
Learning Models for Actionable Recourse

Alexis Ross⇤
Harvard University

Allen Institute for Artificial Intelligence
alexisr@allenai.org

Himabindu Lakkaraju
Harvard University

hlakkaraju@seas.harvard.edu

Osbert Bastani
University of Pennsylvania

obastani@seas.upenn.edu

Abstract

As machine learning models are increasingly deployed in high-stakes domains
such as legal and financial decision-making, there has been growing interest in
post-hoc methods for generating counterfactual explanations. Such explanations
provide individuals adversely impacted by predicted outcomes (e.g., an applicant
denied a loan) with recourse—i.e., a description of how they can change their
features to obtain a positive outcome. We propose a novel algorithm that leverages
adversarial training and PAC confidence sets to learn models that theoretically
guarantee recourse to affected individuals with high probability. We demonstrate
the efficacy of our approach with extensive experiments on real data.

1 Introduction

In recent years, there has been a growing interest in using machine learning to inform consequential
decisions in legal and financial decision-making—e.g., deciding whether to give an applicant a
loan [Hardt et al., 2016], bail to a defendant [Lakkaraju and Rudin, 2017], or parole to a prisoner [Zeng
et al., 2017]. Because these decisions have an impact on the lives of the concerned individuals, it is
critical to explain why the model made its prediction. Explanations are important not only to ensure
that there are no issues with the way the prediction is made (e.g., making sure the decision is free of
racial/gender bias [Hardt et al., 2016] and does not suffer from causal issues [Bastani et al., 2017]),
but also to give the affected individual a justification for the decision. Thus, there has been a great
deal of recent interest in explainable machine learning [Lou et al., 2012, Wang and Rudin, 2015,
Ribeiro et al., 2016b, Lakkaraju et al., 2019].

We focus on counterfactual explanations [Wachter et al., 2017], which specify how features can be
changed to obtain a different model prediction. These explanations can be used to provide individuals
who are negatively impacted by model outcomes with actionable recourses—i.e., actions they can
take to receive a positive outcome [Ustun et al., 2019]. For instance, for an applicant denied a loan, an
actionable recourse might be: “to get a loan, increase your income by $1,000.” Such a recourse must
satisfy two properties to be actionable: (i) it only changes features that the individual can realistically
modify—e.g., it cannot change race or gender, but can change income, and (ii) the magnitude of the
change must be reasonable. An actionable recourse like this may be considered necessary in some
settings because it provides an individual with agency over a consequential decision that affects them.

Prior research has addressed the need for recourses through post-hoc algorithms for computing
individual recourses corresponding to certain kinds of models—e.g., using integer linear programming

⇤Work started at Harvard University.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



in the context of linear models [Ustun et al., 2019], or using gradient descent on the input for
differentiable models [Wachter et al., 2017]. However, these approaches do not guarantee that
actionable recourses exist; at best, Ustun et al. [2019] guarantee that they find one if it exists, and
only for linear models. In other words, many affected individuals may not even be prescribed any
actions that they can take to change their outcome.

We aim to provide tools for guaranteeing the existence of actionable recourses for domains in which
recourses may be necessary. We propose a novel algorithm for learning models in a way that is
designed to ensure the existence of actionable recourses so that affected individuals receive recourse
with a high probability. To the best of our knowledge, our approach is the first to train models for
which recourse is likely to exist with a high probability. It builds on adversarial training [Goodfellow
et al., 2015a], which is designed to ensure that models are robust to adversarial examples. At a high
level, given a binary classification model f✓ : X ! Y , where Y = {0, 1}, an adversarial example is a
perturbation � 2 � to an input x 2 X such that f✓(x+ �) 6= f✓(x). In a typical adversarial training
setting, we choose � to be “small” in some sense (e.g., in terms of L1 norm of � 2 �) and aim to
guarantee that adversarial examples do not exist—i.e., f(x+ �) = f(x) for all � 2 �.

In contrast, in our setting, we intuitively want to ensure that adversarial examples do exist. In
particular, given an input x for which f(x) = 0, we want there to exist recourse � 2 � such
that f(x + �) = 1, where in our case, � is the given set of all permissible recourses for the
application domain. Thus, we adapt existing adversarial training algorithms to ensure the existence
of recourse. As an added benefit, these algorithms can compute recourse significantly faster than
existing techniques for general differentiable models [Wachter et al., 2017].

While adversarial training heuristically encourages recourse to exist, it does not provide any theoretical
guarantees. We build on PAC confidence sets [Park et al., 2020] to guarantee that recourse exists with
high probability (assuming the test distribution is the same as the training distribution).

We evaluate our approach on four real world datasets that cover lending, recidivism, bail, and credit
outcomes. Our results demonstrate that our approach is very effective at improving recourse rates
(i.e., the probability that individuals are given recourse) without noticeably reducing accuracy.

