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Abstract

State-of-the-art neural models of source code tend to be evaluated on the generation
of individual expressions and lines of code, and commonly fail on long-horizon
tasks such as the generation of entire method bodies. We propose to address this
deficiency using weak supervision from a static program analyzer. Our neurosym-
bolic method allows a deep generative model to symbolically compute, using calls
to a static-analysis tool, long-distance semantic relationships in the code that it
has already generated. During training, the model observes these relationships
and learns to generate programs conditioned on them. We apply our approach to
the problem of generating entire Java methods given the remainder of the class
that contains the method. Our experiments show that the approach substantially
outperforms state-of-the-art transformers and a model that explicitly tries to learn
program semantics on this task, both in terms of producing programs free of basic
semantic errors and in terms of syntactically matching the ground truth.

1 Introduction

Neural models of source code have received much attention in the recent past [38, 9, 26, 23, 30, 36,
16, 24]. However, these models have a basic weakness: while they frequently excel at generating
individual expressions or lines of code, they do not do so well when tasked with synthesizing larger
code blocks. For example, as we show later in this paper, state-of-the-art transformer models [8, 6, 24]
can generate code with elementary semantic errors, such as uninitialized variables and type-incorrect
expressions, when asked to generate method bodies, as opposed to single lines. Even in terms of
syntactic accuracy measures, the quality of the code that transformers produce on such “long-horizon”
tasks can be far removed from the ground truth.

The root cause of these issues, we believe, is that current neural models of code treat programs as
text rather than artifacts that are constructed following a semantics. In principle, a model could
learn semantics from syntax given enough data. In practice, such learning is difficult for complex,
general-purpose languages.

In this paper, we propose to address this challenge through an alternative neurosymbolic approach.
Our main observation is that symbolic methods—specifically, static program analysis—can extract
deep semantic relationships between far-removed parts of a program. However, these relationships
are not apparent at the level of syntax, and it is difficult for even large neural networks to learn them
automatically. Driven by this observation, we use a static-analysis tool as a weak supervisor for a
deep model of code. During generation, our model invokes this static analyzer to compute a set of
semantic facts about the code generated so far. The distribution over the model’s next generation
actions is conditioned on these facts.

We concretely develop our approach by extending the classic formalism of attribute grammars [20].
Attribute grammars are like context-free grammars but allow rules to carry symbolic attributes of the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



context in which a rule is fired. In our model, called Neurosymbolic Attribute Grammars (NSGs),
the context is an incomplete program, and rules are fired to replace a nonterminal (a stand-in for
unknown code) in this program. The attributes are semantic relationships (for example, symbol tables)
computed using static analysis. The neural part of the model represents a probability distribution
over the rules of the grammar conditioned on the attributes. During generation, the model repeatedly
samples from this distribution while simultaneously computing the attributes of the generated code.

We evaluate our approach in the task of generating the entire body of a Java method given the rest
of the class in which the method occurs. We consider a large corpus of curated Java programs, over
a large vocabulary of API methods and types.Using this corpus, we train an NSG whose attributes,
among other things, track the state of the symbol table and the types of arguments and return values of
invoked methods at various points of a program, and whose neural component is a basic tree LSTM.
We compare this model against several recent models: fine-tuned versions of two GPT-NEO [6]
transformers and the CODEGPT [24] transformer, OpenAI’s CODEX system [8] (used in a zero-shot
manner), and a GNN-based method for program encoding [7]. Some of these models are multiple
orders of magnitude larger than our NSG model. Our experiments show that the NSG model reliably
outperforms all of the baselines on our task, both in terms of producing programs free of semantic
errors and in terms of matching the ground truth syntactically.

In summary, this paper makes three contributions:

• We present a new approach to the generative modeling of source code that uses a static-analysis
tool as a weak supervisor.

• We embody this approach in the specific form of neurosymbolic attribute grammars (NSGs).
• We evaluate the NSG approach on the long-horizon task of generating entire Java method bodies,

and show that it significantly outperforms several larger, state-of-the-art transformer models.

2 Conditional Program Generation

(a)
public class FileUtil{
String err;
public int read(File f){...}

/* write lines to file */
public void write(
File f, String str){??}}

(b)
void write(File f, String str){
try {
FileWriter var_0;
var_0 = new FileWriter(f);
var_0.write(str);

} catch(IOException var_0) {
var_0.printStackTrace();
System.out.println( ARG ); }

return; }

Figure 1: (a) An instance of conditional
program generation. (b) A top comple-
tion of the write method, generated
using an NSG. ARG stands for a string
literal.

