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Abstract

We propose heavy ball neural ordinary differential equations (HBNODEs), lever-
aging the continuous limit of the classical momentum accelerated gradient descent,
to improve neural ODEs (NODEs) training and inference. HBNODEs have two
properties that imply practical advantages over NODEs: (i) The adjoint state of an
HBNODE also satisfies an HBNODE, accelerating both forward and backward
ODE solvers, thus significantly reducing the number of function evaluations (NFEs)
and improving the utility of the trained models. (ii) The spectrum of HBNODEs
is well structured, enabling effective learning of long-term dependencies from
complex sequential data. We verify the advantages of HBNODEs over NODEs
on benchmark tasks, including image classification, learning complex dynamics,
and sequential modeling. Our method requires remarkably fewer forward and
backward NFEs, is more accurate, and learns long-term dependencies more ef-
fectively than the other ODE-based neural network models. Code is available at
https://github.com/hedixia/HeavyBallNODE.

1 Introduction
Neural ordinary differential equations (NODEs) are a family of continuous-depth machine learning
(ML) models whose forward and backward propagations rely on solving an ODE and its adjoint
equation [4]. NODEs model the dynamics of hidden features h(t) ∈ RN using an ODE, which is
parametrized by a neural network f(h(t), t, θ) ∈ RN with learnable parameters θ, i.e.,

dh(t)

dt
= f(h(t), t, θ). (1)

Starting from the input h(t0), NODEs obtain the output h(T ) by solving (1) for t0 ≤
t ≤ T with the initial value h(t0), using a black-box numerical ODE solver. The
number of function evaluations (NFEs) that the black-box ODE solver requires in a sin-
gle forward pass is an analogue for the continuous-depth models [4] to the depth of
networks in ResNets [16]. The loss between NODE prediction h(T ) and the ground
truth is denoted by L(h(T )); we update parameters θ using the following gradient
∗Co-first author
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Figure 1: Contrasting NODE, ANODE, SONODE,
HBNODE, and GHBNODE for CIFAR10 classifica-
tion in NFEs, training time, and test accuracy. (Toler-
ance: 10−5, see Sec. 5.2 for experimental details.)

dL(h(T ))

dθ
=

∫ T

t0

a(t)
∂f(h(t), t, θ)

∂θ
dt, (2)

where a(t) := ∂L/∂h(t) is the adjoint state,
which satisfies the following adjoint equation

da(t)

dt
= −a(t)

∂f(h(t), t, θ)

∂h
. (3)

NODEs are flexible in learning from irregularly-
sampled sequential data and particularly suitable
for learning complex dynamical systems [4, 42, 56,
35, 9, 24], which can be trained by efficient algo-
rithms [40, 7, 58]. NODE-based continuous genera-
tive models have computational advantages over the
classical normalizing flows [4, 15, 55, 12]. NODEs
have also been generalized to neural stochastic dif-
ferential equations, stochastic processes, and graph
NODEs [21, 28, 38, 49, 20, 34]. The drawback of NODEs is also prominent. In many ML tasks,
NODEs require very high NFEs in both training and inference, especially in high accuracy settings
where a lower tolerance is needed. The NFEs increase rapidly with training; high NFEs reduce
computational speed and accuracy of NODEs and can lead to blow-ups in the worst-case scenario
[15, 10, 29, 35]. As an illustration, we train NODEs for CIFAR10 classification using the same model
and experimental settings as in [10], except using a tolerance of 10−5; Fig. 1 shows both forward
and backward NFEs and the training time of different ODE-based models; we see that NFEs and
computational times increase very rapidly for NODE, ANODE [10], and SONODE [35]. More results
on the large NFE and degrading utility issues for different benchmark experiments are available
in Sec. 5. Another issue is that NODEs often fail to effectively learn long-term dependencies in
sequential data [26], as discussed in Sec. 4.

1.1 Contribution

We propose heavy ball neural ODEs (HBNODEs), leveraging the continuous limit of the classical
momentum accelerated gradient descent, to improve NODE training and inference. At the core of
HBNODE is replacing the first-order ODE (1) with a heavy ball ODE (HBODE), i.e., a second-order
ODE with an appropriate damping term. HBNODEs have two theoretical properties that imply
practical advantages over NODEs:

• The adjoint equation used for training a HBNODE is also a HBNODE (see Prop. 1 and Prop. 2),
accelerating both forward and backward propagation, thus significantly reducing both forward and
backward NFEs. The reduction in NFE using HBNODE over existing benchmark ODE-based
models becomes more aggressive as the error tolerance of the ODE solvers decreases.

• The spectrum of the HBODE is well-structured (see Prop. 4), alleviating the vanishing gradient
issue in back-propagation and enabling the model to effectively learn long-term dependencies from
sequential data.

To mitigate the potential blow-up problem in training HBNODEs, we further propose generalized
HBNODEs (GHBNODEs) by integrating skip connections [17] and gating mechanisms [19] into the
HBNODE. See Sec. 3 for details.