In addition, we show that we achieve this improvement in recourse rates without noticeably harming
the quality of recourses or the brittleness of the underlying model. Firstly, we empirically demonstrate
that our approach improves the rate at which models provide recourses that are grounded in reality:
We find that our approach encourages the existence of recourses that both obey causal constraints
driven by real-world causal relationships and are in-distribution to the original data. Secondly, we
show that our approach encourages the existence of robust recourses (i.e., recourses that result in
positive outcomes even when changed in small ways). Lastly, we show that these improvements in
recourse rates do not render the underlying classifier brittle.2

Related work. Beyond Wachter et al. [2017], Ustun et al. [2019], other approaches have been
proposed for generating recourses [Zhang et al., 2018, Hendricks et al., 2018, Mothilal et al., 2020,
Looveren and Klaise, 2019, Poyiadzi et al., 2020, Karimi et al., 2020a,b,c]. However, all these
works focus on how to compute recourse for given predictive models; in contrast, our goal is to
learn predictive models that provide recourses at high rates. Any of these methods can be used in
conjunction with ours. Our work also builds on adversarial training [Szegedy et al., 2014, Goodfellow
et al., 2015b, Bastani et al., 2016, Shaham et al., 2018]. While recent work in model explainability has
leveraged adversarial training to improve robustness of explanations [Lakkaraju et al., 2020b], their
goal is to reduce the rate of adversarial examples, whereas ours is to increase the rate of recourses.

2 Problem Formulation

Preliminaries. Consider a binary classifier f✓ : X ! Y , where x 2 X ✓ RnX are the features,
y 2 Y = {0, 1} are the labels, and ✓ 2 ⇥ ✓ Rn⇥ are the parameters. We assume that f✓ has the
form f✓(x) = (g✓(x) � ✓0), where g✓ : X ! [0, 1] is a scoring function and ✓0 2 R is a decision
threshold. We assume that g✓ is differentiable in x—i.e., rxg✓(x) exists almost everywhere.3

2Our code is available at https://github.com/alexisjihyeross/adversarial_recourse.
3Note that we have focused on real-valued features. We discuss how our algorithm can be extended to

handling categorical features in Section B.4.

2

https://github.com/alexisjihyeross/adversarial_recourse


Recourse. We seek to ensure that individuals given negative outcomes by f✓ are also given recourse.
Definition 2.1. Given a classifier f✓ : X ! Y and a set � ✓ RnX , an input x 2 X has recourse if
there exists � 2 � such that f(x+ �) = 1.

We use XR
✓ to denote the set of inputs for which recourse exists. The specific design of the set

of permissible recourses � ✓ RnX is domain specific. We assume that 0 2 �; then, recourse
automatically exists for positive outcomes f✓(x) = 1 by taking � = 0. In addition, we assume that �
is a polytope—i.e., � = {� 2 RnX | A� + b � 0} for some A 2 Rk·nX and b 2 Rk. That is, � can
be expressed as a set of affine constraints. This assumption is required for computational tractability.

A standard choice is � = {� | k�k1  �max}, which says that the recourse can suggest changes to
any feature by a bounded amount. We can apply this constraint after an affine transformation of �
that appropriately scales different covariates. In addition, we often want to restrict features—e.g., to
avoid suggesting that an individual change their age, we can constrain �i = 0, or to avoid suggesting
that an individual decrease their income to qualify for a loan, we can constrain �i � 0. In principle,
� can also be tailored to individuals—e.g., disallow suggesting increased education for individuals
who cannot afford to do so. Finally, � should be designed large enough so it includes a plausible
recourse for every individual, yet small enough to ensure that the recourses do not overburden the
individuals. All of these considerations are domain-specific; we describe our choices for datasets in
our experiments in Section 4.

Probably Approximately has REcourse (PARE). Our goal is to ensure that recourse exists for
most individuals. Given a confidence level ✏ 2 R>0, we say that ✓ approximately has recourse if

Pp(x)

⇥
x 2 XR

✓

⇤
� 1� ✏,

i.e., recourse exists for f✓ with probability at least 1� ✏ w.r.t. the distribution p(x) over individuals.

Then, our goal is to design an algorithm for estimating the model parameters ✓ so that f✓ approxi-
mately has recourse. To do so, our algorithm takes as input a held-out calibration dataset Z ✓ X ⇥Y
of examples (x, y) ⇠ p, where p(x, y) is the distribution over labeled examples, and outputs model
parameters ✓̂(Z). Then, as in the probably approximately correct (PAC) learning framework [Valiant,
1984], our algorithm might additionally fail due to the randomness in Z. Thus, given a second
confidence level ↵ 2 R>0, we say that ✓̂ Probably Approximately has REcourse (PARE) if

Pp(Z)

h
✓̂(Z) approximately has recourse

i
� 1� ↵,

where p(Z) =
Q

(x,y)2Z p(x, y). In other words, our algorithm produces a model that approximately
has recourse with probability at least 1� � over p(Z).

