72.30±0.40† 78.90±1.76 88.46±1.24 OOM
GAug-O [17] 83.60±0.50† 73.30±1.10† OOM 89.04±1.18 OOM
SSL [21] 83.80±0.73† 72.95±0.62† - - -
BVAT [22] 83.60±0.50† 74.00±0.60† 80.07±2.41 88.46±2.25 92.21±0.37

UDA*[19] 83.59±0.61 73.56±0.41 81.68±2.95 89.95±1.73 92.26±0.37

GraphMix [18] 83.90±0.57† 74.70±0.59† 80.72±1.16 89.05±1.01 91.83±0.51†

MH-Aug (w/ Reg) 85.16±0.35 75.49±0.29 82.80±2.08 90.87±1.49 92.60±0.43

GraphSAGE

Vanilla 79.78±0.74 71.09±0.59 79.59±1.84 89.10±1.60 91.35±1.00

DropEdge [23] 80.36±0.80 71.46±0.57 79.87±1.87 89.86±1.78 91.84±0.76

AdaEdge [16] 80.20±1.20† 69.40±0.80† 80.43±1.30 90.57±0.70 90.30±0.40†

MH-Aug (w/o Reg) 82.61±0.66 72.12±0.99 81.74±2.52 90.37±1.50 92.27±0.49

GAug-M [17] 83.20±0.40† 71.20±0.40† 79.84±1.99 88.72±0.97 OOM
GAug-O [17] 82.00±0.50† 72.70±0.70† OOM 88.16±2.70 OOM
BVAT [22] 83.12±0.64 72.23±0.46 78.72±2.73 89.40±1.79 92.63±0.48

UDA*[19] 83.37±0.29 75.16±0.16 82.16±2.00 90.61±2.00 92.83±0.39

GraphMix [18] 82.28±0.55 69.62±0.36 81.33±1.46 88.46±1.36 89.29±0.45

MH-Aug (w/ Reg) 84.70±0.39 75.55±0.44 83.62±2.60 92.19±1.37 93.61±0.58

GAT

Vanilla 82.23±0.46 71.37±0.93 78.47±1.86 87.80±1.36 90.90±0.31

DropEdge [23] 83.04±0.37 72.16±0.91 81.04±1.86 88.73±1.54 91.10±0.37

AdaEdge [16] 77.90±2.00† 69.10±0.80† 77.52±1.72 88.92±0.87 86.60±0.16†

MH-Aug (w/o Reg) 83.49±0.69 72.81±0.98 81.72±1.66 90.23±0.97 91.40±0.39

GAug-M [17] 82.10±1.00† 71.50±0.50† 77.70±2.10 87.08±1.00 OOM
GAug-O [17] 82.20±0.80† 71.60±1.10† OOM 86.45±1.52 OOM
SSL [21] 83.70±0.61† 72.73±0.72† - - -
UDA*[19] 83.71±0.48 73.24±0.48 82.42±2.95 89.79±1.36 91.78±0.23

GraphMix [18] 83.32±0.18† 73.08±0.23† - - -

MH-Aug (w/ Reg) 84.95±0.40 75.53±0.32 83.25±1.88 90.61±1.34 92.08±0.58

UDA* denotes our extension of UDA in the graph domain. † denotes the results reported in the original paper.

augmentation), augmentation-based supervised learning (DropEdge [23], AdaEdge [16]), and semi-
supervised learning framework (GAug [17], SSL [21], BVAT [22], UDA* [19], GraphMix [18]). In
the case of DropEdge [23] and AdaEdge [16], they use only cross-entropy loss (supervised setting)
while the rest of models employs extra loss functions for regularization (semi-supervised setting).

4.1 Results on Node Classification

Table 1 shows the experimental results on node classification with five datasets compared to baseline
models. We implemented all the baselines and conducted experiments for fair comparison except for
the case where the performance (marked with †) is available in the original papers [16, 17, 21, 22, 18].
Also, we denote out-of-memory as OOM. MH-Aug (w/o Reg) means training the model only with the
labeled data and cross-entropy loss Ls whereas MH-Aug (w/ Reg) means using extra regularization
losses to explicitly utilize the unlabeled data. Our full framework MH-Aug (w/ Reg), which is trained
in the semi-supervised setting, consistently achieves the best performance in all datasets and the
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Figure 3: Diverse G′ sampled by MH-Aug. The first cell is the original graph G extracted from
CORA. With the fixed full graph change ratio ∆G′E , augmented graphs with different µE and σE
are generated by MH-Aug. All graphs above are 3-hop ego-graphs with a center node marked as
yellow. Nodes and edges which are not in the ego-graph after augmentation are blurred. Mini-maps
at the upper right corner is the edge-drop probability, where blue means higher probability and red
means low probability to drop the edge. By explicitly controlling the strength and diversity from an
ego-graph perspective, MH-Aug generates diverse augmentations.

