A Proof of Lemma 1

Liu et al. [2018] first showed that stationary importance sampling methods can be viewed as Rao-Blackwellization of IS estimator, and claimed that the expectation of the likelihood-ratios conditioned on state and action is equal to the distribution ratio, as stated in Property 1. For completeness, we present a proof of Property 1. Recall that $d_t^{\pi}(s, a) = p_{\pi}(S_t = s, A_t = a)$.

$$\begin{split} \mathbf{E}_{\tau \sim p_{\pi_b}} \left[p_{1:t} | S_t = s, A_t = a \right] \\ &= \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\frac{p_{\pi_e}(\tau_{1:t})}{p_{\pi_b}(\tau_{1:t})} \middle| S_t = s, A_t = a \right] \\ &= \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\frac{p_{\pi_e}(S_1, A_1, \dots, S_t, A_t)}{p_{\pi_b}(S_1, A_1, \dots, S_t, A_t)} \middle| S_t = s, A_t = a \right] \\ &= \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\frac{p_{\pi_e}(S_1, A_1, \dots, S_t, A_t)}{p_{\pi_e}(S_t, A_t)} \frac{p_{\pi_b}(S_t, A_t)}{p_{\pi_b}(S_1, A_1, \dots, S_t, A_t)} \frac{p_{\pi_e}(S_t, A_t)}{p_{\pi_b}(S_t, A_t)} \middle| S_t = s, A_t = a \right] \\ &= \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\frac{p_{\pi_e}(\tau_{1:t} | S_t, A_t)}{p_{\pi_b}(\tau_{1:t} | S_t, A_t)} \middle| S_t = s, A_t = a \right] \frac{p_{\pi_e}(S_t = s, A_t = a)}{p_{\pi_b}(S_t = s, A_t = a)} \\ &= \left(\sum_{\tau \sim p_{\pi_b}} \left[\frac{p_{\pi_e}(\tau_{1:t} | S_t, A_t)}{p_{\pi_b}(\tau_{1:t} | S_t, A_t)} \middle| S_t = s, A_t = a \right] \frac{d_{\pi^{\pi_e}}(s, a)}{d_t^{\pi_b}(s, a)} \\ &= \left(\sum_{\tau} \frac{p_{\pi_e}(\tau_{1:t} | S_t = s, A_t = a)}{p_{\pi_b}(\tau_{1:t} | S_t = s, A_t = a)} p_{\pi_b}(\tau | S_t = s, A_t = a) \right) \frac{d_t^{\pi_e}(s, a)}{d_t^{\pi_b}(s, a)} \\ &= \left(\sum_{\tau} \frac{p_{\pi_e}(\tau_{1:t} | S_t = s, A_t = a)}{p_{\pi_b}(\tau_{1:t} | S_t = s, A_t = a)} p_{\pi_b}(\tau_{1:t} | S_t = s, A_t = a) \right) \frac{d_t^{\pi_e}(s, a)}{d_t^{\pi_b}(s, a)} \\ &\stackrel{(e)}{=} \left(\sum_{\tau} \frac{p_{\pi_e}(\tau_{1:t} | S_t = s, A_t = a)}{p_{\pi_b}(\tau_{1:t} | S_t = s, A_t = a)} p_{\pi_b}(\tau_{1:t} | S_t = s, A_t = a) \sum_{\tau_{t+1:L}} p_{\pi_b}(\tau_{t+1:L} | S_t = s, A_t = a) \right) \frac{d_t^{\pi_e}(s, a)}{d_t^{\pi_b}(s, a)} \\ &\stackrel{(e)}{=} \left(\sum_{\tau_{1:t}} p_{\pi_e}(\tau_{1:t} | S_t = s, A_t = a) \sum_{\tau_{t+1:L}} p_{\pi_b}(\tau_{t+1:L} | S_t = s, A_t = a) \right) \frac{d_t^{\pi_e}(s, a)}{d_t^{\pi_b}(s, a)} \\ &= \frac{d_t^{\pi_e}(s, a)}{d_t^{\pi_b}(s, a)}. \end{aligned}$$

Line (a) follows from $d_t^{\pi}(s, a) = p_{\pi}(S_t = s, A_t = a)$. In line (b), we use the Markov property which gives that $\tau_{1:t}$ and $\tau_{t+1:L}$ are independent conditioned on $(S_t = s, A_t = a)$. Line (c) follows from splitting the summation over τ into to summations over $\tau_{1:t}$ and $\tau_{t+1:L}$.