1.2 Organization

We organize the paper as follows: In Secs. 2 and 3, we present our motivation, algorithm, and analysis
of HBNODEs and GHBNODEs, respectively. We analyze the spectrum structure of the adjoint
equation of HBNODEs/GHBNODEs in Sec. 4, which indicates that HBNODEs/GHBNODEs can
learn long-term dependency effectively. We test the performance of HBNODEs and GHBNODEs on
benchmark point cloud separation, image classification, learning dynamics, and sequential modeling
in Sec. 5. We discuss more related work in Sec. 6, followed by concluding remarks. Technical proofs
and more experimental details are provided in the appendix.
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2 Heavy Ball Neural Ordinary Differential Equations
2.1 Heavy ball ordinary differential equation
Classical momentum method, a.k.a., the heavy ball method, has achieved remarkable success in
accelerating gradient descent [39] and has significantly improved the training of deep neural networks
[46]. As the continuous limit of the classical momentum method, heavy ball ODE (HBODE) has
been studied in various settings and has been used to analyze the acceleration phenomenon of the
momentum methods. For the ease of reading and completeness, we derive the HBODE from the
classical momentum method. Starting from initial points x0 and x1, gradient descent with classical
momentum searches a minimum of the function F (x) through the following iteration

xk+1 = xk − s∇F (xk) + β(xk − xk−1), (4)

where s > 0 is the step size and 0 ≤ β < 1 is the momentum hyperparameter. For any fixed step
size s, let mk := (xk+1 − xk)/

√
s, and let β := 1− γ

√
s, where γ ≥ 0 is another hyperparameter.

Then we can rewrite (4) as

mk+1 = (1− γ
√
s)mk −

√
s∇F (xk); xk+1 = xk +

√
smk+1. (5)

Let s→ 0 in (5); we obtain the following system of first-order ODEs,

dx(t)

dt
= m(t);

dm(t)

dt
= −γm(t)−∇F (x(t)). (6)

This can be further rewritten as a second-order heavy ball ODE (HBODE), which also models a
damped oscillator,

d2x(t)

dt2
+ γ

dx(t)

dt
= −∇F (x(t)). (7)

In Appendix E.6, we compare the dynamics of HBODE (7) and the following ODE limit of the
gradient descent (GD)

dx

dt
= −∇F (x). (8)

In particular, we solve the ODEs (7) and (8) with F (x) defined as a Rosenbrock [41] or Beale [14]
function. The comparisons show that HBODE can accelerate the dynamics of the ODE for a gradient
system, which motivates us to propose HBNODE to accelerate forward propagation of NODE.

2.2 Heavy ball neural ordinary differential equations
Similar to NODE, we parameterize −∇F in (7) using a neural network f(h(t), t, θ), resulting in the
following HBNODE with initial position h(t0) and momentum m(t0) := dh/dt(t0),

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (9)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a learnable hyperparmater
with positivity constraint. In the trainable case, we use γ = ε · sigmoid(ω) for a trainable ω ∈ R and
a fixed tunable upper bound ε (we set ε = 1 below). According to (6), HBNODE (9) is equivalent to

dh(t)

dt
= m(t);

dm(t)

dt
= −γm(t) + f(h(t), t, θ). (10)

Equation (9) (or equivalently, the system (10)) defines the forward ODE for the HBNODE, and we
can use either the first-order (Prop. 2) or the second-order (Prop. 1) adjoint sensitivity method to
update the parameter θ [35].
Proposition 1 (Adjoint equation for HBNODE). The adjoint state a(t) := ∂L/∂h(t) for the
HBNODE (9) satisfies the following HBODE with the same damping parameter γ as that in (9),

d2a(t)

dt2
− γ da(t)

dt
= a(t)

∂f

∂h
(h(t), t, θ). (11)

Remark 1. Note that we solve the adjoint equation (11) from time t = T to t = t0 in the backward
propagation. By letting τ = T − t and b(τ) = a(T − τ), we can rewrite (11) as follows,

d2b(τ)

dτ2
+ γ

db(τ)

dτ
= b(τ)

∂f

∂h
(h(T − τ), T − τ, θ). (12)

Therefore, the adjoint of the HBNODE is also a HBNODE and they have the same damping parameter.
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We can also employ (10) and its adjoint for the forward and backward propagations, respectively.
Proposition 2 (Adjoint equations for the first-order HBNODE system). The adjoint states ah(t)
:= ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the first-order HBNODE system (10) satisfy

dah(t)

dt
= −am(t)

∂f

∂h
(h(t), t, θ);

dam(t)

dt
= −ah(t) + γam(t). (13)

Remark 2. Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the following first-order
heavy ball ODE system

dam(t)

dt
= ãm(t);

dãm(t)

dt
= am(t)

∂f

∂h
(h(t), t, θ) + γãm(t). (14)

Note that we solve this system backward in time in back-propagation. Moreover, we have ah(t) =
γam(t)− ãm(t).

Similar to [35], we use the coupled first-order HBNODE system (10) and its adjoint first-order
HBNODE system (13) for practical implementation, since the entangled representation permits faster
computation [35] of the gradients of the coupled ODE systems.

3 Generalized Heavy Ball Neural Ordinary Differential Equations
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Figure 2: Contrasting h(t) for different
models. h(t) in ANODE, SONODE, and
HBNODE grows much faster than that in
NODE. GHBNODE controls the growth
of h(t) effectively when t is large.

