Supplementary Material for SIMILAR:
Submodular Information Measures Based
Active Learning In Realistic Scenarios

Table of Contents
A Computational Aspects of SIM Functions in SIMILAR 2
A.1 Computational complexity for selection using each function in SMI and baselines 2
A.2 Details on Partitioning Approach . . . . . ... ... .. 0oL 2
B More Details on Experimental Setup, Datasets, and Baselines 3
B.1 Datasets description in each scenario . . . . . . . . . ... ... 3
B.2 Experimental setup . . . . . . . . ... 4
B.3 Details on computation of penalty matrix . . . . .. ... ... ... ...... 4
B.4 Licensingdetails . . . . . . . .. ... 4
B.5 BaselinesandCode . . .. .. .. ... .. ... ... . 5
C Results with Standard Active Learning 5
D Additional Experiments and Takeaways for Active Learning with Rare Classes 5
E Additional Experiments and Takeaways from Active Learning with Redundancy 8
F Additional Experiments and Takeaways for Active Learning with OOD Data 10
G Societal Impacts and Limitations 10
H Experiments on Real-world Medical Dataset 10
I Experiments on Multiple Realistic Scenarios 11




A Computational Aspects of SIM Functions in SIMILAR

A.1 Computational complexity for selection using each function in SMI and baselines

Below, we provide a detailed analysis of the complexity of creating and optimizing the different
SIM functions. Denote | X| as the size of set X. Also, let [U{| = n (the ground set size, which is the
size of the unlabeled set in this case). In the main paper, we provided the high-level intuition of the
complexity, ignoring the terms of |P| and | Q| since they would be typically much smaller than the
number of unlabeled points n. For completeness, we provide the detailed complexity below:

« Facility Location: We start with FLVMI. The complexity of creating the kernel matrix is O(n?).
The complexity of optimizing it is O(n?) (using memoization [18])? if we use the stochastic greedy

algorithm [33] and O(n?k) with the naive greedy algorithm. The overall complexity is O(n?).
For FLQMLI, the cost of creating the kernel matrix is O(n|Q]), and the cost of optimization is

also O(n|Q|) (with naive greedy, it is O(nB|Q|)). The complexity of FLCG is O([n + |P|]?)
to compute the kernel matrix and O(nQ) for optimizing (using the stochastic greedy algorithm).
Finally, for FLCMI, the complexity of computing the kernel matrix is O([n + |Q| + |P|]?), and
the complexity of optimization is O(n?).

* Log-Determinant: We start with LogDetMI. The complexity of the kernel matrix computation
(and storage) is O(n?). The complexity of optimizing the LogDet function using the stochastic

greedy algorithm is O(B2n), so the overall complexity is O(n? 4+ B?n). For LogDetCG, the
complexity of computing the matrix is O([n 4 |P|]?, and the complexity of optimization is O([B +
|P|]?n). For the LogDetCMI function, the complexity of computing the matrix is O([n+|P|+|Q|]?,
and the complexity of optimization is O([B + |P| + |Q|]*n).

* Graph-Cut: Finally, we study GC functions. For GCMI, we require a O(n|Q|) kernel matrix,
and the complexity of the stochastic greedy algorithm is also O(n|Q|). Finally, for GCCG, the
complexity of creating the kernel matrix is O(n|? + n|P|), and the complexity of the stochastic
greedy algorithm is O(n? + n|P|).

We end with a few comments. First, most of the complexity analysis above is with the stochastic
greedy algorithm [33]. If we use the naive or lazy greedy algorithm, the worst-case complexity is
a factor B larger. Secondly, we ignore log-factors in the complexity of stochastic greedy since the
complexity is actually O(nlog1/¢), which achieves an 1 — 1/e — € approximation. Finally, the
complexity of optimizing and constructing the FL, LogDet, and GC functions can be obtained from
the CG versions by setting P = ().