B Full Derivation of SOPE_n Estimator

To derive the SOPE_n estimator, we repeat the derivation of (1) with z being a function of time, $z(t) = \max\{t - n, 0\}$. This gives us the expression

$$J(\pi_e) = \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\sum_{t=1}^n \gamma^{t-1} \rho_{1:t} R_t + \sum_{t=n+1}^L \gamma^{t-1} \frac{d_{t-n}^{\pi_e}(S_{t-n}, A_{t-n})}{d_{t-n}^{\pi_b}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_t \right].$$
(4)

Since z(t) is function of t, we can accumulate the d_t^{π} across time so that we can write the interpolating expression using *average* state-action distribution ratios, rather than time-dependent ones. This additional marginalization step over time allows us to consider time-independent distribution ratios. Notation-wise, let $d_{1:T}^{\pi} := (\sum_{t=1}^{T} \gamma^{t-1} d_t^{\pi}(s, a)) / (\sum_{t=1}^{T} \gamma^{t-1})$ for any time T. $d_{1:T}$ can be thought of as at the average state-action visitation over the first T time-steps. Note that $d^{\pi} = \lim_{T \to \infty} d_{1:T}^{\pi}$ where d^{π} is the average state-action distribution. Then, using the law of total expectation, we can write the expectation of the second sum in (4) as:

$$\mathbf{E}_{\boldsymbol{\tau} \sim p_{\pi_b}} \left[\sum_{t=n+1}^{L} \gamma^{t-1} \frac{d_{t-n}^{\pi_e}(S_{t-n}, A_{t-n})}{d_{t-n}^{\pi_b}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_t \right] \\ = \sum_{t=n+1}^{L} \gamma^{t-1} \mathbf{E}_{(S_{t-n}, A_{t-n})} \left[\mathbf{E}_{\boldsymbol{\tau} \sim p_{\pi_b}} \left[\frac{d_{t-n}^{\pi_e}(S_{t-n}, A_{t-n})}{d_{t-n}^{\pi_b}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_t \middle| S_{t-n}, A_{t-n} \right] \right]$$

$$\begin{split} &= \sum_{t=n+1}^{L} \gamma^{t-1} \mathbf{E}_{(S_{t-n},A_{t-n})} \left[\frac{d_{t-n}^{\pi}(S_{t-n},A_{t-n})}{d_{t-n}^{\pi}(S_{t-n},A_{t-n})} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{t-n+1:t} R_{t} | S_{t-n}, A_{t-n} \right] \right] \\ &= \sum_{t=n+1}^{L} \gamma^{t-1} \sum_{s,a} d_{t-n}^{\pi_{b}}(s,a) \frac{d_{t-n}^{\pi_{c}}(s,a)}{d_{t-n}^{\pi_{b}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{t-n+1:t} R_{t} | S_{t-n} = s, A_{t-n} = a \right] \\ &= \sum_{t=n+1}^{L} \gamma^{t-1} \sum_{s,a} d_{t-n}^{\pi_{c}}(s,a) \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{t-n+1:t} R_{t} | S_{t-n} = s, A_{t-n} = a \right] \\ &= \sum_{s,a}^{L} \left(\sum_{t=n+1}^{L} \gamma^{t-1} \int_{s,a} d_{t-n}^{\pi_{c}}(s,a) \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{t-n+1:t} R_{t} | S_{t-n} = s, A_{t-n} = a \right] \\ &\stackrel{(a)}{=} \sum_{s,a} \left(\sum_{t=n+1}^{L} \gamma^{t-1} d_{t-n}^{\pi_{c}}(s,a) \right) \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &= \sum_{s,a} \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_{t}^{\pi_{c}}(s,a) \right) \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &\stackrel{(b)}{=} \sum_{s,a} \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_{t}^{\pi_{c}}(s,a) \right) \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &\stackrel{(c)}{=} \sum_{s,a} \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_{t}^{\pi_{b}}(s,a) \right) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{c}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &\stackrel{(d)}{=} \sum_{s,a} \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_{t}^{\pi_{b}}(s,a) \right) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{c}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &= \sum_{s,a} \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_{t}^{\pi_{b}}(s,a) \right) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{c}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &= \sum_{s,a} \left(\sum_{t=n+1}^{L} \gamma^{t-1} d_{t-n}^{\pi_{b}}(s,a) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{b}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &= \sum_{t=n+1}^{L} \gamma^{t-1} \sum_{s,a}^{\pi_{a}} d_{t-n}^{\pi_{b}}(s,a) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{b}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left[\rho_{1:n} R_{n} | S_{1} = s, A_{1} = a \right] \\ &= \sum_{t=n+1}^{L} \gamma^{t-1} \sum_{s,a}^{\pi_{a}} d_{t-n}^{\pi_{b}}(s,a) \frac{d_{1:L-n}^{\pi_{c}}(s,a)}{d_{1:L-n}^{\pi_{b}}(s,a)} \mathbf{E}_{\tau \sim p_{\pi_{b}}} \left$$

