
A Proof of Lemma 1

Liu et al. [2018] first showed that stationary importance sampling methods can be viewed as Rao-
Blackwellization of IS estimator, and claimed that the expectation of the likelihood-ratios conditioned
on state and action is equal to the distribution ratio, as stated in Property 1. For completeness, we
present a proof of Property 1. Recall that d⇡t (s, a) = p⇡(St = s,At = a).
E⌧⇠p⇡b

[⇢1:t|St = s,At = a]

= E⌧⇠p⇡b

p⇡e(⌧1:t)

p⇡b(⌧1:t)

����St = s,At = a

�

= E⌧⇠p⇡b

p⇡e(S1, A1, . . . , St, At)

p⇡b(S1, A1, . . . , St, At)

����St = s,At = a

�

= E⌧⇠p⇡b

p⇡e(S1, A1, . . . , St, At)

p⇡e(St, At)

p⇡b(St, At)

p⇡b(S1, A1, . . . , St, At)

p⇡e(St, At)

p⇡b(St, At)

����St = s,At = a

�

= E⌧⇠p⇡b

p⇡e(⌧1:t|St, At)

p⇡b(⌧1:t|St, At)

����St = s,At = a

�
p⇡e(St = s,At = a)

p⇡b(St = s,At = a)

(a)
= E⌧⇠p⇡b

p⇡e(⌧1:t|St, At)

p⇡b(⌧1:t|St, At)

����St = s,At = a

�
d⇡e
t (s, a)

d⇡b
t (s, a)

=

X

⌧

p⇡e(⌧1:t|St = s,At = a)

p⇡b(⌧1:t|St = s,At = a)
p⇡b(⌧ |St = s,At = a)

!
d⇡e
t (s, a)

d⇡b
t (s, a)

(b)
=

X

⌧

p⇡e(⌧1:t|St = s,At = a)

p⇡b(⌧1:t|St = s,At = a)
p⇡b(⌧1:t|St = s,At = a)p⇡b(⌧t+1:L|St = s,At = a)

!
d⇡e
t (s, a)

d⇡b
t (s, a)

(c)
=

0

@
X

⌧1:t

p⇡e(⌧1:t|St = s,At = a)
X

⌧t+1:L

p⇡b(⌧t+1:L|St = s,At = a)

1

A d⇡e
t (s, a)

d⇡b
t (s, a)

=
d⇡e
t (s, a)

d⇡b
t (s, a)

.

Line (a) follows from d⇡t (s, a) = p⇡(St = s,At = a). In line (b), we use the Markov property which
gives that ⌧1:t and ⌧t+1:L are independent conditioned on (St = s,At = a). Line (c) follows from
splitting the summation over ⌧ into to summations over ⌧1:t and ⌧t+1:L.

B Full Derivation of SOPEn Estimator

To derive the SOPEn estimator, we repeat the derivation of (1) with z being a function of time,
z(t) = max{t� n, 0}. This gives us the expression

J(⇡e) = E⌧⇠p⇡b

"
nX

t=1

�t�1⇢1:tRt +
LX

t=n+1

�t�1 d
⇡e
t�n(St�n, At�n)

d⇡b
t�n(St�n, At�n)

⇢t�n+1:tRt

#
. (4)

Since z(t) is function of t, we can accumulate the d⇡t across time so that we can write the interpolating
expression using average state-action distribution ratios, rather than time-dependent ones. This
additional marginalization step over time allows us to consider time-independent distribution ratios.
Notation-wise, let d⇡1:T := (

PT
t=1 �

t�1d⇡t (s, a))/(
PT

t=1 �
t�1) for any time T . d1:T can be thought

of as at the average state-action visitation over the first T time-steps. Note that d⇡ = limT!1 d⇡1:T
where d⇡ is the average state-action distribution. Then, using the law of total expectation, we can
write the expectation of the second sum in (4) as:

E⌧⇠p⇡b

"
LX

t=n+1

�t�1 d
⇡e
t�n(St�n, At�n)

d⇡b
t�n(St�n, At�n)

⇢t�n+1:tRt

#

=
LX

t=n+1

�t�1E(St�n,At�n)
⇠d

⇡b
t�n

E⌧⇠p⇡b

d⇡e
t�n(St�n, At�n)

d⇡b
t�n(St�n, At�n)

⇢t�n+1:tRt

����St�n, At�n

��

13

=
LX

t=n+1

�t�1E(St�n,At�n)
⇠d

⇡b
t�n

d⇡e
t�n(St�n, At�n)

d⇡b
t�n(St�n, At�n)