Constructing a PARE classifier. Note that we can trivially obtain a PARE classifier f✓ by choosing
the decision threshold ✓0 = 0, in which case f✓(x) = 1 for all x 2 X . However, this approach is
undesirable since it assigns a positive outcome to all individuals. Instead, we want to maximize the
performance of f✓ (e.g., in terms of accuracy, F1 score, etc.) subject to a constraint that f✓ is PARE.
Thus, we divide the problem of constructing a PARE classifier into two parts (i) increasing recourse
rate: we train g✓ in a way that heuristically increases the rate at which inputs x 2 X have recourse
(for any ✓0), and (ii) guaranteeing recourse: we choose ✓0 to guarantee that the resulting f✓ is PARE.

3 Our Algorithm

We describe our algorithm for learning models that satisfy PARE while achieving good performance.
We describe Step 1 (increasing recourse rate) in Section 3.1 and Step 2 (guaranteeing recourse) in
Section 3.3. We describe ways to compute recourse in Section 3.2.

3.1 Step 1: Increasing Recourse Rate

Background: adversarial training. Consider a classifier f✓ : X ! Y and perturbations � ✓ RnX .
Given x 2 X , an adversarial example [Szegedy et al., 2014] for x is a perturbation � 2 � such that
f✓(x+ �) 6= f✓(x)—i.e., the perturbation � (restricted to be small) changes the predicted label of x.

Adversarial examples are undesirable because they indicate that f✓ is not robust to small changes to
the input that should not affect the class label (e.g., according to human predictions). Thus, there has

3



been a great deal of interest in designing algorithms for improving robustness to adversarial examples.
The basic approach is adversarial training [Goodfellow et al., 2015b], which dynamically computes
adversarial examples for inputs in the training set and adds these to the objective as additional training
examples, as in data augmentation. In particular, given a loss function ` : R ⇥ Y ! R, where
`(g✓(x), y) is the loss for training example (x, y), they seek to compute

✓⇤ = argmin
✓2⇥

`A(✓) where `A(✓) = Ep(x,y)


`(g✓(x), y) + � ·max

�2�
`(g✓(x+ �), y)

�
.

In `A(✓), the first term is the supervised learning loss, the second is the adversarially robust loss (i.e.,
encourage g✓ to be robust to adversarial examples x+ �), and � 2 R�0 is a hyperparameter.

The challenge in optimizing `A(✓) is computing the maximum over � 2 �. To address this challenge,
existing adversarial training algorithms leverage approximations enabling efficient computation of �.

Our approach. We use adversarial training to learn a model f✓ for which inputs x 2 X have
recourse at higher rates compared to models trained using conventional approaches. There are two
key differences compared to adversarial training. First, we want recourse to exist, which corresponds
to encouraging the existence of adversarial examples. Second, we only care about changing negative
labels f✓(x) = 0 to positive ones f✓(x+ �) = 1, not vice versa. Thus, we want to solve

✓⇤ = argmin
✓2⇥

`R(✓) where `R(✓) = Ep(x,y)


`(g✓(x), y) + � ·min

�2�
`(g✓(x+ �), 1)

�
. (1)

Compared to `A, `R has a different second term in two ways: (i) the maximum over � with a minimum,
and (ii) the label y is replaced with the label 1. We note that when � = 0, Eq. 1 is supervised learning.

We optimize Eq. 1 using adversarial training [Goodfellow et al., 2015a, Shaham et al., 2018,
Lakkaraju et al., 2020a], which performs stochastic gradient descent on `R(✓). The key challenge to
computing r✓`R(✓) is computing the gradient of the second term, which can be rewritten as follows:

r✓ min
�2�

`(g✓(x+ �), 1) = r✓`(g✓(x+ �⇤), 1),

where �⇤ is the perturbation that maximizes the likelihood of positive outcome, or minimizes the loss
between predicted and positive outcomes—i.e.,

�⇤ = argmin
�2�

`(g✓(x+ �), 1). (2)

Computing �⇤ is computationally challenging; thus, we use a Taylor approximation of the loss
`(g✓(x+ �), 1) ⇡ `(g✓(x), 1) +rx`(g✓(x), 1)>�. Using this approximation, Eq. 2 becomes

�⇤ = argmin
�2�

`(g✓(x+ �), 1) ⇡ argmin
�2�

rx`(g✓(x), 1)
>�,

where we have dropped the term `(g✓(x), 1) since it is constant with respect to �. Finally, note that
the optimization problem on the last step is a linear program (LP), since we have assumed that � 2 �
can be expressed as a set of affine constraints and since the objective is linear in �. In summary, we
optimize Eq. 1 using stochastic gradient descent, where at each step we solve an LP to approximate
the second term—i.e., given parameters ✓i and example (xi, yi) on gradient step i, and step size
⌘i 2 R>0 on step i, we use the stochastic gradient update

✓i+1 = ✓i + ⌘i (r✓`(g✓(x), y) + � ·r✓`(g✓(x+ �⇤i , 1)) where �⇤i = argmin
�2�

rx`(g✓(x), 1)
>�.