In line (a), we use $\mathbf{E}_{\tau \sim p_{\pi_b}}[\rho_{t-n+1:t}R_t|S_{t-n} = s, A_{t-n} = a] = \mathbf{E}_{\tau \sim p_{\pi_b}}[\rho_{1:n}R_n|S_1 = s, A_1 = a]$ which follows from noting that conditioning on S_{t-n}, A_{t-n} and considering the *n* time steps after is equivalent to conditioning on S_1, A_1 and considering the *n* time steps after that. Lines (b) and (d) follow from $d_{1:L-n}^{\pi} = \left(\sum_{t=1}^{L-n} \gamma^{t-1} d_t^{\pi}(s, a)\right) / \left(\sum_{t=1}^{L-n} \gamma^{t-1}\right)$. Line (c) is possible due to Assumption 1. Plugging in the final expression from (5) back into (4) gives us

$$J(\pi_e) = \mathbf{E}_{\boldsymbol{\tau} \sim p_{\pi_b}} \left[\sum_{t=1}^n \gamma^{t-1} \rho_{1:t} R_t + \sum_{t=n+1}^L \gamma^{t-1} \frac{d_{1:L-n}^{\pi_e}(S_{t-n}, A_{t-n})}{d_{1:L-n}^{\pi_b}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_t \right].$$
(6)

Note that $\frac{d_{1:L-n}^{\pi_e}(s,a)}{d_{1:L-n}^{\pi_b}(s,a)}$ is the state-action distribution ratio over the first L-n time-steps. In practice, to estimate this ratio, one can discard the data from time-step L-n to L, and use the same min-max optimization procedures used to estimate $\frac{d_{1:L}^{\pi_e}(s,a)}{d_{1:L}^{\pi_b}(s,a)}$ on the remaining data to estimate this ratio.

Note that in the infinite horizon setting where $L \rightarrow \infty$ and for finite n, (6) becomes

$$J(\pi_e) = \mathbf{E}_{\tau \sim p_{\pi_b}} \left[\sum_{t=1}^n \gamma^{t-1} \rho_{1:t} R_t + \sum_{t=n+1}^\infty \gamma^{t-1} \frac{d^{\pi_e}(S_{t-n}, A_{t-n})}{d^{\pi_b}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_t \right].$$

In this case, the typical optimization procedures for estimating $\frac{d^{\pi_e}(s,a)}{d^{\pi_b}(s,a)}$ in the infinite horizon setting can be used to estimate the distribution ratios.

Additionally, note that specifically for the infinite horizon setting, we can alternatively derive the SOPE_n estimator using the Bellman equations for the average state-action distribution d^{π} . This alternative derivation can be found in Appendix C.

C Bellman Recursion Derivation of SOPE_n

We present an alternative derivation of the SOPE_n estimator for the infinite horizon setting using the Bellman equations for the average state-action distribution d^{π} , which is:

$$d^{\pi}(s,a) \coloneqq (1-\gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \Pr(S_t = s, A_t = a ; \pi)$$

= $(1-\gamma)d_1(s)\pi(a|s) + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s,a|s',a';\pi)d^{\pi}(s',a').$ (7)