In this section, we propose a generalized version of
HBNODE (GHBNODE), see (15), to mitigate the po-
tential blow-up issue in training ODE-based models. In
our experiments, we observe that h(t) of ANODEs [10],
SONODEs [35], and HBNODEs (10) usually grows
much faster than that of NODEs. The fast growth of
h(t) can lead to finite-time blow up. As an illustration,
we compare the performance of NODE, ANODE, SON-
ODE, HBNODE, and GHBNODE on the Silverbox task
as in [35]. The goal of the task is to learn the voltage
of an electronic circuit that resembles a Duffing oscil-
lator, where the input voltage V1(t) is used to predict
the output V2(t). Similar to the setting in [35], we first
augment ANODE by 1 dimension with 0-augmentation
and augment SONODE, HBNODE, and GHBNODE
with a dense network. We use a simple dense layer to parameterize f for all five models, with an
extra input term for V1(t)3. For both HBNODE and GHBNODE, we set the damping parameter γ to
be sigmoid(−3). For GHBNODE (15) below, we set σ(·) to be the hardtanh function with bound
[−5, 5] and ξ = ln(2). The detailed architecture can be found in Appendix E. As shown in Fig. 2,
compared to the vanilla NODE, the `2 norm of h(t) grows much faster when a higher order NODE
is used, which leads to blow-up during training. Similar issues arise in the time series experiments
(see Sec. 5.4), where SONODE blows up during long term integration in time, and HBNODE suffers
from the same issue with same initialization.

To alleviate the problem above, we propose the following generalized HBNODE
dh(t)

dt
= σ(m(t));

dm(t)

dt
= −γm(t) + f(h(t), t, θ)− ξh(t), (15)

where σ(·) is a nonlinear activation, which is set as tanh in our experiments. The positive hyper-
parameters γ, ξ > 0 are tunable or learnable. In the trainable case, we let γ = ε · sigmoid(ω) as in
HBNODE, and ξ = softplus(χ) to ensure that γ, ξ ≥ 0. Here, we integrate two main ideas into the
design of GHBNODE: (i) We incorporate the gating mechanism used in LSTM [19] and GRU [6],
which can suppress the aggregation of m(t); (ii) Following the idea of skip connection [17], we add
the term ξh(t) into the governing equation of m(t), which benefits training and generalization of
GHBNODEs. Fig. 2 shows that GHBNODE can indeed control the growth of h(t) effectively.
Proposition 3 (Adjoint equations for GHBNODEs). The adjoint states ah(t) := ∂L/∂h(t),
am(t) := ∂L/∂m(t) for the GHBNODE (15) satisfy the following first-order ODE system

∂ah(t)

∂t
= −am(t)

(∂f
∂h

(h(t), t, θ)− ξI
)
,

∂am(t)

∂t
= −ah(t)σ′(m(t)) + γam(t). (16)

3Here, we exclude an h3 term that appeared in the original Duffing oscillator model because including it
would result in finite-time explosion.
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Though the adjoint state of the GHBNODE (16) does not satisfy the exact heavy ball ODE, based on
our empirical study, it also significantly reduces the backward NFEs.

4 Learning long-term dependencies – Vanishing gradient
It is known that the vanishing and exploding gradients are two bottlenecks for training recurrent
neural networks (RNNs) with long-term dependencies [2, 37] (see Appendix C for a brief review on
the exploding and vanishing gradient issues in training RNNs). The exploding gradients issue can be
effectively resolved via gradient clipping, training loss regularization, etc [37, 11]. Thus in practice
the vanishing gradient is the major issue for learning long-term dependencies [37]. As the continuous
analogue of RNN, NODEs as well as their hybrid ODE-RNN models, may also suffer from vanishing
in the adjoint state a(t) := ∂L/∂h(t) [26]. When the vanishing gradient issue happens, a(t) goes
to 0 quickly as T − t increases, then dL/dθ in (2) will be independent of these a(t). We have the
following expressions for the adjoint states of the NODE and HBNODE (see Appendix C for details):

• For NODE, we have
∂L
∂ht

=
∂L
∂hT

∂hT
∂ht

=
∂L
∂hT

exp
{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
. (17)

• For GHBNODE4, from (13) we can derive[
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

] [ ∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 ∂σ

∂m(
∂f
∂h
− ξI

)
−γI

]
ds︸ ︷︷ ︸

:=M

}
.

(18)

Note that the matrix exponential is directly related to its eigenvalues. By Schur decomposition, there
exists an orthogonal matrix Q and an upper triangular matrix U , where the diagonal entries of U are
eigenvalues of Q ordered by their real parts, such that

−M = QUQ> =⇒ exp{−M} = Q exp{U}Q>. (19)
Let v> :=

[
∂L
∂hT

∂L
∂mT

]
Q, then (18) can be rewritten as[

∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp{−M} =

[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q> = v> exp{U}Q>. (20)

By taking the `2 norm in (20) and dividing both sides by
∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2
, we arrive at∥∥[ ∂L

∂ht

∂L
∂mt

]∥∥
2∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2

=

∥∥v> exp{U}Q>
∥∥
2

‖v>Q>‖2
=

∥∥v> exp{U}
∥∥
2

‖v‖2
=
∥∥e> exp{U}

∥∥
2
, (21)

i.e.,
∥∥[ ∂L

∂ht

∂L
∂mt

]∥∥
2

=
∥∥e> exp{U}

∥∥
2

∥∥[ ∂L
∂hT

∂L
∂mT

]∥∥
2

where e = v/‖v‖2.

Proposition 4. The eigenvalues of −M can be paired so that the sum of each pair equals (t− T )γ.

For a given constant a > 0, we can group the upper triangular matrix exp{U} as follows

exp{U} :=

[
exp{UL} P

0 exp{UV }

]
, (22)

where the diagonal of UL (UV ) contains eigenvalues of −M that are no less (greater) than (t− T )a.
Then, we have ‖e> exp{U}‖2 ≥ ‖e>L exp{UL}‖2 where the vector eL denotes the first m columns
of e with m be the number of columns of UL. By choosing 0 ≤ γ ≤ 2a, for every pair of eigenvalues
of −M there is at least one eigenvalue whose real part is no less than (t−T )a. Therefore, exp{UL}
decays at a rate at most (t− T )a, and the dimension of UL is at least N ×N . We avoid exploding
gradients by clipping the `2 norm of the adjoint states similar to that used for training RNNs.