E⌧⇠p⇡b
[⇢t�n+1:tRt|St�n, At�n]

�

=
LX

t=n+1

�t�1
X

s,a

d⇡b
t�n(s, a)

d⇡e
t�n(s, a)

d⇡b
t�n(s, a)

E⌧⇠p⇡b
[⇢t�n+1:tRt|St�n = s,At�n = a]

=
LX

t=n+1

�t�1
X

s,a

d⇡e
t�n(s, a)E⌧⇠p⇡b

[⇢t�n+1:tRt|St�n = s,At�n = a]

(a)
=
X

s,a

LX

t=n+1

�t�1d⇡e
t�n(s, a)

!
E⌧⇠p⇡b

[⇢1:nRn|S1 = s,A1 = a]

=
X

s,a

L�nX

t=1

�t�1d⇡e
t (s, a)

!
E⌧⇠p⇡b

[⇢1:nRn|S1 = s,A1 = a]

(b)
=
X

s,a

L�nX

t=1

�t�1

!
d⇡b
1:L�n(s, a)E⌧⇠p⇡b

[⇢1:nRn|S1 = s,A1 = a]

(c)
=
X

s,a

L�nX

t=1

�t�1

!
d⇡b
1:L�n(s, a)

d⇡e
1:L�n(s, a)

d⇡b
1:L�n(s, a)

E⌧⇠p⇡b
[⇢1:nRn|S1 = s,A1 = a]

(d)
=
X

s,a

L�nX

t=1

�t�1d⇡b
t (s, a)

!
d⇡e
1:L�n(s, a)

d⇡b
1:L�n(s, a)

E⌧⇠p⇡b
[⇢1:nRn|S1 = s,A1 = a]

=
X

s,a

LX

t=n+1

�t�1d⇡b
t�n(s, a)

!
d⇡e
1:L�n(s, a)

d⇡b
1:L�n(s, a)

E⌧⇠p⇡b
[⇢1:nRn|S1 = s,A1 = a]

=
LX

t=n+1

�t�1
X

s,a

d⇡b
t�n(s, a)

d⇡e
1:L�n(s, a)

d⇡b
1:L�n(s, a)

E⌧⇠p⇡b
[⇢t�n+1:tRt|St�n = s,At�n = a]

=
LX

t=n+1

�t�1E(St�n,At�n)
⇠d

⇡b
t�n

E⌧⇠p⇡b

d⇡e
1:L�n(St�n, At�n)

d⇡b
1:L�n(St�n, At�n)

⇢t�n+1:tRt

����St�n, At�n

��

= E⌧⇠p⇡b

"
LX

t=n+1

�t�1 d
⇡e
1:L�n(St�n, At�n)

d⇡b
1:L�n(St�n, At�n)

⇢t�n+1:tRt

#
. (5)

In line (a), we use E⌧⇠p⇡b
[⇢t�n+1:tRt|St�n = s,At�n = a] = E⌧⇠p⇡b

[⇢1:nRn|S1 = s,A1 = a]
which follows from noting that conditioning on St�n, At�n and considering the n time steps after
is equivalent to conditioning on S1, A1 and considering the n time steps after that. Lines (b) and
(d) follow from d⇡1:L�n =

⇣PL�n
t=1 �t�1d⇡t (s, a)

⌘
/
⇣PL�n

t=1 �t�1
⌘

. Line (c) is possible due to
Assumption 1. Plugging in the final expression from (5) back into (4) gives us

J(⇡e) = E⌧⇠p⇡b

"
nX

t=1

�t�1⇢1:tRt +
LX

t=n+1

�t�1 d
⇡e
1:L�n(St�n, At�n)

d⇡b
1:L�n(St�n, At�n)

⇢t�n+1:tRt

#
. (6)

Note that d⇡e
1:L�n(s,a)

d
⇡b
1:L�n(s,a)

is the state-action distribution ratio over the first L� n time-steps. In practice,
to estimate this ratio, one can discard the data from time-step L� n to L, and use the same min-max
optimization procedures used to estimate d⇡e

1:L(s,a)

d
⇡b
1:L(s,a)

on the remaining data to estimate this ratio.

Note that in the infinite horizon setting where L ! 1 and for finite n, (6) becomes

J(⇡e) = E⌧⇠p⇡b

"
nX

t=1

�t�1⇢1:tRt +
1X

t=n+1

�t�1 d
⇡e(St�n, At�n)

d⇡b(St�n, At�n)
⇢t�n+1:tRt

#
.

14

In this case, the typical optimization procedures for estimating d⇡e (s,a)
d⇡b (s,a) in the infinite horizon setting

can be used to estimate the distribution ratios.