3.2 Computing Recourse

So far, we have focused on how to train a model f✓ that provides recourse. Once we have trained f✓,
we still need a way to compute recourse for a given individual x—i.e., an algorithm A : X ! � for
computing �x = A(x) such that f(x+ �x) = 1. We describe three such algorithms; in general, any
algorithm designed to output recourses can be used [Karimi et al., 2020a, Poyiadzi et al., 2020].

Gradient descent. The approach proposed in Wachter et al. [2017] can directly be applied to compute
recourse. They solve the problem

�x = argmin
�2�

{`(g✓(x+ �, 1) + �0 · k�k2},

4



where �0 2 R�0 is a hyperparameter, using gradient descent on �. The term k�k2 is designed to
encourage the recourse � to be small, which is often desirable in practice (we have excluded it from
our formulation for simplicity). While this approach is generally effective, it can be very slow since
we need to solve an optimization problem for each individual.

Adversarial training. We can also use adversarial training to compute recourse—i.e.,

�x = argmin
�2�

rx`(g✓(x), 1)
>�.

This approach approximates the gradient descent approach, but can be computed much more effi-
ciently. Furthermore, since our objective in Eq. 1 is designed to encourage this specific perturbation
to provide recourse, it performs nearly as well as gradient descent when f✓ is trained with � > 0.

Linear approximation. Finally, Ustun et al. [2019] propose an approach to compute recourse
when f✓(x) = (�>x � �0) is a linear model. In this case, they compute �x using an integer
linear program (ILP). For nonlinear models, we can instead use the linear approximation of g✓ near
x. Letting �x = A(x;�0,�) be the recourse generated by their algorithm, and using the Taylor
expansion g✓(x0) ⇡ g✓(x) +rxg✓(x)>(x0 � x), we can use their approach to compute the recourse

�x = A(x; ✓0 � g✓(x),rxg✓(x)).

However, this approach only works well when g✓ is approximately linear as a function of x; otherwise,
the Taylor approximation may be poor and �x may not satisfy the desired condition f✓(x+ �x) = 1.

3.3 Step 2: Guaranteeing Recourse

Finally, we describe how we choose ✓0 to ensure f✓ provides recourse with high probability. Note that
✓0 also controls the fraction of individuals given a positive outcome without the need for recourse;
thus, we choose ✓0 to optimize the performance of f✓ subject to a constraint that f✓ is PARE.

Background: PAC confidence sets. We build on work constructing PAC confidence sets [Park et al.,
2020]. Given x 2 X , they construct a model h̃✓,⌧ : X ! P(Y) (where P is the power set) that
returns the set of all labels y with score above threshold ⌧ 2 R—i.e.,

h̃✓,⌧ (x) = {y 2 Y | h✓(x, y) � ⌧} where h✓(x, y) =

⇢
g✓(x) if y = 1
1� g✓(x) if y = 0.

Given ✏ 2 R>0, we say ⌧ is approximately correct if

Pp(x,y)[y 2 h̃✓,⌧ (x)] � 1� ✏,

i.e., h̃✓,⌧ (x) contains the true label for x with high probability over p(x, y). Note that ⌧ = 0 satisfies
this condition, since h̃✓,0(x) = {0, 1} for all x. The goal is to choose ⌧ as large as possible while
ensuring approximate correctness.

Park et al. [2020] proposes an estimator ⌧̂ that takes as input (i) the pretrained model g✓ : X ! [0, 1],
(ii) a calibration dataset Z ✓ X ⇥ Y of i.i.d. samples (x, y) ⇠ p, and (iii) confidence levels
✏,↵ 2 R>0, and constructs a threshold ⌧̂(Z) 2 [0, 1] that is probably approximately correct (PAC):

Pp(Z)[⌧̂(Z) is approximately correct] � 1� ↵. (3)

In other words, ⌧̂(Z) is approximately correct with probability at least 1 � ↵ according to p(Z).
Their approach leverages the fact that ⌧̂(Z) is an estimator for a single parameter; thus, they can use
learning theory to obtain PAC guarantees [Kearns et al., 1994].

PARE models via PAC confidence sets. Given a model g✓ : X ! R, an algorithm A : X ! � for
computing recourse, and a calibration set Z ✓ X ⇥ Y , our algorithm leverages PAC confidence sets
to choose a threshold ✓0 = ✓̂0(Z) that ensures the resulting model f✓̂ satisfies the PARE constraint.

First, our algorithm uses the PAC confidence set algorithm to construct the new calibration dataset

Z 0 = {(x+A(x), 1) | (x, y) 2 Z}.

Intuitively, Z 0 says that the “correct” label for every input x + A should be 1—i.e., the recourse
constructed by A should satisfy f✓(x+A(x)) = 1.