We start by stating our problem, known as conditional
program generation (CPG) [26]. We imagine a joint dis-
tribution D(X,Y ), where X ranges over specifications
of program-generation problems and Y ranges over pro-
grams. The probability D(X = X, Y = Y) is high when
Y is a solution to X. Also, we consider a family of dis-
tributions P✓(Y |X = X), parameterized by ✓, that we
might want to learn. Learning to conditionally generate
programs amounts to finding parameters ✓ that minimize
the prediction error E(X,Y)⇠D[�(P✓(X|Y),Y)], where � is
a suitable distance function between programs.

Specifications and distances between programs can be de-
fined in many ways. In our experiments, the goal is to
generate Java method bodies. A specification is an evi-
dence set that contains information—e.g., method names,
types of variables and methods—about the class in which
the method lies. We define �(Y1,Y2) to be a large num-
ber if Y1 or Y2 violates one of several language-level
invariants (e.g., type-safety, initialization of variables be-
fore use) that we require programs to satisfy. When both
programs satisfy the invariants, �(Y1,Y2) measures the
textual dissimilarity between the two programs.

Note that CPG is a much more challenging task than the well-studied next-token-prediction task
[24, 7]. The goal is to predict long sequences of tokens (e.g., an entire method body). Also, X is a
(possibly imprecise) specification of the code to generate, not just a sequence of tokens we are trying
to complete by, say, choosing the correct method to call for a variable.

Example. Fig. 1-(a) illustrates the kind of task that we target. Here, we are given a class with
a missing write method. The specification X includes: (i) the class name FileUtil; (ii) the
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(a) (b)
Stmt : Stmt; Stmt

| Expr . Method (ArgList)
| DeclType Var = new NewType (ArgList) Stmt { SymTab symTab #; SymTab symTabOut "; };

(c) (d)

Stmt : Stmt; Stmt;
[ Stmt$1.symTab # := Stmt$0.symTab #
Stmt$2.symTab # := Stmt$1.symTabOut "
Stmt$0.symTabOut " := Stmt$2.symTabOut "]

Stmt : Expr . Method (ArgList)
[ Stmt.symTabOut " := Stmt.symTab # . . . ]

| DeclType Var = new NewType (ArgList)
[ DeclType.symTab # := Stmt.symTab #

Var.symTab # := Stmt.symTab #
Stmt.symTabOut " := Stmt.symTab # +

(Var.name " 7! DeclType.type ")
ArgList.typeList # := NewType.typeList "
ArgList.symTab # := Stmt.symTab #
NewType.declType # := DeclType.type "]

Stmt

Stmt

Stmt

Stmt

Stmt

∘

symtab

∘ ∘ ∘

∘ ∘ ∘ ∘

∘

∘

Expr.Method(ArgList)

DeclType ∘ Var ∘ = new NewType (ArgList)

DeclType ∘ Var ∘ = new NewType (ArgList)

+

+

Figure 2: (a) A basic context-free grammar. (b) Attributes of the Stmt nonterminal. (c) Attribute
equations for the productions (the parts of the equations denoted by “. . . ” are elided). (d) An
attributed tree, illustrating left-to-right threading of attributes.

type String of the class variable err; (iii) information about complete methods within the class
(including the methods’ return types and formal-parameter types and names, and sequences of API
calls made within such methods); (iv) information about the method with missing code (write),
including its name, formal parameters, and JavaDoc comments for the method with missing code
(e.g., “write lines to file”). Our objective on this input is to generate automatically a non-buggy,
natural completion of write, without any provided, partial implementation of the method.

To understand the challenges in this task, consider a completion that starts by: (i) declaring a local
variable var_0; and (ii) invoking the constructor for FileWriter and storing the result in var_0.
A proper implementation of these two steps must ensure that var_0 is of type FileWriter. Also,
the first argument to the constructor of FileWriter must be of type File (or a subtype of File).
As we show in Sec. 5, it is hard for state-of-the-art neural models to learn to satisfy these rules.

In contrast, in our approach, the generator has access to a set of semantic attributes computed via
static analysis. These attributes include a symbol table mapping in-scope variables to their types.

Suppose that during training we are given the following line of code: “var_0 =
new FileWriter(f, true)”. Our model’s symbol table includes the names var_0 and f
and their types. The grammar is also able to compute the type of the first argument in the invoked
constructor for FileWriter. Consequently, the model can observe that the type of f is listed as
File in the symbol table, and that f is the first argument to the FileWriter constructor. With
a few observations like these, the model can learn that the first argument of “new FileWriter”
tends to be of type File (or a subtype). During generation, the model uses this knowledge, locating
a variable of the correct type in the symbol table each time it constructs a FileWriter.

Fig. 1-(b) shows a top completion of write generated by our NSG implementation. Note that all
variables in this code are initialized before use, and that all operations are type-safe. Also, the name
var_0 is reused between the try and the catch blocks. Such reuse is possible because the symbol
table carries information about the scopes to which different names belong. Finally, as we will see in
Sec. 5, the extra information provided by the static analyzer can also help with accuracy in terms of
syntactic matches with the ground truth.