A.2 Details on Partitioning Approach

In some of our experiments, we choose to partition the unlabeled set into chunks in order to meet
the scale of the dataset used in that experiment. This is because many of the techniques (specifically
LogDet functions, FLVMI, FLCG, FLCMI, GCCG) all have O(n?) space complexity. For n in the
range of a few million to a few billion data points (which is not uncommon in big-data applications
today), we need to scale our algorithms to be linear in n and not quadratic. For this, we propose a
simple partitioning approach where the unlabeled data is chunked into p partitions. In this strategy,
we perform unlabeled instance acquisition on each chunk using a proportional fraction of the full
AL batch size. The most notable example of the use of our partitioning strategy is in our down-
sampled ImageNet experiment. By performing AL acquisition on the full unlabeled set, almost all
AL strategies exhaust the available compute resources. Hence, to execute most of our AL strategies,
we partitioned the unlabeled set into 50 equally sized chunks, so each partition has around 10k to
20k instances. As n grows, the number of partitions would also grow so that n /p is roughly constant.
The complexity of most approaches discussed above would then be O(n?/p) (O(n?/p?) for each
chunk, repeated p times), and if n/p = r is a constant, then the complexity O(nr) would be linear
in n. We then acquire a number of unlabeled instances from each chunk whose ratio with the full
AL batch size is equal to the ratio between the chunk size and the full unlabeled set. The acquired
instances from each chunk are then combined to form the full acquired set of unlabeled instances.

20: Ignoring log-factors



B More Details on Experimental Setup, Datasets, and Baselines

B.1 Datasets description in each scenario

We used various standard datasets — namely, MNIST, CIFAR10, and ImageNet — to demonstrate
the effectiveness and robustness of SIMILAR. We also provide additional experiments on SVHN
in sections below. We use standard sources for all datasets. As previously mentioned, we perform
our experiments on a down-sampled version of ImageNet. Beyond the fact that each image is now
32 x 32, the data set is otherwise identical. Moreover, we find that the provided validation set is often
used as the test set in most evaluations on down-sampled ImageNet. The down-sampled ImageNet
training set can be procured here, and the validation set can be found here. Note that associated
licenses for all datasets apply.

Rare classes setting: In Tab. 4, we show the exact initial splits used in our experiments for the rare
classes scenario. In CIFAR-10, ImageNet, and SVHN, we use randomly chose half the number of
classes as imbalanced and the other half as balanced. Following [15], we chose classes (5, - -+ 9) as
imbalanced classes in MNIST. We use an AL batch size of 125 for the CIFAR-10, MNIST and SVHN
datasets. We use the same data setting for the CIFAR-10 and SVHN datasets with an imbalance
factor p = 20. The results for SVHN are in Appendix. D. For MNIST, we additionally show
results for p = 100 in Appendix. D. Due to the scale of down-sampled ImageNet and the natural
imbalance present in its full training set, we adopt a different dataset splitting strategy. Following
[15], we randomly chose 500 classes (half) as rare classes. Our train set is initialized as having 34
examples per rare class and 170 examples per normal class. Our validation set contains 5 examples
per class, making it balanced. The unlabeled set is created to have 1 rare example for every 5 normal
examples. In all, our initialization leads our initial train set, validation set, and unlabeled set to have
approximately 100k, Sk, and 660k points, respectively. We use an AL batch size of 25k points, and
we use the same training conditions as before. However, we perform AL selection by dividing the
unlabeled set into chunks (partitions), selecting a proportionate fraction of the AL batch size from
each. In this case, we divide the unlabeled set into 50 to 100 partitions (determined by compute
limitations) and perform selection on each partition.

Dataset Imbalance | Labeled Valid Unlabeled
factor (p) | (per class) | (perclass) | (per class)
CIFAR-10 20 3 5 150
SVHN o) 5 3000
3 5 200

20
MNIST 22 5 4000
100 3 5 40
22 5 4000

Table 4: Number of data points for each dataset in the rare classes scenario. For CIFAR-10, MNIST,
and SVHN, we use 5 balanced classes and 5 imbalanced classes. In the main paper, we show
experiments for p = 20. In Appendix. D, we show experiments for p = 100.