In contrast, all eigenvalues of the matrix
∫ t
T
∂f/∂hds in (17) for NODE can be very positive

or negative, resulting in exploding or vanishing gradients. As an illustration, we consider the
benchmark Walker2D kinematic simulation task that requires learning long-term dependencies
effectively [26, 3]. We train ODE-RNN [42] and (G)HBNODE-RNN on this benchmark dataset, and
the detailed experimental settings are provided in Sec. 5.4. Figure 4 plots ‖∂L/∂ht‖2 for ODE-RNN
and ‖[∂L/∂ht ∂L/∂mt]‖2 for (G)HBNODE-RNN, showing that the adjoint state of ODE-RNN
vanishes quickly, while that of (G)HBNODE-RNN does not vanish even when the gap between T
and t is very large.

4HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.
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Figure 3: Plot of the the `2-norm of the adjoint states for ODE-RNN and (G)HBNODE-RNN back-propagated
from the last time stamp. The adjoint state of ODE-RNN vanishes quickly when the gap between the final time T
and intermediate time t becomes larger, while the adjoint states of (G)HBNODE-RNN decays much more slowly.
This implies that (G)HBNODE-RNN is more effective in learning long-term dependency than ODE-RNN.

5 Experimental Results
In this section, we compare the performance of the proposed HBNODE and GHBNODE with existing
ODE-based models, including NODE [4], ANODE [10], and SONODE [35] on the benchmark point
cloud separation, image classification, learning dynamical systems, and kinematic simulation. For all
the experiments, we use Adam [25] as the benchmark optimization solver (the learning rate and batch
size for each experiment are listed in Table 1) and Dormand–Prince-45 as the numerical ODE solver.
For HBNODE and GHBNODE, we set γ = sigmoid(θ), where θ is a trainable weight initialized as
θ = −3. The network architecture used to parameterize f(h(t), t, θ) for each experiment below are
described in Appendix E. All experiments are conducted on a server with 2 NVIDIA Titan Xp GPUs.

Table 1: The batch size and learning rate for different datasets.

Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256
Learning Rate 0.01 0.001 0.001 0.0001 0.003
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Figure 4: Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for two-dimensional
point cloud separation. HBNODE and GHBNODE converge better and require less NFEs in both forward and
backward propagation than the other benchmark models.

5.1 Point cloud separation

In this subsection, we consider the two-dimensional point cloud separation benchmark. A total of 120
points are sampled, in which 40 points are drawn uniformly from the circle ‖r‖ < 0.5, and 80 points
are drawn uniformly from the annulus 0.85 < ‖r‖ < 1.0. This experiment aims to learn effective
features to classify these two point clouds. Following [10], we use a three-layer neural network to
parameterize the right-hand side of each ODE-based model, integrate the ODE-based model from
t0 = 0 to T = 1, and pass the integration results to a dense layer to generate the classification
results. We set the size of hidden layers so that the models have similar sizes, and the number of
parameters of NODE, ANODE, SONODE, HBNODE, and GHBNODE are 525, 567, 528, 568,
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Figure 5: Contrasting NODE [4], ANODE [10], SONODE [35], HBNODE, and GHBNODE for MNIST
classification in NFE, training time, and test accuracy. (Tolerance: 10−5).

and 568, respectively. To avoid the effects of numerical error of the black-box ODE solver we set
tolerance of ODE solver to be 10−7. Figure 4 plots a randomly selected evolution of the point cloud
separation for each model; we also compare the forward and backward NFEs and the training loss of
these models (100 independent runs). HBNODE and GHBNODE improve training as the training
loss consistently goes to zero over different runs, while ANODE and SONODE often get stuck at
local minima, and NODE cannot separate the point cloud since it preserves the topology [10].

5.2 Image classification

We compare the performance of HBNODE and GHBNODE with the existing ODE-based models
on MNIST and CIFAR10 classification tasks using the same setting as in [10]. We parameterize
f(h(t), t, θ) using a 3-layer convolutional network for each ODE-based model, and the total number
of parameters for each model is listed in Table 2. For a given input image of the size c× h× w, we
first augment the number of channel from c to c+ p with the augmentation dimension p dependent
on each method5. Moreover, for SONODE, HBNODE and GHBNODE, we further include velocity
or momentum with the same shape as the augmented state.

Table 2: The number of parameters for each models for image classification.

Model NODE ANODE SONODE HBNODE GHBNODE

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235
#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

NFEs. As shown in Figs. 1 and 5, the NFEs grow rapidly with training of the NODE, resulting
in an increasingly complex model with reduced performance and the possibility of blow up. Input
augmentation has been verified to effectively reduce the NFEs, as both ANODE and SONODE
require fewer forward NFEs than NODE for the MNIST and CIFAR10 classification. However,
input augmentation is less effective in controlling their backward NFEs. HBNODE and GHBNODE
require much fewer NFEs than the existing benchmarks, especially for backward NFEs. In practice,
reducing NFEs implies reducing both training and inference time, as shown in Figs. 1 and 5.