3 Static Analysis with Attribute Grammars

As mentioned in Sec. 1, we develop our approach as an extension of the classic attribute grammar
(AG) framework [20]. Now we give some background on static analysis using AGs. In the next
section, we show how to use AGs to weakly supervise a neural program generator.
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An AG extends a traditional context-free grammar (CFG) [18] by attaching a set of attributes to each
terminal or nonterminal symbol of the grammar and by using a set of attribute equations to propagate
attribute values through syntax trees. The attributes of a symbol S can be divided into inherited
attributes and synthesized attributes, which we suffix by # and ", respectively. Inherited attributes
transfer information from parent to child, or from a node to itself. Synthesized attributes transfer
information from child to parent, from a node to a sibling, or from a node to itself. We assume that
the terminal symbols of the grammar have no synthesized attributes and that the root symbol of the
grammar has a special set of inherited attributes, known as the initial attributes.

The output attributes of a production S ! S1, . . . , Sk consist of the synthesized-attribute occurrences
of the nonterminal S, plus the inherited-attribute occurrences of all of the Si’s. The input attributes
are the inherited-attribute occurrences of S, plus the synthesized-attribute occurrences of the Si’s.
The grammar’s attribute equations relate the input and output attributes of a node in terms of the
attributes of its parent, children, and left sibling in the syntax tree that the grammar generates.

Example. Consider the simple CFG in Fig. 2-(a). The nonterminal Stmt stands for program
statements. The grammar says that a statement can either be a sequential composition of statements,
a method call, or a variable declaration. A natural AG extension of this CFG tracks symbol tables,
which allow easy lookup of all variables in scope.

Specifically, the grammar associates two symbol-table-valued attributes, symTab # and symTabOut ",
with Stmt (Fig. 2-(b)). The attributes are propagated following the equations in Fig. 2-(c). In these
equations, we distinguish between the three different occurrences of nonterminal “Stmt” via the
symbols “Stmt$0,” “Stmt$1,” and “Stmt$2.” where the numbers denote the leftmost occurrence, the
next-to-leftmost occurrence, etc. In this case, the leftmost occurrence is the left-hand-side occurrence.

For concreteness, let us consider the attribute equations for the production for sequential composition
in the grammar. Here, the inherited attribute of Stmt$0 gets passed “down” the syntax tree as an
inherited attribute of Stmt$1. The synthesized attribute received at Stmt$1 is passed to Stmt$2 as an
inherited attribute. More generally, the attribute equations define a left-to-right information flow
through the syntax tree, as illustrated in Fig. 2-(d).

4 Neurosymbolic Attribute Grammars

Now we introduce the model of neurosymbolic attribute grammars (NSGs). Our goal is to learn a
distribution P(Y |X), where Y is a random variable whose domain is all possible programs (concretely,
Java method bodies) and X is a specification of a program-generation problem (concretely, an evidence
set made up of useful information extracted symbolically from the method’s context and then encoded
using a neural network). Attributes containing the results of a symbolic, static analysis are available
to the neural network implementing this distribution. This weak supervision allows the network to
mimic more accurately the long-range dependencies present in real code-bases.

The Underlying Model. The idea of weak supervision using a static analyzer could be developed on
top of many different kinds of models. Here, we develop the idea on top of a model from Murali et al.
[26]. This model uses a latent variable Z to represent the true user intent behind the incomplete or
ambiguous evidence set Y . We then have P(Y|X) =

R
Z P(Z|X)P(Y|Z)dZ. To define the distribution

P(Z|X), we assume that the evidence set has data of a fixed number of types—e.g., method names,
formal parameters, and Javadoc comments.

The jth type of evidence has a neural encoder fj . An individual piece of evidence X is either encoded
as a single vector or as a set of vectors with no particular ordering. For example, our implementation
encodes Javadoc comments as vectors using LSTMs, and each member of a set of formal parameters
using a basic feedforward network. Let Xj,k refer to the k

th instance of the j
th kind of evidence in X.

Assume a Normal prior on Z, and let P(X|Z) =
Q
j,k

N
�
fj(Xj,k) | Z, I�2

j

�
. Assume that the encoding

of each type of evidence is sampled from a Normal centered at Z. If f is 1-1 and onto, we have [26]:

P(Z|X) = N

0

B@Z |

P
j,k

�
�2
j fj(Xj,k)

1 +
P
j
|Xj |��2

j

,
1

1 +
P
j
|Xj |��2

j

I

1

CA
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Algorithm 1: Gen(S,A(S)#, SymSoFar,Z)

Input: current symbol S, inherited attributes
A(S)#, sequence of symbols so far
SymSoFar, latent encoding Z