Redundancy setting: In Tab. 5, we show the exact initial splits used in our experiments for the
redundancy scenario. For CIFAR-10 and SVHN, we use the same setting. Since MNIST classification
is a relatively simpler problem, we use one tenth of the data points used in the CIFAR-10 setting.
For all datasets, we create the unlabeled dataset by duplicating 20% of the unlabeled dataset RF x.
We denote RF as the redundancy factor. For instance, we consider 5000 unique points and duplicate
20% of them 10x in CIFAR-10. This gives us (5000 x 0.2 x 10 = 10000) duplicated points and
(5000 — (5000 x 0.2 x 10) = 4000) original points for a total of (10000 + 4000 = 14000) points.

Dataset ToFal Unique Frac?ion of points Number of .
Points duplicated duplicated points

CIFAR-10, SVHN 5000 | 20% 5000*0.2*RF

MNIST 500 | 20% 500*%0.2*RF

Table 5: Number of data points for each dataset in the redundancy scenario. RF here is the redundancy
factor. In the main paper, we show experiments for RF=10x. In Appendix. E, we show experiments
for RF=5x and RF=20x.



Out-of-distribution setting:  In Tab. 6, we show the exact initial splits used in our experiments for
the out-of-distribution scenario. In all datasets, we chose the first 8 classes to be in-distribution (ID)
and the last 2 classes to be out-of-distribution (OOD). Initially, the labeled set consists of only ID
points. The unlabeled set is designed to reflect a realistic setting with high number of OOD points. For
CIFAR-10, we use 200 points per ID class in the labeled set and 500 points per ID class, 5000 points
per OOD class in the unlabeled set. This gives us an initial labeled set of size 200 x 8 = 1600 and an
initial unlabeled set of size 500 x 8 + 5000 x 2 = 14000. We make the task slightly challenging for
MNIST by further decreasing the number of ID points in the unlabeled dataset as shown in Tab. 6.

Labeled Valid Unlabeled
Dataset
(per class) | (per class) | (per class)
ID points 200 5 500
CIFAR-10 5655 pornts 0 0 5000
ID points 5 2 50
MNIST OOD points 0 0 5000
Table 6: Number of data points for each dataset in the out-of-distribution scenario.

B.2 Experimental setup

We ran experiments using an SGD optimizer with an initial learning rate of 0.01, a momentum of 0.9,
and a weight decay of 5e-4. We decay the learning rate via cosine annealing [31] for each epoch. For
MNIST, we use the LeNet model [29]. For all other datasets, we use ResNet18 model [17]. For each
round of active learning, we train until the accuracy reaches 99% or the epoch count reaches 150. We
run all our experiments on a single V100 GPU.

B.3 Details on computation of penalty matrix

The penalty matrices computed in this paper follow the strategy used in [3]. In their strategy, a
penalty matrix is constructed for each dataset-model pair. Each cell (7, j) of the matrix reflects the
fraction of training rounds that AL with selection algorithm ¢ has higher test accuracy than AL with
selection algorithm j with statistical significance. As such, the average difference between the test
accuracies of ¢ and 5 and the standard error of that difference are computed for each training round.
A two-tailed ¢-test is then performed for each training round: If ¢ > ¢,, then Ntrlm-n is added to cell

(i,7). If t < —t,, then tham is added to cell (4, ¢). Hence, the full penalty matrix gives a holistic
understanding of how each selection algorithm compares against the others: A row with mostly high
values signals that the associated selection algorithm performs better than the others; however, a
column with mostly high values signals that the associated selection algorithm performs worse than
the others. As a final note, [3] takes an additional step where they consolidate the matrices for each
dataset-model pair into one matrix by taking the sum across these matrices, giving a summary of
the AL performance for their entire paper that is fairly weighted to each experiment. We present the
penalty matrices for each of the settings in the sections below.