Accuracy. We also compare the accuracy of different ODE-based models for MNIST and CIFAR10
classification. As shown in Figs. 1 and 5, HBNODE and GHBNODE have slightly better classification
accuracy than the other three models; this resonates with the fact that less NFEs lead to simpler
models which generalize better [10, 35].
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Figure 6: NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CIFAR10 classification.
Both forward and backward NFEs of HBNODE and GHBNODE grow much more slowly than that of NODE,
ANODE, and SONODE; especially the backward NFEs. As the tolerance decreases, the advantage of HBNODE
and GHBNODE in reducing NFEs becomes more significant.

NFEs vs. tolerance. We further study the NFEs for different ODE-based models under different
tolerances of the ODE solver using the same approach as in [4]. Figure 6 depicts the forward
and backward NFEs for different models under different tolerances. We see that (i) both forward

5We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 on MNIST/CIFAR10 for NODE, ANODE, SONODE, HBNODE, and
GHBNODE, respectively.
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and backward NFEs grow quickly when tolerance is decreased, and HBNODE and GHBNODE
require much fewer NFEs than other models; (ii) under different tolerances, the backward NFEs of
NODE, ANODE, and SONODE are much larger than the forward NFEs, and the difference becomes
larger when the tolerance decreases. In contrast, the forward and backward NFEs of HBNODE
and GHBNODE scale almost linearly with each other. This reflects that the advantage in NFEs of
(G)HBNODE over the benchmarks become more significant when a smaller tolerance is used.

5.3 Learning dynamical systems from irregularly-sampled time series

In this subsection, we learn dynamical systems from experimental measurements. In particular, we
use the ODE-RNN framework [4, 42], with the recognition model being set to different ODE-based
models, to study the vibration of an airplane dataset [33]. The dataset was acquired, from time 0 to
73627, by attaching a shaker underneath the right wing to provide input signals, and 5 attributes are
recorded per time stamp; these attributes include voltage of input signal, force applied to aircraft,
and acceleration at 3 different spots of the airplane. We randomly take out 10% of the data to
make the time series irregularly-sampled. We use the first 50% of data as our train set, the next
25% as validation set, and the rest as test set. We divide each set into non-overlapping segments of
consecutive 65 time stamps of the irregularly-sampled time series, with each input instance consisting
of 64 time stamps of the irregularly-sampled time series, and we aim to forecast 8 consecutive time
stamps starting from the last time stamp of the segment. The input is fed through the the hybrid
methods in a recurrent fashion; by changing the time duration of the last step of the ODE integration,
we can forecast the output in the different time stamps. The output of the hybrid method is passed
to a single dense layer to generate the output time series. In our experiments, we compare different
ODE-based models hybrid with RNNs. The ODE of each model is parametrized by a 3-layer network
whereas the RNN is parametrized by a simple dense network; the total number of parameters for
ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN with 16, 22,
14, 15, 15 augmented dimensions are 15,986, 16,730, 16,649, 16,127, and 16,127, respectively. To
avoid potential error due to the ODE solver, we use a tolerance of 10−7.

In training those hybrid models, we regularize the models by penalizing the L2 distance between the
RNN output and the values of the next time stamp. Due to the second-order natural of the underlying
dynamics [35], ODE-RNN and ANODE-RNN learn the dynamics very poorly with much larger
training and test losses than the other models even they take smaller NFEs. HBNODE-RNN and
GHBNODE-RNN give better prediction than SONODE-RNN using less backward NFEs.
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Figure 7: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN
for learning a vibrational dynamical system. Left most: The learned curves of each model vs. the ground truth
(Time: <66 for training, 66-75 for testing).

5.4 Walker2D kinematic simulation

In this subsection, we evaluate the performance of HBNODE-RNN and GHBNODE-RNN on the
Walker2D kinematic simulation task, which requires learning long-term dependency effectively [26].
The dataset [3] consists of a dynamical system from kinematic simulation of a person walking from a
pre-trained policy, aiming to learn the kinematic simulation of the MuJoCo physics engine [48]. The
dataset is irregularly-sampled with 10% of the data removed from the simulation. Each input consists
of 64 time stamps fed though the the hybrid methods in a recurrent fashion, and the output is passed
to a single dense layer to generate the output time series. The goal is to provide an auto-regressive
forecast so that the output time series is as close as the input sequence shifted one time stamp to
the right. We compare ODE-RNN (with 7 augmentation), ANODE-RNN (with 7 ANODE style
augmentation), HBNODE-RNN (with 7 augmentation), and GHBNODE-RNN (with 7 augmentation)
6 The RNN is parametrized by a 3-layer network whereas the ODE is parametrized by a simple dense

6Here, we do not compare with SONODE-RNN since SONODE has some initialization problem on this
dataset; the ODE solver encounters failure due to exponential growth over time.
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network. The number of parameters of the above four models are 8,729, 8,815, 8,899, and 8,899,
respectively. In Fig. 8, we compare the performance of the above four models on the Walker2D
benchmark; HBNODE-RNN and GHBNODE-RNN not only require significantly less NFEs in both
training (forward and backward) and in testing than ODE-RNN and ANODE-RNN, but also have
much smaller training and test losses.
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Figure 8: Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN
for the Walker-2D kinematic simulation.