Additionally, note that specifically for the infinite horizon setting, we can alternatively derive the
SOPEn estimator using the Bellman equations for the average state-action distribution d⇡. This
alternative derivation can be found in Appendix C.

C Bellman Recursion Derivation of SOPEn

We present an alternative derivation of the SOPEn estimator for the infinite horizon setting using the
Bellman equations for the average state-action distribution d⇡ , which is:

d⇡(s, a) := (1� �)
1X

t=1

�t�1 Pr(St = s,At = a ;⇡)

= (1� �)d1(s)⇡(a|s) + �
X

s02S,a02A
Pr(s, a|s0, a0 ;⇡)d⇡(s0, a0). (7)

Now using (7) we can expand J(⇡e) and unroll d⇡e once to obtain

J(⇡e) = (1� �)�1
X

s2S,a2A
r(s, a)d⇡e(s, a)

= (1� �)�1
X

s2S,a2A
r(s, a)

2

4(1� �)d1(s)⇡e(a|s) + �
X

s02S,a02A
Pr(s, a|s0, a0 ;⇡e)d

⇡e(s0, a0)

3

5

=
X

s2S,a2A
r(s, a)d1(s)⇡e(a|s) + �(1� �)�1

X

s2S,a2A

X

s02S,a02A
Pr(s, a|s0, a0 ;⇡e)d

⇡e(s0, a0)r(s, a)

(a)
=

X

s2S,a2A
r(s, a)d1(s)⇡e(a|s) + �(1� �)�1

X

s2S,a2A

X

s02S,a02A
Pr(s0, a0|s, a ;⇡e)d

⇡e(s, a)r(s0, a0)

=
X

s2S,a2A
⇡b(a|s)r(s, a)d1(s)

⇡e(a|s)
⇡b(a|s)

+ �(1� �)�1
X

s2S,a2A
d⇡b(s, a)

X

s02S,a02A
⇡b(a

0|s0) Pr(s0|s, a)⇡e(a0|s0)
⇡b(a0|s0)

d⇡e(s, a)

d⇡b(s, a)
r(s0, a0)

=
X

s2S,a2A
⇡b(a|s)r(s, a)d1(s)

⇡e(a|s)
⇡b(a|s)

+ �
X

s2S,a2A

1X

t=1

�t�1 Pr(St = s,At = a ;⇡b)
X

s02S,a02A
⇡b(a

0|s0) Pr(s0|s, a)⇡e(a0|s0)
⇡b(a0|s0)

d⇡e(s, a)

d⇡b(s, a)
r(s0, a0)

= E⌧⇠⇡b

"
⇡e(A1|S1)

⇡b(A1|S1)
r(S1, A1) +

1X

t=1

�t d
⇡e(St, At)

d⇡b(St, At)

⇡e(At+1|St+1)

⇡b(At+1|St+1)
r(St+1, At+1)

#

= E⌧⇠⇡b

"
⇡e(A1|S1)

⇡b(A1|S1)
r(S1, A1) +

1X

t=2

�t�1 d⇡(St�1, At�1)

d⇡b(St�1, At�1)

⇡e(At|St)

⇡b(At|St)
r(St, At)

#
. (8)

where (a) follows by relabelling in the common notation such that (s, a) and (s0, a0) are consecutive
state-action pairs. Notice that SOPE1(D) is the sample estimate of (8). Similarly, on unrolling d⇡b

twice using (7),

15

J(⇡e) = (1� �)�1
X

s2S,a2A
r(s, a)d⇡e(s, a)

= (1� �)�1
X

s2S,a2A
r(s, a)

"
(1� �)d1(s)⇡e(a|s)

+ �
X

s02S,a02A
Pr(s, a|s0, a0 ;⇡e)

"
(1� �)d1(s

0)⇡e(a
0|s0) + �

X

s002S,a002A
Pr(s0, a0|s00, a00 ;⇡e)d

⇡e(s00, a00)

##

=
X

s2S,a2A
r(s, a)d1(s)⇡e(a|s) + �

X

s2S,a2A
r(s, a)

X

s02S,a02A
Pr(s, a|s0, a0 ;⇡e)d1(s

0)⇡e(a
0|s0)

+ �2(1� �)�1
X

s2S,a2A
r(s, a)

X

s02S,a02A
Pr(s, a|s0, a0 ;⇡e)

X

s002S,a002A
Pr(s0, a0|s00, a00 ;⇡e)d

⇡e(s00, a00)