B.4 Licensing details

Datasets. Our experiments with SIMILAR utilize the following datasets.

e CIFAR-10 [27]: MIT License
e MNIST [30]: Creative Commons Attribution-Share Alike 3.0
¢ SVHN [35]: CCO 1.0 Public Domain

» ImageNet [38]: Custom (Research, Non-Commercial)

Repositories. Our experiments utilize contributions from existing code repositories. Specifically,
we utilize the DISTIL repository for AL baselines. We utilize the Fisher Kernel Self-Supervision
repository in our usages of FISHER and its variants. We extensively use PyTorch, and we utilize the
CORDS repository in our gradient computations. To summarize, the following repositories are used,
and their licenses from their original sources are also provided:

* PyTorch [36]: Modified BSD



DISTIL: MIT License

CORDS: MIT License

* Fisher Kernel Self-Supervision [15]: (None Listed)
BADGE [3]: None Listed

B.5 Baselines and Code

For all baselines, we use code either from existing libraries and codebases or from the authors. For
BADGE [3], we use the code from the authors?. Similarly, for the FISHER baseline, we use the code
from the authors®. For the other methods like entropy sampling, CORESET, etc., we use DISTIL?,
which implements most of the state-of-the-art standard AL approaches building upon the respective
authors code.

CIFAR-10: Standard AL

e LOGDET
e BADGE
=@ ENTROPY
—— FL

— RANDOM

[
(=]

Accuracy
\]
=]

=2}
=)

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Labeled Set Size

Figure 6: Comparison of submodular functions with baselines in a standard active learning setting.

C Results with Standard Active Learning

In Figure 6, we compare the performance of the SFs on standard AL — i.e., without redundancy,
out-of-distribution data, and imbalance. The basic idea here is that we compute the similarity kernels
using the gradients of the model (Algorithm 1) and use just the submodular function —i.e., setting
Q = U, P = . In this work, we use the log-determinant and the facility location functions. We
make the following observations: 1) Log-determinant functions perform comparable to BADGE and
entropy sampling, particularly in the beginning. 2) The facility location function does not perform
as well in the standard AL setting, implying that diversity tends to play a more important role in
standard active learning compared to representation.

D Additional Experiments and Takeaways for Active Learning with Rare
Classes

In Figure 7, we show additional results for MNIST and SVHN for active learning with rare classes.
The top row shows the results for the extreme imbalance scenario, i.e., p = 100, B = 25 (small
batch size and extreme imbalance). We observe that LOGDETMI significantly outperforms all other
techniques, and FLQMI and FISHER come next. Note that the FISHER baseline [15] was originally
presented in this extreme imbalance scenario. The middle row in Figure 7 contains results for
p = 20, B = 25. This is similar to the results presented in the main paper but using a much smaller
batch size. Here, LOGDETMI and FLQMI again outperform the other baselines. While the average
performance of the FISHER baseline [15] is comparable to LOGDETMI and FLQMLI, it has a much
higher variance compared to others (Figure 8). Finally, the bottom row shows the performance of

*https://github.com/JordanAsh/badge
*https://github.com/gudovskiy/al-fk-self-supervision
https://github.com/decile-team/distil