6 Related Work
Reducing NFEs in training NODEs. Several techniques have been developed to reduce the NFEs
for the forward solvers in NODEs, including weight decay [15], input augmentation [10], regularizing
solvers and learning dynamics [12, 23, 13, 36], high-order ODE [35], data control [29], and depth-
variance [29]. HBNODEs can reduce both forward and backward NFEs at the same time.
Second-order ODE accelerated dynamics. It has been noticed in both optimization and sampling
communities that second-order ODEs with an appropriate damping term, e.g., the classical momentum
and Nesterov’s acceleration in discrete regime, can significantly accelerate the first-order gradient
dynamics (gradient descent), e.g., [39, 32, 5, 45, 53]. Also, these second-order ODEs have been
discretized via some interesting numerical schemes to design fast optimization schemes, e.g., [44].
Learning long-term dependencies. Learning long-term dependency is one of the most important
goals for learning from sequential data. Most of the existing works focus on mitigating exploding
or vanishing gradient issues in training RNNs, e.g., [1, 54, 22, 51, 30, 18, 47]. Attention-based
models are proposed for learning on sequential data concurrently with the effective accommodation
of learning long-term dependency [50, 8]. Recently, NODEs have been integrated with long-short
term memory model [19] to learn long-term dependency for irregularly-sampled time series [26].
HBNODEs directly enhance learning long-term dependency from sequential data.
Momentum in neural network design. As a line of orthogonal work, the momentum has also been
studied in designing neural network architecture, e.g., [31, 47, 27, 43], which can also help accelerate
training and learn long-term dependencies. These techniques can be considered as changing the
neural network f in (1). We leave the synergistic integration of adding momentum to f with our
work on changing the left-hand side of (1) as a future work.

7 Concluding Remarks
We proposed HBNODEs to reduce the NFEs in solving both forward and backward ODEs, which
also improve generalization performance over the existing benchmark models. Moreover, HBNODEs
alleviate vanishing gradients in training NODEs, making HBNODEs able to learn long-term depen-
dency effectively from sequential data. In the optimization community, Nesterov acceleration [32]
is also a famous algorithm for accelerating gradient descent, that achieves an optimal convergence
rate for general convex optimization problems. The ODE counterpart of the Nesterov’s acceleration
corresponds to (9) with γ being replaced by a time-dependent damping parameter, e.g., t/3 [45] or
with restart [52]. The adjoint equation of the Nesterov’s ODE [45] is no longer a Nesterov’s ODE.
We notice that directly using Nesterov’s ODE cannot improve the performance of the vanilla neural
ODE. How to integrate Nesterov’s ODE with neural ODE is an interesting future direction. Another
interesting direction is connecting HBNODE with symplectic ODE-net [57] through an appropriate
change of variables.
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Supplementary Material for
Heavy Ball Neural Ordinary Differential Equations

A Review of the Adjoint Equation for the First- and Second-order ODEs
The adjoint sensitivity method is the key to assuring constant memory usage in training neural ODEs
[4]. In this section, we present two different proofs for the first-order adjoint sensitivity equations. The
differentiation proof in Appendix A.1.1 is adapted from the proof by Norcliffe et al [35]. We provide
a new integral proof in Appendix A.1.2 to extend theoretical support for the Lipschitz continuous
functions. We also revisit the proof of the second-order adjoint sensitivity equations by Norcliffe et al
[35].

A.1 First-order Adjoint Sensitivity Equation

A Neural ODE for hidden features h(t) ∈ RN takes the form
∂h

∂t
= f(h(t), t, θ), h(t0) = ht0 , h(T ) = hT , (23)

where f(h(t), t, θ) ∈ RN is a neural network with learnable parameters θ. The corresponding adjoint
equation, with L being a scalar loss function, is defined by the following ODE,

∂A(t)

∂t
= −A(t)

∂f

∂h
, A(T ) = −I, a(t) = − dL

dhT
A(t). (24)

For gradient-based optimization, we need to compute the following derivatives
dL
dθ

=
dL
dhT

dhT
dθ

,
dL
dht0

=
dL
dhT

dhT
dht0

. (25)

In the following sections, we show that

dhT
dθ

=

∫ t0

T

A
∂f

∂θ
dt,

dhT
dht0

= −A(t0). (26)

By linearity, we immediately arrive at the following adjoint sensitivity equations

dL
dθ

=

∫ T

t0

a
∂f

∂θ
dt,

dL
dht0

= a(t0). (27)

A.1.1 Proof of the First-Order Adjoint Sensitivity Equation: Differentiation Approach

We adapt the proof of the adjoint sensitivity equations from Norcliffe et al [35]. Assume that f ∈ C1,
φ is either θ or ht0 , then the following equations hold

∂A(t)

∂t
= −A(t)

∂f

∂h
,

∂2h

∂φ∂t
=
∂f

∂θ

dθ

dφ
+
∂f

∂h

dh

dφ
,

∂
(
A∂h
∂φ

)
∂t

=
∂A

∂t

∂h

∂φ
+ A

∂2h

∂φ∂t
. (28)

Combining the three equations in (28) yields the differential equation

∂
(
A∂h
∂φ

)
∂t

=
∂A

∂t

∂h

∂φ
+ A

∂2h

∂φ∂t
= −A(t)

∂f

∂h

∂h

∂φ
+ A

(∂f
∂θ

dθ

dφ
+
∂f

∂h

dh

dφ

)
= A

∂f

∂θ

dθ

dφ
. (29)

Integrating both sides of (29) in t from T to t0, we arrive at the integral equation(
A
∂h

∂φ

)∣∣∣t0
T

=

∫ t0

T

A
∂f

∂θ

dθ

dφ
dt. (30)

Using the conditions A(T ) = −I , h(t0) = ht0 , h(T ) = hT , we rewrite the equation (30) as

dhT
dφ

= −A(t0)
dht0
dφ

+

∫ t0

T

A
∂f

∂θ

dθ

dφ
dt. (31)

Substituting φ = ht0 and φ = θ respectively in (31) leads to

dhT
dht0

= −A(t0),
dhT
dθ

=

∫ t0

T

A
∂f

∂θ
dt. (32)

This proof is adapted from the proof provided by Norcliffe et al [35] for general second-order neural
ODEs by differentiation and this proof only holds for f ∈ C1.
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A.1.2 Proof of the First-Order Adjoint Sensitivity Equations: Integration Approach

The proof in Appendix A.1.1 requires that f ∈ C1. However, with activation functions like ReLU, f
may not be smooth enough to satisfy this requirement. Meanwhile, the adjoint equation (24) that A
satisfies may not have a continuous right hand side, which can fail the Picard-Lindelöf theorem that
guarantees the existence and uniqueness of solutions to the adjoint equation.