=
X

s2S,a2A
r(s, a)d1(s)⇡e(a|s) + �

X

s02S,a02A
r(s0, a0)

X

s2S,a2A
Pr(s0, a0|s, a ;⇡e)d1(s)⇡e(a|s)

+ �2(1� �)�1
X

s002S,a002A
r(s00, a00)

X

s02S,a02A
Pr(s00, a00|s0, a0 ;⇡e)

X

s2S,a2A
Pr(s0, a0|s, a ;⇡e)d

⇡e(s, a),

Where the last line follows by relabelling the state-action pairs such that they match the common
notation where (s, a), (s0, a0) and (s00, a00) are the state action tuples for three consecutive time-steps.
Now changing the sampling distribution as earlier,

J(⇡e) = E⌧⇠⇡b

"
⇡e(A1|S1)

⇡b(A1|S1)
r(S1, A1) + �

⇡e(A1|S1)

⇡b(A1|S1)

⇡e(A2|S2)

⇡b(A2|S2)
r(S2, A2)

+
1X

t=3

�t�1 d⇡e (St�2, At�2)

d⇡b(St�2, At�2)

⇡e(At�1|St�1)

⇡b(At�1|St�1)

⇡e(At|St)

⇡b(At|St)
r(St, At)

#
(9)

It can be now observed that SOPE2(D) is the sample estimate of (9). Similarly, by generalizing this
pattern it can be observed that on unrolling n times, we will get,

J(⇡e) =E⌧⇠⇡b

"
nX

t=1

0

@
tY

j=1

⇡e(Aj |Sj)

⇡b(Aj |Sj)

1

A �t�1r(St, At)+

1X

t=n+1

�t�1 d
⇡e(St�n, At�n)

d⇡b(St�n, At�n)

0

@
n�1Y

j=0

⇡e(At�j |St�j)

⇡b(At�j |St�j)

1

A r(St, At)

#

=E⌧⇠p⇡b

"
nX

t=1

�t�1⇢1:tRt +
1X

t=n+1

�t�1 d
⇡e(St�n, At�n)

d⇡b(St�n, At�n)
⇢t�n+1:tRt

#
. (10)

Finally, it can be observed that that SOPEn(D) is the sample estimate of (10).

D Additional Experimental Details

For all experiments, we utilize the domains and algorithm implementations from Caltech OPE
Benchmarking Suite (COBS) library by Voloshin et al. [2019]. Our code can be found at
https://github.com/Pearl-UTexas/SOPE, and our experiments ran on 32 Intel Xeon cores.

16

https://github.com/clvoloshin/COBS
https://github.com/clvoloshin/COBS
https://github.com/Pearl-UTexas/SOPE

D.1 Experimental Set-Up

For our experiments, we used the Graph, Toy Mountain Car, and standard Mountain Car [Brockman
et al., 2016] domains provided in the COBS library. We include a brief description of each of these
domains below, and a full description of each can be found in the work by Voloshin et al. [2019].

Graph Environment The Graph environment is a two-chain environment with 2L states and 2
actions. The ends of the chain are starting state x0 = 0 and absorbing state xabs = 2L. In between
x0 and xabs, the remaining states form two chains of length L� 1 each. The states on the top chain
are labeled 1, 3, . . . , 2L� 3 and the states on the bottom chain are labeled 2, 4, . . . , 2L� 2. For each
t < L, taking action a = 0, the agent will try to enter the next state on the top chain xt+1 = 2t+ 1,
and taking action a = 1, the agent will try to enter the next state on the bottom chain xt+1 = 2t+ 2.
Since the environment is stochastic, the agent will succeed with probability 0.75 and slip into the
wrong row with probability 0.25. The reward is +1 if the agent transitions to a state on the top chain
and -1 otherwise. For our experiments, we set L = 20 and � = 0.98.

Toy Mountain Car Environment The Toy-MC environment [Voloshin et al., 2019] is a tabular
simplification of the classic Mountain Car domain. There are a total of 21 states: x0 = 0 the starting
point in the valley, 10 states to the left, and 10 states to the right. The right-most state is a terminal
absorbing state. Taking action a = 0 moves the agent to the right and taking action a = 1 moves the
agent to the left. The agent receives reward of r = �1 each time step, and the reward becomes 0
when the agent reaches the terminal absorbing states. For our experiments, we use random restart
where start in a random state in the domain and set L = 100 and � = 0.99.