—*— LOGDETMI == FLVMI == DIV-GCMI —e— GLISTER —e— CORESET =& = LEAST-CONF —e— RANDOM

== FLQMI == GCMI FISHER ——BADGE —e—ENTROPY —e - MARGIN
z MNIST: p = 100, B = 25 MNIST: p =100, B = 25 3 MNIST: p = 100, B = 25
2 250
O & 40
£ 40 0 g
1 % 30
G &
=
5 60 20
$20 2
g g0 T -
3 - El o — el ST Tttt
S0 50 Eo SIS e S
< 135 150 175 200 225 250 275 300 325 350 125 150 175 200 225 250 275 300 325 350 O 125 150 175 200 225 250 275 300 325
Labeled Set Size Labeled Set Size Labeled Set size
2 MNIST: p =20, B =25 MNIST: p =20, B =25 MNIST: p = 20, B =25
8 k
2
&80 290
o g
Z g
& 60 gso
B =
«
Z40 570
& £
5 &
S 20 60 =
<7135 150 175 200 225 250 275 300 325 350 125 150 175 200 225 250 275 300 325 350 O 125 150 175 200 225 250 275 300 325
Labeled Set Size Labeled Set Size Labeled Set size
P SVHN: p =20, B =125 SVHN: p =20, B =125 k SVHN: p =20, B =125
7 80
o
5 60
540
I
g
€20
g
51 20 1125 1250 0
< 0935 250 375 500 625 750 875 1000 1125 1250 125 250 375 500 625 750 875 100011251250 O 125 250 375 500 625 750 875 1000 1125
Labeled Set Size Labeled Set Size Labeled Set size

Figure 7: Additional experiments on MNIST and SVHN for active learning with rare classes. Top
row: MNIST p = 100, B = 25, LOGDETMI outperforms other methods even in extreme imbalance,
with a large gap in accuracy, followed by FLQMI. Middle row: MNIST p = 20, B = 25, LOGDETMI
and FLQMI outperform all baselines in the later rounds of AL. Bottom row: SVHN p = 20, B = 125,
All SMI methods significantly outperform other baselines.

MNIST: p = 20, B = 25, Variance Comparison

15.57
@15
-
§10
&
£ 5 4, 4,
i é

0

Figure 8: Variance comparison on the rare classes scenario for MNIST p = 20, B = 25 (Middle row
in Fig. 7). FISHER has ~ 5x variance in comparison with the SMI methods. The figure shares the
same legend as Fig. 7.

the different techniques on SVHN. Again, we see that LOGDETMI and FLQMI outperform all other
techniques.

Takeaways from the Results: The following are the main takeaways of the experiments in this
section and the main paper:

* Among the different MI functions, LOGDETMI and FLQMTI outperform all other MI functions.
They also mostly outperform the Fisher Kernel baseline which was also designed for dealing
with rare classes [15].

* LOGDETMI particularly outperforms every other method in the high imbalance regime (100x
imbalance). This is mainly because it is able to select the highest number of points from the
rare classes (top row, right most plot in Figure 7.

» The FISHER baseline also can have a high variance, particularly when the batch size is high.



@ (§\ @Q‘@ & Q&QO§Q§\
‘Z‘ QRN
@x e@ e@ co 09

1 1 1

LOGDETMI £& 1.75

FLQMI LXEXES

JIAVAYE 00 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0-4 0.2 0.6 1.0 0.4 | I g B¥s10]
(@@ -0 0.0 0.0 0.0 0.0 1.0 0.6 0.6 0.4 1.0 0.6.1.2 0.6

D) AV @IV 0-0 0.0 0.0 0.0 0.0 /0.8 0.61:2'1.0 0.6 0.4 0.8 1.0 0.4 1.25
J2 )5 D128 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0

IS DSV 0-2 0.0 0.0 0.2 0.0 0.4 0.0 0-8 0.4 0.2 0.0 0.2 0.4 0.0 1.00
[@IRISYNDIE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.2 0.0