To circumvent these deficiencies, we propose a new proof based on integration. Assume that f(h, t, θ)
is continuous in t and Lipschitz continuous in h, θ, and there exists some open ball around ht0 = s0,
θ = θ0 such that for every pair of initial condition and parameters in the open ball, there exists a
unique solution for t ∈ [t0, T ]. We denote the solution starting from ht0 = s0, θ = θ0 as h0. In
order to avoid difficulties in proving the existence and uniqueness of the solution, we explicitly define
the adjoint equation through the following matrix exponential

A(t) = − exp

{
−
∫ t

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
. (33)

By definition, A is Lipschitz continuous and satisfies the differential equation almost everywhere
dA(t)

dt
= −A(t)

∂f

∂h
(h0(t), t, θ0). (34)

Since h ∈ C1(t) and dA
dt ∈ L

1(t), we obtain the following using integration by parts,

Ah|Tt0 =

∫ T

t0

A
∂h

∂t
dt+

∫ T

t0

dA

dt
hdt. (35)

Taking partial derivatives with respect to φ on both sides of (35), as A(t) is only a function of t, we
have

A
∂h

∂φ

∣∣∣T
t0

=
∂

∂φ

∫ T

t0

A
∂h

∂t
dt+

∂

∂φ

∫ T

t0

dA

dt
hdt. (36)

In order to exchange integral and derivatives, we use the dominated convergence theorem. Because f
is Lipschitz continuous on h, h is Lipschitz continuous on φ, and thus ∂h

∂φ is Lebesgue integrable.
Therefore, by chain rule, the following equation holds almost everywhere,

∂2h

∂t∂φ
=

∂2h

∂φ∂t
=
df

dφ
=
∂f

∂θ

dθ

dφ
+
∂f

∂h

dh

dφ
. (37)

Because t is bounded, the right hand side of equation (37) is Lebesgue integrable, and so is the left
hand side. Because both ∂h

∂φ and ∂2h
∂t∂φ are Lebesgue integrable, by dominated convergence theorem,

we have the following exchange of integrals and derivatives

∂

∂φ

∫ T

t0

A
∂h

∂t
dt =

∫ T

t0

A
∂2h

∂t∂φ
dt,

∂

∂φ

∫ T

t0

dA

dt
hdt =

∫ T

t0

dA

dt

∂h

∂φ
dt. (38)

Combining equation (36) with (38) gives us

A
∂h

∂φ

∣∣∣T
t0

=

∫ T

t0

A
∂2h

∂t∂φ
dt+

∫ T

t0

dA

dt

∂h

∂φ
dt. (39)

By taking Lebesgue integral of equation (37), we have the equation∫ T

t0

A
∂2h

∂t∂φ
dt =

∫ T

t0

A
(∂f
∂θ

dθ

dφ
+
∂f

∂h

dh

dφ

)
dt. (40)

Meanwhile, at h0, we can integrate equation (34) to a similar form as∫ T

t0

dA

dt

∂h

∂φ
dt = −

∫ T

t0

A
∂f

∂h

dh

dφ
dt. (41)

Consequently, at h0, we can sum up equations (39), (40), and (41) and arrive at

A
∂h

∂φ

∣∣∣T
t0

=

∫ T

t0

A
∂f

∂θ

dθ

dφ
dt, (42)

which is the same integral equation as equation (30) in the differentiation proof in Appendix A.1.1.
Thus, plugging in the initial conditions provides us with the same result.
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A.1.3 Corollary of the First-order Gradient Propagation

An immediate corollary of the above proof is that combining equations (26) and (33) results in

dhT
dht0

= −A(t0) = exp

{
−
∫ t0

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
. (43)

As (43) is true for every choice of t0, we can also generalize it to

dhT
dht

= exp

{
−
∫ t

T

∂f

∂h
(h0(τ), τ, θ0)dτ

}
, (44)

which shows the relative gradient between different times in integral.

A.2 Second-order Adjoint Sensitivity Equation

A SONODE satisfies the following equations

∂h

∂t
= v,

∂v

∂t
= f(h(t),v(t), t, θ), h(t0) = ht0 , v(t0) = vt0 , (45)

which can be viewed as a coupled first-order ODE system of the form

∂

∂t

[
h
v

]
=

[
v

f(h(t),v(t), t, θ)

]
,

[
h
v

]
(t0) =

[
ht0
vt0

]
. (46)

Denote z =

[
h
v

]
and final state as [

h(T )
v(T )

]
=

[
hT
vT

]
= zT . (47)

Using the conclusions from Appendix A.1, then the adjoint equation is given by

∂A(t)

∂t
= −A(t)

[
0 I
∂f
∂h

∂f
∂v

]
, A(T ) = −I, a(t) = − dL

dzT
A(t). (48)