improvement against the vanilla models is 3.16% on average. In particular, we observe that MH-Aug
improves the performance by 4.92% compared to the vanilla GraphSAGE on CORA. In addition,
MH-Aug provides an 4.16% gain on CITESEER on average over all models (i.e., vanilla GCN,
GraphSAGE and GAT).As an ablation study, we conduct experiments with MH-Aug (w/o Reg), our
framework trained in the supervised setting. Table 1 shows that MH-Aug (w/o Reg) achieves 1.47%
improvement on average compared to vanilla models. MH-Aug (w/o Reg) provides considerable gain
over all dataset and model. More specifically, it provides 3.25% performance improvement compared
to the vanilla GAT model on Computers. In addition, MH-Aug (w/o Reg) beats DropEdge for all
settings and mostly beats AdaEdge that optimizes the graph topology based on the model predictions.
It is worth noting that even though MH-Aug (w/o Reg) does not explicitly utilize unlabeled data during
training, MH-Aug (w/o Reg) achieves competitive performance compared to other semi-supervised
methods, especially in the following cases: GCN on CORA (83.55%); GraphSAGE on CITESEER
(72.12%); and GAT on CORA (83.49%), and Photo (90.23%). This demonstrates the effectiveness of
our sampling-based augmentation. More discussion on ablation study is in the supplement.

4.2 Analysis

Effectiveness of Ego-graph Perspective. To validate the effectiveness of ego-graph perspective
augmentation, we qualitatively analyze augmented samples by MH-Aug on real data with various
settings as shown in Figure 3. An original sample (first column) is a 3-hop ego-graph from CORA.
Augmented samples are generated from G in three settings: (µE , σE ) = (0,0.05), (µE , σE ) = (1,0.05)
and (µE , σE ) = (0,1000). The mini maps at the upper right corner shows the edge-drop probability,

calculated from
∏|V|
i exp

(
− (∆G′i,(E)−µE)2

2{σE}2

)
of (2). To evaluate the effect of µE and σE w.r.t. ego-

graph, we fix the full-graph change ratio ∆G′E and observe the expected value of ∆G′i,(E) over all
possible nodes in the ego-graph, E[∆G′i,(E)]. Thus, the number of dropped edges is identical for all the
augmented graphs in Figure 3. It demonstrates that even if the number of dropped edges is the same,
one can generate diverse samples by controlling µE and σE . When µE , which controls the expected
augmentation strength, is large, e.g., µE = 1, σE = 0.05, more important edges (e.g., edges acting as
bridges between hub nodes) tend to be dropped. This observation exactly matches to our design in
Section 3.2, which considers dropping edges near to the center as a strong augmentation. In addition,
the mini map in the fourth cell of Figure 3 indicates if σE increases, the edge-drop probability of
the all edges becomes uniform, i.e. MH-Aug subsumes DropEdge as a special case. In sum, the
ego-graph perspective enables the explicit control of augmentation strength and diversity to make an
advanced augmentation.
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(a) With Normalization, λ2 = 1 (b) Without Normalization, λ2 = 0

Figure 4: The effect of normalization term. The two plots above show the distribution of aug-
mented graphs w.r.t. E[∆G′i,(E)]. We conduct the toy example with the target distribution (a) with
normalization (blue) and (b) without normalization (red).

(a) Drop probability of each edges (b) Visualization of drop probability on grid graphs

Figure 5: Convergence to the target distribution. To verify the convergence of MH-Aug, we
simulate the sampling procedure of MH-Aug on a grid graph. (a) is the result of target distribution
P given µE = 0. We highlight the edges according to drop probability. (b) shows that the samples
drawn from MH-Aug (blue) follow the target distribution P (red) that we calculate with (2).

Necessity of Normalization Term. As mentioned in Section 3.2, the normalization in the target
distribution P by the number of possible augmented graphs corresponding to the same change ratio,( |E|
|E|·∆G′E

)
, is crucial to generating ego-graphs with the desired ego-graph change ratio µE when

the number of edges is huge. We demonstrate it with a small but fully connected graph to apply
MH-Aug. Figure 4 displays the distribution of the empirical mean of ∆G′i,(E) from the augmented
graph sampled from P with two different µE = 0.1 and µE = 0.9. With normalization (Figure 4(a)),
the sample mean of ∆G′i,(E) of both sampling results are near to the µE values. However, without
normalization (Figure 4(b)), the empirical mean of ∆G′i,(E) remains the same due to overwhelmingly
many possible subgraphs with a certain full graph change ratio ∆G′E , e.g.,

(
100×100

5000

)
for a fully

connected graph with 100 nodes. But this does not mean that our MH-Aug fails to converges to the
target distribution. It merely converges to the undesirable target distribution.

Convergence to Target Distribution. In Section. 3.4, we theoretically show that the distribution of
samples generated by MH-Aug converges to our desired target distribution P . Now, we conduct the
experiment to examine whether a sequence of augmented graphs experimentally follows the target
distribution. We observe the behavior of MH-Aug with a simple toy example, i.e., a grid graph with
100 nodes. For simplicity, we only consider the change of edges and the target distribution PE in (2).
In 5(b), red line denotes the probability of each edge obtained by calculating P with (2). Blue bars
represent the distribution of augmented graphs generated by MH-Aug. It shows MH-Aug generates
augmented graphs following the target distribution. In 5(a), we visualize drop probability on graph.
Since we set µE small, drop probability of center edges is higher than others.

5 Conclusion

We present a novel semi-supervised strategy with Metropolis-Hastings algorithm based augmentation
method. This is the first work to impose data augmentation on graph-structured data from a perspective
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of a Markov chain Monte Carlo sampling. We theoretically and experimentally show the convergence
of augmented samples to target distribution and demonstrate its consistent performance improvement
over baselines across five benchmark datasets.
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