Now using (7) we can expand $J(\pi_e)$ and unroll d^{π_e} once to obtain

$$\begin{split} J(\pi_{e}) &= (1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) d^{\pi_{e}}(s, a) \\ &= (1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) \left[(1-\gamma)d_{1}(s)\pi_{e}(a|s) + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s, a|s', a'; \pi_{e}) d^{\pi_{e}}(s', a') \right] \\ &= \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a)d_{1}(s)\pi_{e}(a|s) + \gamma(1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s, a|s', a'; \pi_{e}) d^{\pi_{e}}(s', a')r(s, a) \\ &\stackrel{(a)}{=} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a)d_{1}(s)\pi_{e}(a|s) + \gamma(1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s', a'|s, a; \pi_{e}) d^{\pi_{e}}(s, a)r(s', a') \\ &= \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_{b}(a|s)r(s, a)d_{1}(s)\frac{\pi_{e}(a|s)}{\pi_{b}(a|s)} \\ &+ \gamma(1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d^{\pi_{b}}(s, a) \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \pi_{b}(a'|s') \Pr(s'|s, a)\frac{\pi_{e}(a'|s')}{\pi_{b}(a'|s')}\frac{d^{\pi_{e}}(s, a)}{d^{\pi_{b}}(s, a)}r(s', a') \\ &= \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_{b}(a|s)r(s, a)d_{1}(s)\frac{\pi_{e}(a|s)}{\pi_{b}(a|s)} \\ &+ \gamma\sum_{s \in \mathcal{S}, a \in \mathcal{A}} \pi_{b}(a|s)r(s, a)d_{1}(s)\frac{\pi_{e}(a|s)}{\pi_{b}(a|s|}) \\ &+ \gamma\sum_{s \in \mathcal{S}, a \in \mathcal{A}} \sum_{t=1}^{\infty} \gamma^{t-1} \Pr(S_{t} = s, A_{t} = a; \pi_{b}) \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \pi_{b}(a'|s') \Pr(s'|s, a)\frac{\pi_{e}(a'|s')}{\pi_{b}(a'|s')}\frac{d^{\pi_{e}}(s, a)}{\pi_{b}(a'|s')}\frac{d^{\pi_{e}}(s, a)}{d^{\pi_{b}}(s, a)}r(s', a') \\ &= \mathbf{E}_{\tau \sim \pi_{b}} \left[\frac{\pi_{e}(A_{1}|S_{1})}{\pi_{b}(A_{1}|S_{1})}r(S_{1}, A_{1}) + \sum_{t=1}^{\infty} \gamma^{t}\frac{d^{\pi_{e}}(S_{t}, A_{t})}{d^{\pi_{b}}(S_{t-1}, A_{t-1})\frac{\pi_{e}(A_{t}|S_{t})}{\pi_{b}(A_{t}|S_{t})}r(S_{t}, A_{t})} \right]. \tag{8}$$

where (a) follows by relabelling in the common notation such that (s, a) and (s', a') are consecutive state-action pairs. Notice that SOPE₁(D) is the sample estimate of (8). Similarly, on unrolling d^{π_b} twice using (7),

$$\begin{split} J(\pi_{e}) &= (1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) d^{\pi_{e}}(s, a) \\ &= (1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) \left[(1-\gamma) d_{1}(s) \pi_{e}(a|s) \right. \\ &+ \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s, a|s', a'; \pi_{e}) \left[(1-\gamma) d_{1}(s') \pi_{e}(a'|s') + \gamma \sum_{s'' \in \mathcal{S}, a'' \in \mathcal{A}} \Pr(s', a'|s'', a''; \pi_{e}) d^{\pi_{e}}(s'', a'') \right] \\ &= \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) d_{1}(s) \pi_{e}(a|s) + \gamma \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s, a|s', a'; \pi_{e}) d_{1}(s') \pi_{e}(a'|s') \\ &+ \gamma^{2} (1-\gamma)^{-1} \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s, a|s', a'; \pi_{e}) \sum_{s'' \in \mathcal{S}, a'' \in \mathcal{A}} \Pr(s', a'|s'', a''; \pi_{e}) d^{\pi_{e}}(s'', a'') \\ &= \sum_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a) d_{1}(s) \pi_{e}(a|s) + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} r(s', a') \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \Pr(s', a'|s, a; \pi_{e}) d_{1}(s) \pi_{e}(a|s) \\ &+ \gamma^{2} (1-\gamma)^{-1} \sum_{s'' \in \mathcal{S}, a'' \in \mathcal{A}} r(s'', a'') \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \Pr(s'', a''|s', a'; \pi_{e}) \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \Pr(s', a'|s, a; \pi_{e}) d^{\pi_{e}}(s, a), \end{split}$$