5



Metrics Adult Compas Bail German
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

Performance
F1 score 0.697 0.636 0.739 0.717 0.775 0.760 0.447 0.419
Accuracy 0.830 0.787 0.667 0.565 0.643 0.629 0.600 0.527
Precision 0.621 0.555 0.655 0.561 0.646 0.644 0.364 0.317
Recall 0.799 0.752 0.850 0.991 0.968 0.930 0.583 0.638

Recourse neg
Linear approx. 0.220 0.053 0.156 0.068 0.102 0.029 0.204 0.086
Gradient desc. 0.210 0.496 0.579 1.000 0.317 1.000 0.804 0.864
Adversarial train. 0.007 0.498 0.000 0.967 0.000 0.993 0.127 0.968
Recourse all
Linear approx. 0.453 0.328 0.773 0.982 0.957 0.981 0.607 0.593
Gradient desc. 0.461 0.661 0.883 1.000 0.970 1.000 0.890 0.920
Adversarial train. 0.321 0.659 0.722 0.999 0.952 0.999 0.517 0.980

Table 1: Performance and recourse for the baseline model (� = 0) and the model trained with our
algorithm (� = 0.8), and for each of the three algorithms for computing recourse in Section 3.2. We
show mean results across 3 random data splits and bold the higher value between the baseline and
our algorithm.

Then, our algorithm constructs h̃✓,⌧̂(Z) using g✓, Z 0, and the given ✏,↵. The PAC guarantee in Eq. 3
says that with probability at least 1� ↵ over p(Z), we have

Pp(Z)

h
Pp(x,y)[y

0 2 h̃✓,⌧̂(Z0)(x
0)] � 1� ✏

i
� 1� ↵, (4)

where (x0, y0) 2 Z 0 is the example constructed from (x, y) 2 Z as described above. Note that the
outer probability is over p(Z) since Z 0 is a deterministic function of the random variable Z. Plugging
in the definitions x0 = x+A(x) and y0 = 1, Eq. 4 becomes

Pp(Z)

h
Pp(x,y)[1 2 h̃✓,⌧̂(Z0)(x+A(x))] � 1� ✏

i
� 1� ↵,

and plugging in the definition of h̃✓,⌧ , it becomes

Pp(Z)

⇥
Pp(x,y)[g✓(x+A(x)) � ⌧̂(Z 0)] � 1� ✏

⇤
� 1� ↵. (5)

Then, our algorithm returns ✓̂0(Z) = ⌧̂(Z 0) (with given parameters ✓ as the remaining parameters).
Since Eq. 5 is equivalent to the PARE condition, we have:

Theorem 3.1. ✓̂ satisfies the PARE condition.

4 Experiments

We evaluate our approach and show how it can effectively improve recourse rates while preserving
accuracy. We also demonstrate how it can improve the correctness and robustness of recourses. In
Appendix B, we provide additional results on how our approach affects fairness of models, as well as
results on an NLP task with discrete covariates to demonstrate the flexibility of our framework.

4.1 Experimental Setup

Datasets. We use four real-world datasets. The first contains adult income information from the
1994 United States Census Bureau [Dua and Graff, 2017]. It includes information about adults’
demographics, education, and occupations. Each adult is labeled as making below or > $50K a year,
which can be thought of as a proxy for whether an individual will be able to repay a loan or not. The
second contains information collected by Propublica about criminal defendants’ compas recidivism
scores [Angwin et al., 2016]. This dataset includes information about defendants’ demographics
and crimes, and each defendant is labeled as having either a high or low likelihood of reoffending,

6



Figure 1: How performance and recourse vary with �; � = 0 is the baseline and � > 0 is our
approach. We plot means and standard errors across 3 random data splits. The first row shows
performance metrics; the second and third show recourse metrics. Performance: F1 Accuracy.
Recourse Algorithm: “gradient descent” “adversarial training”.

Figure 2: How performance and recourse vary with ✓0, for our approach (� = 0.8, left) and the
baseline (� = 0, right). Performance: F1 Accuracy. Recourse: Recourse neg Recourse all.

as measured by the compas assessment tool. The third dataset represents bail outcomes from two
different U.S. state courts from 1990-2009 [Schmidt and Witte, 1988]. It includes information about
individuals’ criminal histories and demographics. Each defendant is labeled as having a high or low
risk of recidivism. The fourth dataset is the german credit dataset [Dua and Graff, 2017], which
contains individuals’ demographic, personal, and financial information. Each applicant is labeled as
either having high or low credit risk.

We standardize all continuous features to have mean 0 and variance 1. We randomly split each dataset
into 80% train and 20% validation sets. We use 3 random data splits and report the mean across
splits for the rest of this section, unless otherwise specified. For compas and adult, we hold out 500
examples from the validation set to form a test set; for german, we hold out 100 examples. For bail,
we evaluate on a 500-instance subset of the test set. All results are reported on the test set.4

Models. All models are neural networks with 3 100-node hidden layers, dropout probability 0.3, and
tanh activations. For evaluation, we choose the epoch achieving the highest validation F1 score.