Modifies: all symbols expanded are appended
to SymSoFar

Returns: A(S)", the synthesized attrs of S

if S is a terminal symbol then
Append (S, ✏) to SymSoFar
return ;

else
Choose a right-hand-side (RHS) sequence
Srhs ⇠ P(S|SymSoFar, A(S)#,Z)

Append (S, Srhs) to SymSoFar
SynthSoFar hi
for S

0 2 Srhs in left-to-right order do
Compute A(S0)# from A(S)# and
SynthSoFar

A(S0)"  
Gen(S0

, A(S0)#, SymSoFar,Z)
Append A(S0)" to SynthSoFar

end
end
Compute A(S)" from A(S)# and SynthSoFar
return A(S)"

Next, we define the distribution P(Y |Z). Con-
sider a stochastic CFG which assumes (1) that
a leftmost derivation is carried out, and (2) the
probability distribution governing the expan-
sion of a symbol in the grammar takes into
account the sequence of all expansions so far,
as well as an input value Z upon which all
expansions are conditioned.

This CFG consists of productions of the form
S : seq1 | seq2 | seq3... | seqn. Each sym-
bol such as S corresponds to a categorical
random variable with sample space ⌦(S) =
{seq1, seq2, ..., seqn}. A trial over the sym-
bol S randomly selects one of the RHS se-
quences for that symbol. If S is a terminal
symbol, then ⌦(S) = {✏}, where ✏ is a special
value that cannot be expanded. Subsequently,
when a trial over S is performed and an RHS
sequence from ⌦(S) is randomly selected, we
will use the sans-serif Srhs to denote the iden-
tity of the RHS sequence observed.

Now consider a depth-first, left-to-right al-
gorithm for non-deterministically expanding
rules in the grammar to generate a program
Y = h(S1, Srhs

1 ), (S2, Srhs
2 ), ...i; here, each Si

is a symbol encountered during the expansion,
and each Srhs

i is the identity of the RHS cho-
sen for that symbol. Let S1 correspond to the
symbol Start. We perform a trial over S1 and
select one of the RHS sequences from ⌦(S1). Let the identity of the RHS sequence selected be Srhs

1 .
Note that Srhs

1 is itself a sequence of symbols. Choose the first symbol in the sequence Srhs
1 ; call this

symbol S2. Perform a trial over S2, and let the identity of the RHS sequence chosen be Srhs
2 . Choose

the first symbol in Srhs
2 (call it S3) and expand it the same way. This recursive descent continues until

a terminal symbol Si is encountered, and the recursion unwinds. If the recursion unwinds to symbol
S2, for example, then we choose the second symbol in the sequence Srhs

1 , which we call Si+1. We
perform a trial over Si+1, and let the identity of the RHS sequence chosen be Srhs

i+1. This sequence is
recursively expanded. Once all of the symbols in the RHS associated with the Start symbol S1 have
been fully expanded, we have a program.

This generative process defines a probability distribution P(Y |Z), where for a particular program Y,
the probability of observing Y is computed as

P(Y|Z) =
Y

i

P(Si = Srhs
i |S1 = Srhs

1 , ..., Si�1 = Srhs
i�1,Z). (1)

We henceforth abbreviate the expression for the inner probability as P(Srhs
i |Srhs

1 , ..., Srhs
i�1,Z).

Weak Supervision with Attributes. Now assume that the grammar is an AG, so that each symbol
S has an attribute set A(S). We use A(S)" to denote the synthesized attributes of S, and A(S)# to
denote the inherited attributes of S.

An NSG extends the model so that the conditional distribution P(Y |Z) is defined as:

P(Y|Z) =
Y

i

P(Srhs
i |hSrhs

1 , Srhs
2 , ..., Srhs

i�1i, A(Si)#,Z).

That is, when a symbol Si is non-deterministically expanded, its value depends not just on the latent
position Z and the sequence of expansions thus far, but also on the values of Si’s inherited attributes,
A(Si)#. In theory, a powerful enough learner with enough data could learn the importance of these
sets of attribute values, without ever seeing them explicitly. In that sense, they could be treated as
latent variables to be learned. However, the benefit of having a static analysis produce these values
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deterministically is that the author of a static analysis knows the semantic rules that must be followed
by a program; by presenting the data used to check whether those rules are followed directly to a
learner, the process of learning to generate programs is made much easier.

Generation of a program under an NSG is described in Algorithm 1, where the distribution governing
the expansion of symbol S has access to attribute values A(S)#.
Designing an appropriate static analysis. Intuitively, a program generated with the supervision
of a static analyzer is likely to generate a semantically correct program because the static analysis
provides key semantic clues during program generation. In a conventional AG-based analyzer, the AG
would be used to maintain data structures that can be used to validate that in a complete program, key
relationships hold among the values of the production’s attributes. Our goal is to generate programs,
rather than validate them; also, we want to guide the learner rather than impose hard constraints.
However, constraints are a good mental model for designing a good NSG. That is, we generally
expect the attribute equations used at important decision points during a neural generation process to
be also helpful for validating key semantic properties of complete programs.