Where the last line follows by relabelling the state-action pairs such that they match the common notation where (s, a), (s', a') and (s'', a'') are the state action tuples for three consecutive time-steps. Now changing the sampling distribution as earlier,

$$J(\pi_e) = \mathbf{E}_{\tau \sim \pi_b} \left[\frac{\pi_e(A_1|S_1)}{\pi_b(A_1|S_1)} r(S_1, A_1) + \gamma \frac{\pi_e(A_1|S_1)}{\pi_b(A_1|S_1)} \frac{\pi_e(A_2|S_2)}{\pi_b(A_2|S_2)} r(S_2, A_2) \right. \\ \left. + \sum_{t=3}^{\infty} \gamma^{t-1} \frac{d_e^{\pi}(S_{t-2}, A_{t-2})}{d^{\pi_b}(S_{t-2}, A_{t-2})} \frac{\pi_e(A_{t-1}|S_{t-1})}{\pi_b(A_{t-1}|S_{t-1})} \frac{\pi_e(A_t|S_t)}{\pi_b(A_t|S_t)} r(S_t, A_t) \right]$$
(9)

It can be now observed that $SOPE_2(D)$ is the sample estimate of (9). Similarly, by generalizing this pattern it can be observed that on unrolling *n* times, we will get,

$$J(\pi_{e}) = \mathbf{E}_{\boldsymbol{\tau} \sim \pi_{b}} \left[\sum_{t=1}^{n} \left(\prod_{j=1}^{t} \frac{\pi_{e}(A_{j}|S_{j})}{\pi_{b}(A_{j}|S_{j})} \right) \gamma^{t-1} r(S_{t}, A_{t}) + \sum_{t=n+1}^{\infty} \gamma^{t-1} \frac{d^{\pi_{e}}(S_{t-n}, A_{t-n})}{d^{\pi_{b}}(S_{t-n}, A_{t-n})} \left(\prod_{j=0}^{n-1} \frac{\pi_{e}(A_{t-j}|S_{t-j})}{\pi_{b}(A_{t-j}|S_{t-j})} \right) r(S_{t}, A_{t}) \right]$$
$$= \mathbf{E}_{\boldsymbol{\tau} \sim p_{\pi_{b}}} \left[\sum_{t=1}^{n} \gamma^{t-1} \rho_{1:t} R_{t} + \sum_{t=n+1}^{\infty} \gamma^{t-1} \frac{d^{\pi_{e}}(S_{t-n}, A_{t-n})}{d^{\pi_{b}}(S_{t-n}, A_{t-n})} \rho_{t-n+1:t} R_{t} \right].$$
(10)

Finally, it can be observed that that $SOPE_n(D)$ is the sample estimate of (10).

D Additional Experimental Details

For all experiments, we utilize the domains and algorithm implementations from Caltech OPE Benchmarking Suite (COBS) library by Voloshin et al. [2019]. Our code can be found at https://github.com/Pearl-UTexas/SOPE, and our experiments ran on 32 Intel Xeon cores.

D.1 Experimental Set-Up

For our experiments, we used the Graph, Toy Mountain Car, and standard Mountain Car [Brockman et al., 2016] domains provided in the COBS library. We include a brief description of each of these domains below, and a full description of each can be found in the work by Voloshin et al. [2019].

Graph Environment The Graph environment is a two-chain environment with 2L states and 2 actions. The ends of the chain are starting state $x_0 = 0$ and absorbing state $x_{abs} = 2L$. In between x_0 and x_{abs} , the remaining states form two chains of length L - 1 each. The states on the top chain are labeled $1, 3, \ldots, 2L - 3$ and the states on the bottom chain are labeled $2, 4, \ldots, 2L - 2$. For each t < L, taking action a = 0, the agent will try to enter the next state on the top chain $x_{t+1} = 2t + 1$, and taking action a = 1, the agent will try to enter the next state on the bottom chain $x_{t+1} = 2t + 2$. Since the environment is stochastic, the agent will succeed with probability 0.75 and slip into the wrong row with probability 0.25. The reward is +1 if the agent transitions to a state on the top chain and -1 otherwise. For our experiments, we set L = 20 and $\gamma = 0.98$.

Toy Mountain Car Environment The Toy-MC environment [Voloshin et al., 2019] is a tabular simplification of the classic Mountain Car domain. There are a total of 21 states: $x_0 = 0$ the starting point in the valley, 10 states to the left, and 10 states to the right. The right-most state is a terminal absorbing state. Taking action a = 0 moves the agent to the right and taking action a = 1 moves the agent to the left. The agent receives reward of r = -1 each time step, and the reward becomes 0 when the agent reaches the terminal absorbing states. For our experiments, we use random restart where start in a random state in the domain and set L = 100 and $\gamma = 0.99$.