Parameters. We experimented with � values between 0.0 to 2.0 in increments of 0.2 and found
that � = 0.8 provided the best tradeoff between F1 score and recourse rate across all datasets; we
evaluate how our results vary with � below. For �, we choose the set of actionable features (i.e.,
features that can be changed as part of the recourse) based on the dataset (two features for adult, bail,
german; one for compas); we set �max = 0.75 after standardizing features. (See Appendix B.2 for
experiments investigating the effect of varying values of �max). We also include domain-specific
linear constraints in �—e.g., for the adult dataset, recourse can only require that hours worked
increases. See Appendix A.3 for more details about our choices of �.

4Our processed datasets have sizes: adult ⇡ 32.5K, compas ⇡ 6K, bail ⇡ 8K, german ⇡ 1K.

7



We choose the decision threshold ✓0 to maximize F1 score rather than to obtain PAC guarantees, since
our goal is to understand the tradeoffs between model performance and recourse rates with a fixed
underlying predictive model f✓. We evaluate the effects of rigorously choosing ✓0 in Section 4.2.

Baselines. To the best of our knowledge, our approach is the first to train models with the objective of
providing recourse at a higher rate. Thus, we compare to a baseline that omits our recourse loss—i.e.,
� = 0.0. For our approach and this baseline, we evaluate the performance of each of the three
different algorithms for computing recourse described in Section 3.2. We use the alibi implementation
[Klaise et al., 2019] of the gradient descent algorithm for computing recourse [Wachter et al., 2017]
and set the initial value of the hyperparameter �0 = 0.001. We use LIME [Ribeiro et al., 2016a] as
our linear approximation method with the approach proposed by Ustun et al. [2019].

Metrics. We evaluate our approach and the baselines with the following metrics: (i) standard
performance metrics of accuracy and F1 score, (ii) “recourse neg,” the proportion of instances x
with negative original outcomes that receive recourse such that f(x) = 0 but f(x + �⇤) = 1, and
(iii) “recourse all,” the proportion of all instances x such that either f(x) = 1 or f(x) = 0 but
f(x+ �⇤) = 1. Metric (iii) is most useful for measuring rate of positive outcomes, since we want to
include individuals who are originally assigned a positive outcome.

4.2 Efficacy of Our Framework

In Table 1, we show the performance and recourse rates of models trained with our approach
and baseline models. Overall, our approach significantly improves recourse without sacrificing
performance. Across datasets, models trained using our approach offer recourse at significantly
higher rates than the baseline model, for both the “adversarial training” and “gradient descent”
approaches to computing recourse. We do not observe this trend when using “linear approximation”
to compute recourse; in this case, both the baseline and our approach perform poorly. We believe this
effect can be explained by poor LIME approximations of f✓, which are exacerbated by adversarial
training since it increases the nonlinearity of f✓. Figure 1 shows how these results vary with �: F1

scores and accuracies are relatively stable as a function of �.

In Figure 2, we plot how these results vary with ✓0 (for classifiers trained with � = 0 and � = 0.8 on
a single data split), using the “adversarial training” method of computing recourse.5 High values of
✓0 lead to lower recourse rates in all cases. The curves for performance are similar for the baseline
and for our approach, but the decline in recourse values begins at lower thresholds in the case of
the baseline. Thus, our approach improves recourse for most choices of ✓0 without sacrificing
performance. The trade-off between recourse and performance depends on the dataset. For adult,
performance increases while recourse decreases since the majority label in this dataset is negative,
whereas for bail and compas, performance and recourse both decrease as ✓0 increases since the
majority label is positive.

Performance under PARE guarantees. Next, we show that we can often obtain PARE guarantees
without significantly reducing performance. We compare the performance of choosing the decision
threshold ✓0 to maximize F1 score to that of ✓0 chosen to obtain PARE classifiers. Specifically, for
the latter, we compute ✓0 using the approach described in Section 3.3 with parameters ✏ = ↵ = 0.05.
Then, we evaluate models at thresholds in 10 equally spaced increments from 0 to the upper bound
and fix ✓0 to maximize F1 score. For these experiments, we use the “adversarial training” algorithm
to compute recourse; we observed similar trends for the “gradient descent” algorithm.

Results are shown in Table 2. In all cases, choosing ✓0 to satisfy the PARE condition yields a
classifier that returns recourse at a rate � 1� ✏ = 0.95, which validates our theoretical guarantees.
Furthermore, on all three datasets, the F1 score does not significantly decrease when imposing the
PARE condition. We do see a decrease in F1 score for the baseline model on the adult dataset, but
the decrease for our model is smaller, suggesting that our end-to-end framework of training models
and fixing ✓0 is successful at guaranteeing recourse without a big drop in accuracy.6

5Note that the “recourse neg” values are low for � = 0 because we use the “adversarial training” method to
compute recourse, which builds on a fast linear approximation and thus does not exhaustively find recourses. We
use this method instead of the more effective “gradient descent” method for efficiency, since the latter is less
efficient and would require recomputing recourses for each threshold.