Example. Now we show how to use the attribute grammar in Fig. 2 in generating the body of the
write method from Sec. 2. Let us assume that the grammar has a start nonterminal Start (not shown
in Fig. 2) that appears in a single rule expanding it to the statement nonterminal Stmt. We start by
extracting the context X around the method, then use this information to sample Z from P (Z|X).
Next, a Java compiler processes the surrounding code and the method’s formal parameters to form the
attributes A(Start)#, which we assume to consist of a symbol table { f 7! File,str 7! String }.

To generate a program, we sample from the distribution P (Start|hi, A(Start)#,Z). First, Start is
expanded to “Stmt ; Stmt”. When expanding the first Stmt, the NSG needs to choose between a method
invocation and a variable declaration. Because the NSG is “aware” that this step is to expand the first
line of the method—the list of RHS values chosen so far is empty—we would expect it to declare
a variable. This choice gives us the RHS “DeclType Var = new NewType (ArgList)”. Expanding
DeclType, the NSG samples a Java type from the distribution

P (DeclType|h“Stmt; Stmt”, “DeclType Var = new NewType (ArgList)”i, A(DeclType)#,Z).

From the rules for expanding the nonterminal DeclType in Fig. 2, we see that the NSG can choose
any Java type as the declared type of the variable. At this point, the NSG is aware that the goal is
to create a method called write (this is encoded in Z) and that it is choosing a type to be declared
on the first line of the method. It also has access to the symbol table that is maintained as part of
A(DeclType)#. Thus, the NSG may decide to expand the symbol DeclType to FileWriter. This
type is then passed upward via the synthesized attribute DeclType.type".
Next, the grammar must expand the Var rule and pick a variable name to declare. This choice is
returned via the synthesized attribute Var.name". Now it is time to expand NewType. The attributes
make this easy: when sampling from P (NewType|...), the NSG has access to NewType.type#, which
takes the value FileWriter. A synthesizer may err by choosing a type that is not compatible
with FileWriter. However, we may expect that during training, every time that NewType was
expanded and the declared type was FileWriter, the type chosen was either FileWriter or
some subclass of FileWriter. Hence the NSG is unlikely to make an error.

Assume that the NSG chooses FileWriter. It must now expand ArgList. Again, the NSG has the
advantage of having access to ArgList.typeList# (an explicit representation of the types required by
the constructor being called) and, most importantly, ArgList.symTab# (an explicit list of the variables
in scope, as well as their types). At this point, it is easy for the NSG to match the required type of the
first argument to the constructor (File) with an appropriate variable in the symbol table (f).

Now that the declaration of var_0 has been fully expanded, the NSG updates the symbol table with
a binding for the newly-declared variable var_0, and the attribute Stmt.symTab" takes the value
{f 7! File,str 7! String,var_0 7! FileWriter}. When the second occurrence of Stmt
is expanded, the symbol table is passed down via the inherited attribute Stmt$1.symTab #. All of
the information available—the latent variable Z encoding the contextual information (including the
name of the method “write” being generated), and the symbol table containing a FileWriter
and a String)—helps the NSG to deduce correctly that this Stmt symbol should be expanded into
an invocation of a write method. Also, the presence of the symbol table makes it easy for the NSG
to correctly attach the write method call to the variable var_0 and to use str as the argument.
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5 Evaluation

Our experimental hypothesis is that neural networks find it difficult to learn the intricate rules that
govern the generation of code by only looking at the syntax of example programs. These issues
become especially visible when the units of code to be generated are large, for example, entire method
bodies. In contrast, an NSG can use its static analysis to compute long-distance dependencies between
program variables and statements “for free.” Because of this extra power, NSGs can outperform much
larger neural models at generating accurate and semantically correct code.

5.1 Experimental Setup

Data. To test our hypothesis, we used a curated, deduplicated set of Java source-code files [26].
For each class and each method, we used the remainder of the class as evidence or context, and the
method body was used to produce training or test data. We used 1.57 M method bodies for training.
The grammar used had ten terminals corresponding to formal parameters, ten for class variables, and
ten for methods local to the class. None of the Java classes in the corpus needed more than ten of
each of these terminals; when generating training data, each declared Java variable or method was
randomly mapped to one of the appropriate terminals. Approximately 8,000 types and 27,000 method
calls from the Java JDK also appeared as terminals in the grammar.

NSG Implementation. We implemented an NSG for our subset of Java. Here, attributes are used to
keep track of the state of the symbol table, the expected return type of each method, expected types of
actual parameters, variable initialization, whether the variable has been used, and whether the method
has a return statement. The symbol table contains entries for all formal parameters, class variables,
and internal methods within the class.