Mountain Car Environment We use the Mountain Car environment from OpenAI gym with the simplifying modifications applied in Voloshin et al. [2019]. In particular, the car agent starts in a valley and needs to move back and forth in order to gain moment to reach the goal of getting to the top of the mountain. The state space is the position and velocity of the car. At each time step, the car agent can either accelerate move forward, move backwards, or do nothing. Additionally, at each time, the agent receives a reward of r = -1 until it reaches the goal. The environment is modified in the COBS library to decrease the effective trajectory length by applying each action a_t five times before observing x_{t+1} . Additionally, the initial start location is modified from being uniformly chosen between [-.6, -.4] to be randomly chosen from $\{-.6, -.5, -.4\}$ with no velocity.

Policies For the tabular environments Graph and Toy Mountain Car, we utilize static policies that take action a = 0 with probability p and action a = 1 with probability 1 - p. For the Mountain Car environment, we utilize an ϵ -greedy policies with the provided DDQN trained policy in the COBS library.

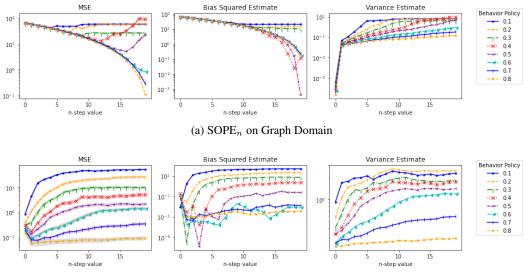
Methods For our experiments, we evaluate the performance of our proposed SOPE_n and W-SOPE_n estimators. To estimate the average state-action visitation ratios $\frac{d^{\pi_e}(s,a)}{d^{\pi_b}(s,a)}$, we utilize the implementation of methods from Liu et al. [2018] provided in the COBS library. For the Mountain Car experiments, we utilize the radial-basis function for the kernel estimate and a linear function class for the density estimate. Specific hyper-parameters can be found below.

Parameter	Graph	Toy-MC	Mountain Car
Quad. prog. regular.	1e-3	1e-3	-
NN Fit Epochs	-	-	1000
NN Batchsize	-	-	1024

D.2 Impact of Policy Mismatch Between π_b and π_e on SOPE_n and W-SOPE_n

We examine the impact of the policy mismatch between the behavior and evaluation policies on the performance of the SOPE_n and W-SOPE_n estimators. In this experiment, the evaluation policy takes action a = 0 with probability 0.9, and we vary the probability that the behavior policy takes a = 0 from 0.1 to 0.8 by increments of 0.1. We examine the performance of the SOPE_n and W-SOPE_n estimators across values of n for the different behavior policies. Results can be seen in the plots below.

The performance of PDIS and SIS has been known to be negatively correlated with the degree of policy mismatch [Voloshin et al., 2019]. We also find this to be generally true for the performance of the SOPE_n and W-SOPE_n estimators. Additionally, we observe that the degree of mismatch between

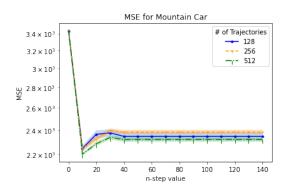


(b) W-SOPE $_n$ on Graph Domain

the evaluation and behavior policies has an impact on the existence of an interpolating estimator that is able to achieve lower MSE than the endpoints. For both $SOPE_n$ and W-SOPE_n, when the π_b is extremely different π_e , there are instances when the best estimate is SIS or weighted-SIS. In cases when the π_b is extremely close to the π_e , particularly for unweighted SOPE_n, there are cases when the trajectory-based importance sampling endpoint gives the lowest MSE. We do note that in cases when the difference between evaluation and behavior policies moderate but not extreme, there exists interpolating estimators that outperform the endpoints. This experiment helps to shed light on the possible conditions on the evaluation and behavior policies that allow for an interpolating estimator to have the lowest MSE.

D.3 Mountain Car Experimental Results

In addition to the experiments contained in the main paper, we also examine the performance of W-SOPE_n on the Mountain Car domain. For these experiments, we used a provided DDQN trained policy as the base policy, and use ϵ -greedy versions of this policy as our behavior and evaluation policies. Specific information about this policy can be found in [Voloshin et al., 2019]. For our behavior policy, we use $\epsilon = 0.05$ and for our evaluation policy, we use $\epsilon = 0.9$. We average over 10 trials with 128, 256 and 512 trajectories each. The results of this experiment can be found in the figure below.



We observe that this setting is an extremely challenging one for both trajectory-based and densitybased importance sampling since the behavior and evaluation policies are so far apart. However, even in this extremely difficult setting, the there exists an interpolating estimator within the W-SOPE_n spectrum that is able to have better performance than either of the endpoints.