6We can obtain a weaker theoretical guarantee at a smaller cost in performance. For instance, applying PARE
to our model in Table 2 with ✏ = ↵ = 0.25 results in an F1 score of 0.613 on the adult dataset.

8



Adult Compas Bail German
F1 Recourse F1 Recourse F1 Recourse F1 Recourse

BL + F1 max 0.697 0.321 0.739 0.722 0.775 0.952 0.447 0.517
BL + PARE 0.400 0.981 0.722 0.972 0.777 0.996 0.442 0.997

Ours + F1 max 0.636 0.659 0.717 0.999 0.760 0.999 0.419 0.980
Ours + PARE 0.526 0.974 0.721 0.999 0.776 0.999 0.457 1.000

Table 2: Impact of choosing decision threshold ✓0 to satisfy the PARE constraint. We show F1 scores
for the baseline model and the model trained with our algorithm using two methods of determining ✓0:
(i) maximize the F1 score, and (ii) guarantee that the model satisfies the PARE constraint (+PARE,
bolded). For the baseline model (BL), � = 0; for our model (Ours), � = 0.8.

Figure 3: “Recourse neg” for the german dataset using the causal recourse computing algorithm
proposed by Karimi et al. [2020b]. We show means and standard errors across 20 random data splits
for varying values of �.

Groundedness of recourses. One key question is whether the recourses of models trained with our
approach are grounded in reality—i.e., whether they are plausible modifications of the ground truth
label. For instance, if an individual is denied a loan, they should be given a recourse such that if they
take the specified action, they actually increase their likelihood of paying back the loan; an individual
may increase their income and be given a loan, but still fail to repay it. We want to ensure that our
training approach increases the rate of recourses that obey causal relationships in the world, rather
than recourses that exploit spurious correlations between features. Directly evaluating groundedness
of recourses is challenging, since we do not know the ground truth labels for suggested recourses.
Thus, we evaluate whether they are causally grounded and in-distribution.

First, we measure the rate at which causally grounded recourses are offered by models trained with
our approach. We apply the algorithm for computing causal recourses (CR) introduced by Karimi
et al. [2020b] to evaluate whether our proposed training algorithm improves the rate at which causally
grounded recourses are offered. Because CR requires access to an underlying structural causal model
(SCM) of the world, we only experiment with the german dataset, for which Karimi et al. [2020b]
provide an associated SCM. We measure the proportion of test instances x for which the CR algorithm
computes a valid recourse that satisfies the constraint that perturbations be bounded by �max—i.e.
“recourse neg”.7 As shown in Figure 3, with increasing �, the rate at which recourses are by the CR
algorithm increases. This finding suggests that our training algorithm encourages the existence of
causally grounded recourses.

Second, we evaluate whether the recourses offered by models trained with our approach are in-
distribution with respect to the original training data. In line with prior work [Slack et al., 2020],
we train classifiers to distinguish between original data instances and recourses computed by the
“gradient descent” algorithm for models trained with our approach (� = 0.8). In Table 3, we report
the accuracies of these classifiers on a held out test set. The low classifier accuracies across all
datasets indicate that these recourses are indistinguishable from original data instances. Thus, our
framework encourages the existence of recourses that are in-distribution to the original data.

Robustness. Another key question is whether the recourses generated using our approach are robust—
i.e., whether small changes to the recourse result in valid recourses. For instance, if an individual

7We select hyperparameters for the CR algorithm that maximize “recourse neg” on the train set.

9



Adult Compas Bail German

Neural Network 0.54 0.56 0.52 0.51

Random Forest 0.53 0.55 0.51 0.51

Logistic Regression 0.51 0.48 0.48 0.47

Table 3: Accuracies of classifiers trained to distinguish between original data instances and recourses
computed using the “gradient descent” algorithm for computing recourse for models trained on a
single random data split with our approach (� = 0.8).

Adult Compas Bail German
Robustness Exp. Recourse Alg. BL Ours BL Ours BL Ours BL Ours

Recourse Grad. desc. 1.000 0.865 1.000 1.000 1.000 1.000 0.949 0.898
Advers. train. 1.000 0.841 1.000 1.000 1.000 1.000 0.857 1.000

Model – 0.976 0.926 0.980 1.000 0.994 0.996 0.970 0.920

Table 4: The first row shows the percentage of recourses found that are robust to noise. The second
row shows the percentage of test inputs that are robust to noise in the recourse dimensions. We show
results for models trained with varying � (� = 0 indicates the baseline, and � = 0.8 indicates our
approach) on a single data split. For each model, we show results for the “gradient descent” and
“adversarial training” algorithms for computing recourse in Section 3.2.

increases their income by more (or even slightly less) than the amount suggested in the recourse, they
would expect to still be provided with a positive decision.

For each computed recourse �, we compute a noisy recourse �0 by adding i.i.d. Gaussian noise to
each actionable feature of �—i.e., �0i = �i +N (0, 0.1). We consider a recourse � robust if its noisy
recourse �0 is valid—i.e. if f(x + �0) = 1. In the top row of Table 4, we report the percentage of
recourses found that are robust for a baseline model and model trained with our adversarial approach.
As shown, our training approach does not significantly reduce the robustness of recourses: There is a
slight drop in robustness for the adult dataset and for the “gradient descent” recourse algorithm for
the german dataset; however, for compas and bail, recourses remain robust.