The neural part of our model has 63 M parameters. To expose the attributes to the neural part of the
model, we implement a depth-first search over a program’s abstract syntax tree (AST) to extract node
information. The attributes are then encoded in a standard way — for example, the symbol table is
represented as matrix (rows correspond to types, columns to variables, the value 1 is present if the
corresponding type/variable pair is in scope). The distribution P(Srhs

i |hSrhs
1 , Srhs

2 , ..., Srhs
i�1i, A(Si)#,Z)

is implemented as a set of LSTMs that decode the sequence of symbols, as well as the encoded
A(Si)# and Z, into a distribution over Srhs

i . We trained our framework on top of Tensorflow [1].
Using one GPU, the NSG training time is around 72 hours. See Appendix C for more details.1

Baselines. We consider three categories of baselines. The first consists of large pretrained trans-
formers. Specifically, we consider two variants of the GPT-NEO [6] model with 125 M and 1.3
B parameters. Both models are pre-trained on the Pile dataset [15], which consists of an 800 GB
English-text corpus and open-source code repositories. On the APPS dataset [17], they perform well
compared to OpenAI’s 12-B-parameter, GPT-3-like CODEX model [8]. We also compare against
CODEGPT [24] which is a GPT-2-like model with 125 million parameters. This model was pre-
trained on Python and Java corpora from the CodeSearchNet dataset, which consists of 1.1 M Python
functions and 1.6 M Java methods. We fine-tune all of these pretrained models on our Java dataset,
using the token-level code-completion task provided by CodeXGLUE [24]. Finally, we also offer a
comparison against the CODEX model [8]. Because we did not have access to the model’s pretrained
weights, this model is only used in a zero-shot fashion (no fine-tuning on our Java dataset). It should
be noted here that the transformer baselines work on the entire Java language, whereas our NSG
framework works on a sub-part of Java which is supported in our grammar definition.

The second category comprises an ablation, called a “conditional neural grammar” (CNG), that is
identical to our NSG model but is trained without any of the attribute information. In other words, the
CNG model is trained only on the program syntax. The third category includes GNN2NAG [7], a
graph-neural-network-based method that uses an attribute grammar but learns the attributes from
data rather than computing them symbolically. See Appendix C for more details on the baselines.

Test Scenario. Our test scenario is as follows. Given a Java class, we remove the entire body of a
randomly selected method. We then use the remaining potion of the class along with the method
header as context information that is then fed to the model as input. We run our NSG model and the
baselines to regenerate this method body conditioned on the resulting context. We report the accuracy
of the prediction based on static-semantic checks and fidelity measures.

1Our implementation is available at https://github.com/rohanmukh/nsg.
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Table 1: Percent of Static Checks Passed

GPTNeo125M GPTNeo1.3B CODEX CODEGPT GNN2NAG CNG NSG

No undeclared variable access 89.87% 90.36% 88.62% 90.94% 47.44% 19.78% 99.82%
Valid formal parameter access NA NA NA NA 25.78% 11.03% 99.55%
Valid class variable access NA NA NA NA 15.40% 12.75% 99.53%
No uninitialized objects 93.90% 91.73% 90.82% 94.37% 21.20% 21.56% 99.01%
No variable access error 90.36% 90.51% 88.86% 91.32% 28.92% 17.92% 99.69%
Object-method compatibility 98.36% 98.09% 98.35% 97.84% 21.43% 12.23% 97.53%
Return type at call site 97.38% 98.01% 98.53% 97.83% 23.86% 16.40% 98.01%
Actual parameter type 87.03% 86.36% 92.28% 88.71% 9.27% 16.09% 97.96%
Return statement type 84.05% 85.09% 88.13% 85.23% 12.34% 9.51% 90.97%
No type errors 87.25% 88.13% 91.42% 88.10% 16.31% 13.56% 97.08%
Return statement exists 99.61% 99.80% 98.44% 99.57% 94.02% 99.92% 97.10%
No unused variables 96.42% 96.46% 96.82% 97.64% 20.95% 24.29% 93.84%
Percentage of parsing 98.18% 98.13% 96.41% 97.08% 100.0% 100.0% 100.0%
Pass all checks 65.26% 64.88% 47.49% 67.73% 17.34% 12.87% 86.41%

Table 2: Average Fidelity of Generated Method Bodies

GPTNeo125M GPTNeo1.3B CODEX CODEGPT GNN2NAG CNG NSG

Set of API Calls 32% 37% 36% 36% 3% 22% 53%
Sequences of API Calls 17% 20% 16% 19% 0.3% 18% 42%
Sequences of Program Paths 12% 15% 10% 14% 0% 17% 39%
AST Exact Match 12% 15% 10% 14% 0% 6% 26%