Mountain Car Environment We use the Mountain Car environment from OpenAI gym with the
simplifying modifications applied in Voloshin et al. [2019]. In particular, the car agent starts in a
valley and needs to move back and forth in order to gain moment to reach the goal of getting to the
top of the mountain. The state space is the position and velocity of the car. At each time step, the car
agent can either accelerate move forward, move backwards, or do nothing. Additionally, at each time,
the agent receives a reward of r = �1 until it reaches the goal. The environment is modified in the
COBS library to decrease the effective trajectory length by applying each action at five times before
observing xt+1. Additionally, the initial start location is modified from being uniformly chosen
between [�.6,�.4] to be randomly chosen from {�.6,�.5,�.4} with no velocity.

Policies For the tabular environments Graph and Toy Mountain Car, we utilize static policies that
take action a = 0 with probability p and action a = 1 with probability 1� p. For the Mountain Car
environment, we utilize an ✏-greedy policies with the provided DDQN trained policy in the COBS
library.

Methods For our experiments, we evaluate the performance of our proposed SOPEn and W-SOPEn

estimators. To estimate the average state-action visitation ratios d⇡e (s,a)
d⇡b (s,a) , we utilize the implemen-

tation of methods from Liu et al. [2018] provided in the COBS library. For the Mountain Car
experiments, we utilize the radial-basis function for the kernel estimate and a linear function class for
the density estimate. Specific hyper-parameters can be found below.

Parameter Graph Toy-MC Mountain Car
Quad. prog. regular. 1e-3 1e-3 -

NN Fit Epochs - - 1000
NN Batchsize - - 1024

D.2 Impact of Policy Mismatch Between ⇡b and ⇡e on SOPEn and W-SOPEn

We examine the impact of the policy mismatch between the behavior and evaluation policies on the
performance of the SOPEn and W-SOPEn estimators. In this experiment, the evaluation policy takes
action a = 0 with probability 0.9, and we vary the probability that the behavior policy takes a = 0
from 0.1 to 0.8 by increments of 0.1. We examine the performance of the SOPEn and W-SOPEn

estimators across values of n for the different behavior policies. Results can be seen in the plots
below.

The performance of PDIS and SIS has been known to be negatively correlated with the degree of
policy mismatch [Voloshin et al., 2019]. We also find this to be generally true for the performance of
the SOPEn and W-SOPEn estimators. Additionally, we observe that the degree of mismatch between

17

(a) SOPEn on Graph Domain

(b) W-SOPEn on Graph Domain

the evaluation and behavior policies has an impact on the existence of an interpolating estimator that
is able to achieve lower MSE than the endpoints. For both SOPEn and W-SOPEn, when the ⇡b is
extremely different ⇡e, there are instances when the best estimate is SIS or weighted-SIS. In cases
when the ⇡b is extremely close to the ⇡e, particularly for unweighted SOPEn, there are cases when
the trajectory-based importance sampling endpoint gives the lowest MSE. We do note that in cases
when the difference between evaluation and behavior policies moderate but not extreme, there exists
interpolating estimators that outperform the endpoints. This experiment helps to shed light on the
possible conditions on the evaluation and behavior policies that allow for an interpolating estimator
to have the lowest MSE.

D.3 Mountain Car Experimental Results

In addition to the experiments contained in the main paper, we also examine the performance of
W-SOPEn on the Mountain Car domain. For these experiments, we used a provided DDQN trained
policy as the base policy, and use ✏-greedy versions of this policy as our behavior and evaluation
policies. Specific information about this policy can be found in [Voloshin et al., 2019]. For our
behavior policy, we use ✏ = 0.05 and for our evaluation policy, we use ✏ = 0.9. We average over
10 trials with 128, 256 and 512 trajectories each. The results of this experiment can be found in the
figure below.

We observe that this setting is an extremely challenging one for both trajectory-based and density-
based importance sampling since the behavior and evaluation policies are so far apart. However, even
in this extremely difficult setting, the there exists an interpolating estimator within the W-SOPEn

spectrum that is able to have better performance than either of the endpoints.

18

	Introduction
	Background
	Combining Trajectory-Based and Density-Based Importance Sampling
	Bias-Variance Trade-off using n-step Interpolation Between PDIS and SIS
	Doubly-Robust and Weighted IS Extensions to SOPEn
	Experimental Results
	Related Work
	Conclusions
	Acknowledgement
	Proof of Lemma 1
	Full Derivation of SOPEn Estimator
	Bellman Recursion Derivation of SOPEn
	Additional Experimental Details
	Experimental Set-Up
	Impact of Policy Mismatch Between b and e on SOPEn and W-SOPEn
	Mountain Car Experimental Results