Effect on classifier brittleness. We also investigate the effect of our adversarial training approach
on model brittleness. In particular, we measure how sensitive models trained with our adversarial
algorithm are to noises in the recourse dimensions, as compared to baseline models. We add i.i.d.
Gaussian noise, as described above, to the actionable dimensions of original inputs, and compute
the proportion of test instances for which the trained model is robust to this noise. As shown in the
bottom row of Table 4, our training approach does not significantly increase model brittleness—we
observe a small drop in model robustness in the recourse dimensions for the adult and german datasets
and a small increase in robustness for the compas and bail datasets. These results suggest that our
training approach effectively ensures recourse without rendering classifiers brittle.

5 Conclusion

We have proposed a novel algorithm for training models that are guaranteed to provide recourse
for reversing adverse outcomes with high probability. Our experiments show that our algorithm
trains models that provide recourse at high rates without sacrificing accuracy compared to traditional
learning algorithms. Future work includes extending our techniques beyond binary classification.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful feedback. This work is supported
in part by the NSF awards #IIS-2008461, #IIS-2040989, and #CCF-1910769, and research awards
from the Harvard Data Science Institute, Amazon, Bayer, and Google. The views expressed are those
of the authors and do not reflect the official policy or position of the funding agencies.

10



References
Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. How we analyzed the compas

recidivism algorithm. Propublica, 2016.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and
Antonio Criminisi. Measuring neural net robustness with constraints. In Advances in neural
information processing systems, pages 2613–2621, 2016.

Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting blackbox models via model extraction.
arXiv preprint arXiv:1705.08504, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:

//www.aclweb.org/anthology/N19-1423.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.

uci.edu/ml.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015a.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015b.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In Advances
in neural information processing systems, pages 3315–3323, 2016.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Generating counterfactual
explanations with natural language. arXiv preprint arXiv:1806.09809, 2018.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic counterfactual
explanations for consequential decisions. In International Conference on Artificial Intelligence
and Statistics, pages 895–905, 2020a.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counter-
factual explanations to interventions, 2020b.

Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. Algorithmic
recourse under imperfect causal knowledge: a probabilistic approach, 2020c.

Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to computational
learning theory. MIT press, 1994.

Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. Alibi: Algorithms
for monitoring and explaining machine learning models, 2019. URL https://github.com/

SeldonIO/alibi.

Himabindu Lakkaraju and Cynthia Rudin. Learning cost-effective and interpretable treatment regimes.
In Artificial Intelligence and Statistics, pages 166–175, 2017.

Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec. Faithful and customizable
explanations of black box models. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pages 131–138. ACM, 2019.

Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and Stable Black Box Explanations.
Icml, 2020a.

Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and stable black box explanations. In
ICML, 2020b.

11

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/SeldonIO/alibi
https://github.com/SeldonIO/alibi


Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
types, 2019.

Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and regression.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 150–158, 2012.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2574–2582, 2016.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 607–617, 2020.

Sangdon Park, Osbert Bastani, Nikolai Matni, and Insup Lee. Pac confidence sets for deep neural
networks via calibrated prediction. In ICLR, 2020.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: Feasible
and actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’20, page 344–350, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375850. URL
https://doi.org/10.1145/3375627.3375850.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144, 2016a.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1135–1144, 2016b.

Peter Schmidt and Ann D. Witte. Predicting recidivism in north carolina, 1978 and 1980. Inter-
university Consortium for Political and Social Research, 1988. URL https://www.ojp.gov/

pdffiles1/Digitization/115306NCJRS.pdf.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing
local stability of supervised models through robust optimization. Neurocomputing, 307:195–204,
2018.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’20, page 180–186, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375830.
URL https://doi.org/10.1145/3375627.3375830.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/D13-1170.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 10–19, 2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

S. Wachter, Brent D. Mittelstadt, and Chris Russell. Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. European Economics: Microeconomics & Industrial
Organization eJournal, 2017.

12

https://doi.org/10.1145/3375627.3375850
https://www.ojp.gov/pdffiles1/Digitization/115306NCJRS.pdf
https://www.ojp.gov/pdffiles1/Digitization/115306NCJRS.pdf
https://doi.org/10.1145/3375627.3375830
https://www.aclweb.org/anthology/D13-1170


Fulton Wang and Cynthia Rudin. Falling rule lists. In Artificial Intelligence and Statistics, pages
1013–1022, 2015.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2019.

Jiaming Zeng, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 3(180):689–722,
2017.

Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting neural network judgments via
minimal, stable, and symbolic corrections. In Advances in Neural Information Processing Systems,
pages 4874–4885, 2018.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples. In
International Conference on Learning Representations (ICLR), 2018.

13