5.2 Results

Static Checks. For each generated method body, we check the following properties: (1) No unde-
clared variable access: Are all the variables used in a program declared (within an enclosing scope)
before they are used? (2) Valid formal parameter access: Are formal parameters that are used in the
method body present in the method declaration? (3) Valid class-variable access: Are the class vari-
ables that are used in the method body present in the class declaration? (4) No uninitialized objects:
Do variables have a non-null value when they are used? (5) No variable access errors: Are checks
(1)-(4) all satisfied? (6) Object-method compatibility: Are methods called on objects of a given class
actually available within that class? (7) Return type at the call site: Is the assignment of the return
value type-correct with respect to the return type of the called method? (8) Actual-parameter type:
Are the actual-parameter types in an API call consistent with the corresponding formal-parameter
types? (9) Return-statement type: Is the type of the expression in a return statement consistent
with the method’s declared return type? (10) No type errors: Are checks (6)-(10) all satisfied? (11)
Return statement exists: Does the method body have a return statement somewhere? (12) No unused
variables: Are all variables declared in the method body used in the method? (13) Percentage of
parsing: Can the generated method be parsed by a standard Java parser? (14) Pass all checks: Are
checks (1)-(13) all satisfied?

Note that (2) and (3) are not meaningful metrics for approaches, such as our transformer baselines,
that do not use a grammar to generate code. This is because in these models, when a variable token is
generated, there is no way to tell what category of variable (class variable, formal parameter, etc.) it
is meant to be. These metrics are meaningful for the NSG, CNG, and GNN2NAG models, which use
a Java parser capable of partitioning variable names into different categories.

The results of our comparisons appear in Table 1. These scores are interpreted as follows. Suppose
that a generated program uses five variables, of which four are declared correctly in the proper scope.
This situation is scored as 80% correct on the "No undeclared-variable access" criterion. We report
the average success rate over each of these properties over all the generated programs in our test suite.

Whole-Method Fidelity. We also check the fidelity of the generated code to the reference code. One
possibility here is to use a standard metric for text generation, such as the BLEU score. However, this
is problematic. As the BLEU score is not invariant to variable renamings, a nonsensical program
that uses commonplace variable names can get an artificially high BLEU score. Also, programs are
structured objects in which some tokens indicate control flow and some indicate data flow. The BLEU
score does not take this structure into account. See Appendix J for a concrete example of these issues.
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Query public class FileUtils{
FileReader field_7;
BufferedReader field_5;

/** read line from file */
public String reader () {}}

NSG public String reader(){
java.lang.String var_9;
try {var_9=field_5.readLine();
} catch (IOException var_8) {
var_8.printStackTrace(); }

return var_9; }

CodeGPT public String reader(){
StringBuffer buffer=

new StringBuffer();
buffer.append("\n");
return buffer.toString();

}

CODEX public String reader()
throws IOException{
field_5= new BufferedReader(
new FileReader(field_7));
return field_5.readLine(); }

GptNeo1.3B public String reader()
throws IOException {
try {
field_7=new FileReader(this.file);
field_5=new BufferedReader(field_7);
String line;
while (field_5.readLine()) {
System.out.println(line); }
return line;

} catch (FileNotFoundException e)
{e.printStackTrace(); }

return null; }

Table 3: Reading from a file: Outputs for the NSG and
transformer baselines.

Instead, we consider four fidelity metrics:
(1) Set of API Calls: Extract the set of
API calls from the generated and refer-
ence codes, and compute the Jaccard sim-
ilarity between the sets. (2) Sequences
of API Calls: Generate the set of all pos-
sible API call sequences possible along
code paths, and compute the Jaccard sim-
ilarity between the sets for the generated
and reference code. (3) Sequences of Pro-
gram Paths: Generate the set of all possi-
ble paths from root to leaf in the AST, then
compute the Jaccard similarity between
the sets (two paths are equal if all elements
except for object references match). (4)
AST Exact Match: Exact AST match (ex-
cept for object references), scored as 0
or 1. We compute the highest value for
each metric across the ten bodies gener-
ated, and average the highest across all
test programs. Results for these measures
are presented in Table 2.

Summary of results. We find that in most
cases, the NSG had a higher incidence of
passing the various static checks compared
to the baselines. This is perhaps not sur-
prising, given that the NSG has access to
the result of the static analysis via the at-
tribute grammar. More intriguing is the
much higher accuracy of the NSG for the
fidelity results. Pre-trained language mod-

els and GNN2NAG are designed for next-token-prediction tasks (we give some results on these tasks
in Appendix G). However, in our CPG task, no tokens are available from the method body to be
generated. In particular, language models must treat the surrounding code and method header as
input from which to generate the entire method body, and this proves difficult. The NSG, on the other
hand, uses static analysis to symbolically extract this context, which is explicitly given to the neural
network in the form of the class variables and methods that are available to be called (in A(S)#), and
in the class name, encoded comments, variable names, and so on (in Z).