J37:NBI@3DE 0-0 0.0 0.0 0.4 0.2 0.4 0.2 0.0 0.0 0.4 0.0 0.4 0.6 0.0 0.75
CORESET XXX X XXX KRR AP B

IDAMN @) 0-2 0.2 0.2 0.2 0.2 0.4 0.2 0.4 0.0 0.4 0.0 0.8 0.6 0.0 0.50
LEAST-CONF XX X XXX KRR R RO R X

WY PNH@II\E 0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25

129 N\BIOLY/E 0.0 0.0 0.4 0.2 0.0 0.2 0.2 0.2 0.0 0.4 0.0 0.8 0.6 0.0 0.00

0.4 0.4 1.6 2.4 0.8 5.6 3.44.2 6.2 3.2

2 4 6 8

@
@%@ S &%% N 0

Q&»Q ngx@ C}@%OQ% @%é
LOGDETMI ROy 1.4
MOV 0.0 0.0 0.0 0.2 0.2 1.2
I AYAYEEE 0-0 0.0 0.0 0.0 0.0 150/0.2 0.4 0.0 0.8 0.4 0.4 0.8 0.4 :
[@I@)\Y/Ig 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.00-8/0.0 0.2 0.8 0.2
IDIAVA @IV 0-0 0.0 0.0 0.0 0.0 0.6 0.6 0.8 0.2 0.8 0.4 0.4 0.8 0.4 1.0
I3 1D)2% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IS IDI AV 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.4 0.0 0.2 0.2 0.0 0.8
[@IRISENDIE 0-0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.0
IS7:NDI@IDE 0.0 0.0 0.0 0.4 0.2 0.4 0.2 0.2 0.0 [1:0{0.0 0.2 0.4 0.2 0.6
[@10)2A D) DAE 0.0 0.0 0.0 0.0 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ENTROPY USRI EN R R NR N 0.0.0.0 0.6 0.4 0.0 0.4
IR DY AN @@\ 2k 0-0 0.0 0.0 0.0 0.0 (0.8 0.2 0.0 0.0 0.2 0.0 0.0 0.4 0.0
PN @IIE 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
1RP.N\IBI@)YE 0.0 0.0 0.2 0.4 0.2 0.6 0.2 0.4 0.0 |120{0.0 0.4 0-8 0.0 0.0

0.0 0.8 0.6 2.2 1.6 [ll5.4 4.0 1.2 [0 > 2 4.6

0 2 4 6 8

Figure 9: Penalty Matrix comparing the average accuracy of rare classes (top) and overall accuracy
(bottom) of different AL approaches in the class imbalance scenario. We observe that the SMI

functions have a much lower column sum compared to other approaches.

* For a fair comparison, we used a very small validation set in all our experiments. As
compared in the main paper, FISHER performance does improve when we use a larger

validation set, but doing so is not realistic.



LOGDETCG FLCG—e— GLISTER—— BADGE—e— CORESET—e— ENTROPY —e-- MARGIN—e— RANDOM

MNIST: 20X redundancy 5 MNIST: 20X redundancy
90 g
2 - 5]
. 85 il = : -/7‘ 300
9 Z / | =]
g g
=80 ; T = 200
g 90.92 (-
<75 Z “ s
« | £ 100
70 g .4 86.58 5= 2
450 500 E
50 100 150 200 250 300 350 400 450 500 Z 50 100 150 200 250 300 350 400 450
Labeled Set Size Labeled Set Size
MNIST: 5X redundancy 8 MNIST: 5% redundancy
90 ] 2400
&
.85 © 300
: 2
=80 g
g 5 200
<175 B
-
70 87.42 g100
450 500 £
50 100 150 200 250 300 350 400 450 500 Z 50 100 150 200 250 300 350 400 450
Labeled Set Size Labeled Set Size
SVHN: 10x redundancy 100 SVHN: 10X redundancy
60

ot

=]
w
[=3
S

Accuracy
w
S o

[

(=)
fu
=]
=]

Number of Unique Samples
8
=)

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450
Labeled Set Size Labeled Set Size

Figure 10: Active Learning under 20x redundancy (top row) and 5x redundancy (middle row) on
MNIST. Bottom row: 10x redundancy on SVHN. The CG functions (LOGDETCG, FLCG) pick
more unique points and outperform existing algorithms including BADGE.

* FLQMI is more scalable compared to LOGDETMI and other kernel-based approaches; hence,
it is the desired choice of approach for very large datasets.

Penalty Matrix: Figures 9 shows the penalty matrix results on the rare class accuracy (top) and
overall accuracy (bottom). We see that LOGDETMI and FLQMI have the smallest column sum, which
indicates that most other baselines are not statistically significantly better than them. Furthermore,
they also have the highest row sum (followed by some of the other MI functions), which indicates
that they are statistically significantly better than other approaches. These matrices are obtained by
combining the results on MNIST and CIFAR-10 for p = 20, B = 125 (i.e., the results in the main

paper).

E Additional Experiments and Takeaways from Active Learning with
Redundancy

In the main paper, we show the results on CIFAR-10 and MNIST with 10x redundancy. In this
section, we also add results for 5x and 15x redundancy for MNIST. The results are in Figure 10.
Furthermore, we also run experiments on SVHN (bottom row) with 10 x redundancy. The following
are the takeaways of the results:

* The CG functions (LOGDETCG and FLCG) significantly outperform other baselines including
BADGE, particularly after a few rounds of AL and towards the end. In particular, there is a



LOGDETCG
FLCG
GLISTER
BADGE
CORESET
ENTROPY it
MARGIN

RANDOM b b b b 0.0

Figure 11: Penalty Matrix comparing the different AL approaches in the redundancy scenario. We
observe that the SCG functions have a much lower column sum compared to other approaches.

&Q®&® X
=
LOLL S O
SOASDASAS QAR OATNS
O LRI,
OOV S P

LOGDETCMI LR EAOS RN PR

IANGYIE 0.0 0.0 0.0 0.0 0.0 0.5 0.9 0.6 0.8 1:0 0.6 0.7 0.7
LOGDETMI KR0S R0 109 1.1 1.2
FLQMI .1 0.5 0.0 0. o .9 0.7 1.0
FLVMI LXK ; .4 1. .311.0 0.7 1.0
GCMI & : .1 0.1 0.7 0.2 0.0 0.3
DIV-GCMI XXX R KNS .1 0.3 0.6 0.1 0.1 0.3 0.8
GLISTER & 0.0 0.0 ! 0.0 0.3 0.5 0.1 0.0 0.1 0.6
I2Y:NBI@IDE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.1 0.0
CORESET {2 0 0. 0 0.0 0.4
ENTROPY

MARGIN
RANDOM & 4 0.0

2.5 5.0 7.5 10.0

Figure 12: Penalty Matrix comparing the different AL approaches in the OOD Scenario. We observe
that the SCMI and SMI functions have a much lower column sum compared to other approaches.



improvement of 3% to 5% using the CG functions compared to BADGE and other baselines
with a labeled set size of 500.

* The main reason for this is that the CG functions pick more unique points compared to the
other techniques.

* Amongst the two CG functions, we see that LOGDETCG performs better than FLCG.

* From the pairwise penalty matrix in Figure 11, we see that LOGDETCG has the lowest
column sum and has the highest row sum, which indicates that it statistically significantly
outperforms other techniques. In terms of the row sum, LOGDETCG is followed by FLCG
and BADGE.

F Additional Experiments and Takeaways for Active Learning with OOD
Data

In the case of active learning with OOD data, we additionally add the penalty matrix (figure 12). The
following are the main observations and takeaways:

* Figure 12 shows the results of the penalty matrix with the different CMI functions. We
observe that LOGDETCMI has the smallest column sum along with LOGDETMI.

» However, as shown in the main paper, the CMI functions have the smallest variance and are
hence more stable compared to the SMI variants. Furthermore, the CMI functions generally
outperform the SMI counterparts at later rounds.

* However, the SMI functions are often comparable (particularly LOGDETMI and FLQMI) and
hence are a good choice for OOD data as well.