Transformers vs. NSGs: As a complement to our quantitative evaluation, we manually examined
the outputs of our model and the baselines on a set of hand-written tasks for qualitative evaluation.
The transformers produced impressively human-like code on several of these tasks. However, in quite
a few cases, they produced incorrect programs that a trained human programmer would be unlikely
to write. Also, the transformers were biased towards producing short programs, which often led them
to produce uninteresting outputs.

Table 3 illustrates some of the failure modes of the transformer baselines. Here, we consider the
task of reading a string from a file utility class. The top result for our NSG model declares a String
variable to read from the already existing field while also correctly catching an IOException. The
CODEGPT output in this case is unrelated to the context. CODEX initiates a FileReader object by
invoking an argument which is of type FileReader itself, thereby causing a type mismatch. The code
from GPT-NEO accesses a file instance variable that does not exist and also returns a blank line from
the method. A few other examples of NSG and transformer outputs appear in Appendix A.

6 Related Work

Non-Neural Models of Code. Many non-neural models of code have been proposed over the
years [25, 32, 28, 2, 27, 5]. A few of these models condition generation on symbolic information
from the context. Specifically, Bielik et al. [5] use programmatically represented functions to gather
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information about the context in which productions for program generation are fired, then utilize this
information to impose a distribution on rules. Maddison & Tarlow [25] generate programs using a
model that encodes a production’s context using a set of “traversal variables.” However, the absence
of neural representations in these models puts a ceiling on their performance.

Deep Models of Code. There is, by now, a substantial literature on deep models trained on program
syntax. Early work on this topic represented programs as sequences [32] or trees [26, 38, 9], and
learned using classic neural models, such as RNNs, as well as specialized architectures [23, 30, 3].
The recent trend is to use transformers [36, 16, 14, 24]. Some of these models — for example,
CODEGPT [24] — are trained purely on code corpora (spanning a variety of languages, including
Java). Other models, such as CODEBERT [14], GPT-NEO [6], and CODEX [8], are trained on
both natural language and code. In all of these cases, programs are generated without any explicit
knowledge of program syntax or semantics.

The GNN2NAG model by Brockschmidt et al. [7] also uses an attribute grammar to direct the
generation of programs. However, unlike our method, this model use a graph neural net to learn
attributes of code. Our experiments show the benefits of our weak supervision approach over this.

Also related is work by Dai et al. [11], who extend grammar variational autoencoders [21] with
hard constraints represented as attribute grammars. In that work, attribute constraints are propagated
top-down, and every generated artifact is required to satisfy the top-level constraint. This strategy
comes with challenges; as is well-known in the program-synthesis literature [31], top-down constraint
propagation can lead to unsatisfiability, and require rejection of generated samples, for grammars
above a certain level of complexity. We sidestep this issue by using attribute grammars as a form of
weak supervision, rather than as a means to enforce hard constraints.

Neurally Directed Program Synthesis. Many recent papers study the problem of neurally directed
program synthesis [4, 12, 34, 10, 33, 29]. Here, neural networks, and sometimes program analysis,
are used to guide a combinatorial search over programs. Because such search is expensive, these
methods are typically limited to constrained domain-specific languages. In contrast, our approach
does not aim for a complete search over programs at generation time (our decoder does perform a
beam search, but the width of this beam is limited). Instead, we embody our program generator as a
neural network that sees program-analysis-derived facts as part of its data. This design choice makes
our method more scalable and allows it to handle generation in a general-purpose language.

7 Conclusion

We have presented a framework for deep generation of source code in which the training procedure
is weakly supervised by a static analyzer, in particular, an attribute grammar. We have shown that
our implementation of this approach outperforms several larger, state-of-the-art transformers both in
semantic properties and fidelity of generated method bodies.

A lesson of this work is that while modern transformers excel at writing superficially human-like
code, they still lack the ability to learn the intricate semantics of general-purpose languages. At the
same time, the semantics of code can be defined rigorously and partially extracted “for free” using
program analysis. This extracted semantics can be used to aid neural models with the concepts that
they struggle with during program generation. While we have used this idea to extend a tree LSTM,
we could have implemented it on top of a modern transformer as well. We hope that future work will
pursue such implementations.

Our work demonstrates an alternative use for formal language semantics, compared to how semantics
are typically used in program synthesis research. Historically, semantics have been used to direct
generation-time combinatorial searches over programs. However, scalability has been a challenge
with such approaches. Our work points to an alternative use of semantics: rather than using semantic
program analyses to direct a search over programs, one could use them to annotate programs at
training and test time and leave the search to a modern neural network. We believe that such a strategy
has the potential to vastly extend the capabilities of algorithms for program synthesis.
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