G Societal Impacts and Limitations

Limitations of this work: The first limitation of this work is that the MI functions are all graph-
based functions. With the exception of FLQMI, all functions have quadratic complexity. The
partitioning trick will help, but that comes at the cost of performance. We would like to explore more
classes of MI functions (feature-based functions [45] in particular) in future work. Secondly, the MI
functions depend on good choices of features. In this work, we use gradients which tend to work very
well since they inherently also capture uncertainty [3]. However, the approaches do not perform as
well in the early stages, which could be mitigated by the use better features, e.g., self-supervised and
unsupervised representations [15].

Societal Impacts: Negative societal impacts of this work include using SIMILAR to mine through
large datasets to perpetuate and amplify certain biases in the data. On the flip side, this work can
also have a positive impact through its use for fair active learning, where certain under-represented
and minority slices or classes can be improved upon by applying it in the rare class and rare
slice experiment setting (Sec. 3.2). We would like to explore the use of SIMILAR in applications
like improving the performance of biased slices based on race; for example, we would like to
improve inference performance on underrepresented Asian woman using SIMILAR for tasks like
face recognition, gender recognition, and age recognition. Importantly, recent work has shown that
commercial facial recognition and age/gender classification engines perform poorly on these rare
slices [7]. A number of recent papers have been proposed to generate such fair face datasets [21], but
creating such datasets can take a lot of manual effort to mine the rare slices. We propose to use and
study SIMILAR for such scenarios in future work.

H Experiments on Real-world Medical Dataset

In this section, we apply our framework to Pneumonia-MNIST (pediatric chest X-ray) medical image
classification dataset. The goal is to classify X-ray images into ’pneumonia’ and ’benign’. As done
in Sec. 4.1 and to simulate a real-world scenario, we use an imbalance factor p = 20, such that the
’pneumonia’ class is a rare class. We use |Cz| + |Dgz| = 105, |Cy| + |Dy| = 1100, B = 10 (AL
batch size) and, |R| = 5. On this dataset, we observed that using misclassified data points in R is
beneficial for acquiring subsets that lead to higher accuracy gains. We observe that the SMI functions
outperform the baselines by ~ 10% — 12% on the rare classes accuracy and =~ 8% — 10% on the
overall accuracy (see Fig. 13).

10



——LOGDETMI =»=FLQMI =—==FLVMI =%*-GCMI ——BADGE —e—ENTROPY —e—RANDOM
Chest X-ray: Rare classes Accuracy Chest X-ray: Overall Accuracy

>

Q

£ 80 §80

Q -

2 § 70

870 <

2 = 60

E f:

o 60 250

] o

~

105 115 125

40
135 145 155 165 175 185 105 115 125 135 145 155 165 175 185
Labeled Set Size Labeled Set Size

Figure 13: Active Learning on real-world medical image classification. The SMI functions outperform
the baselines by =~ 10% — 12% on the rare classes accuracy and =~ 8% — 10% on the overall accuracy.

I Experiments on Multiple Realistic Scenarios

In this section, we apply our framework to a scenario where redundancy and rare classes are co-
occurring in the dataset. To do so, we first create an imbalance on CIFAR-10 in a similar fashion as

done in Sec. 4.1.

We use p = 10,|Cz| + |Dz| = 125, |Cy| + |Dy| = 5.5K, B = 100 and repeat the

unlabeled dataset 5x to get |Cy| + |Dy| = 27.5K. We observe that the SCMI and SMI functions
perform better than the baselines (see Fig. 14).

32.51~-

Test Accuracy

i LV MI
e LOGDETMI
e ENTROPY
3000 7| —— RANDOM

CIFAR-10: Rare Classes + Redundancy

FLCMI
LOGDETCMI
e = FLQMI

125 225 325 425 525 625

Figure 14:

Labeled Set Size

Active learning in multiple realistic scenarios (Rare classes + Redundancy).

11