By rewriting A = [Ah Av], we have the following differential equations

∂Ah(t)

∂t
= −Av(t)

∂f

∂h
,

∂Av(t)

∂t
= −Ah(t)−Av(t)

∂f

∂v
, (49)

with initial conditions

Ah(T ) = −
[
I
0

]
, Av(T ) = −

[
0
I

]
, (50)

and adjoint states

ah(t) =
dL
dzT

Ah(t), av(t) =
dL
dzT

Av(t). (51)

The gradient equations becomes

dL
dθ

=

∫ T

t0

a

[
0
∂f
∂θ

]
dt =

∫ T

t0

av
∂f

∂θ
dt,

dL
dht0

= ah(t0),
dL
dvt0

= av(t0). (52)

In SONODE, ht0 is fixed, and thus ah disappears in gradient computation. Therefore, we are only
interested in av . Thus the adjoint Av satisfies the following second-order ODE

∂2Av(t)

∂t2
= Av(t)

∂f

∂h
−
∂(Av(t)∂f∂v )

∂t
, (53)
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and thus

∂2av(t)

∂t2
= av(t)

∂f

∂h
−
∂(av(t)∂f∂v )

∂t
, (54)

with initial conditions

av(T ) = −dL
dz

Av(T ) =
dL
dvT

,
∂av(T )

∂t
= − dL

dhT
− av(T )

∂f

∂v
(T ). (55)

This proves the second order adjoint equations for av .

B Proof of Propositions 1, 2, and 3
B.1 Proof of Adjoint Equation for HBNODE (Propositions 1)

As HBNODE takes the form

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (56)

which can also be viewed as a SONODE. By applying the adjoint equation of SONODE (54), we
arrive at

∂2a(t)

∂t2
= a(t)

∂f

∂h
+ γ

∂a(t)

∂t
. (57)

As HBNODE only carries its state h to the loss L, we have dL
dvT

= 0, and thus the initial conditions
in equation (55) becomes

a(T ) = 0,
∂a(T )

∂t
= − dL

dhT
. (58)

B.2 Proof of Adjoint Equation for First-order HBNODE (Proposition 2)

The coupled form of HBNODE is a coupled first-order ODE system of the form

∂

∂t

[
h
m

]
=

[
m

−γm + f(h(t), t, θ)

]
,

[
h
m

]
(t0) =

[
ht0
mt0

]
. (59)

Denote the final state as [
h(T )
m(T )

]
=

[
hT
mT

]
= z. (60)

Using the conclusions from Appendix A.1, we have the adjoint equation

∂A(t)

∂t
= −A(t)

[
0 I
∂f
∂h −γI

]
, A(T ) = −I, a(t) = −dL

dz
A(t). (61)

Let [ah am] = a, by linearity we have

∂ [ah am]

∂t
= − [ah am]

[
0 I
∂f
∂h −γI

]
, [ah(T ) am(T )] =

[
dL
dhT

dL
dmT

]
, (62)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah

∂t
= −am

∂f

∂h
,

∂am

∂t
= −ah + γam. (63)
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B.3 Proof of Adjoint Equation for GHBNODE (Proposition 3)

The coupled form of GHBNODE is a first-order ODE system of the form

∂

∂t

[
h
m

]
=

[
σ(m)

−γm + f(h(t), t, θ)− ξh(t)

]
,

[
h
m

]
(t0) =

[
ht0
mt0

]
. (64)

Denote the final state as

[
h(T )
m(T )

]
=

[
hT
mT

]
= zT . (65)

Using the conclusions from Appendix A.1, we have the adjoint equation

∂A(t)

∂t
= −A(t)

[
0 σ′(m)

∂f
∂h − ξI −γI

]
, A(T ) = −I, a(t) = − dL

dzT
A(t). (66)

Let [ah am] = a, by linearity we have

∂ [ah am]

∂t
= − [ah am]

[
0 σ′(m)

∂f
∂h − ξI −γI

]
, [ah(T ) am(T )] =

[
dL
dhT

dL
dmT

]
, (67)

which gives us the initial conditions at t = T , and the simplified first-order ODE system

∂ah

∂t
= −am

(∂f
∂h
− ξI

)
,

∂am

∂t
= −ahσ

′(m) + γam. (68)

C Vanishing and Exploding Gradients in Training RNNs
Recurrent cells are the building blocks of RNNs. A recurrent cell can be mathematically written as

ht = σ(Uht−1 + Wxt + b), xt ∈ Rd, for t = 1, 2, · · · , T, (69)

where ht ∈ Rh is the hidden state, U ∈ Rh×h,W ∈ Rh×d, and b ∈ Rh are trainable parameters;
σ(·) is a nonlinear activation function, e.g., sigmoid. Backpropagation through time is a popular
algorithm for training RNNs, which usually results in exploding or vanishing gradients [2]. Thus
RNNs may fail to learn long term dependencies. As an illustration, let hT and ht be the state vectors
at the timestamps T and t (T � t), respectively. Assume L is the loss to minimize, then

∂L
∂ht

=
∂L
∂hT

· ∂hT
∂ht

=
∂L
∂hT

·
T−1∏
k=t

∂hk+1

∂hk
=

∂L
∂hT

·
T−1∏
k=t

(DkU
>), (70)

where Dk = diag(σ′(Uhk + Wxk+1)) is a diagonal matrix with σ′(Uhk + Wxk+1) being its
diagonal entries. ‖

∏T−1
k=t (DkU

>)‖2 tends to either vanish or explode [2].

When applying RNNs to sequence applications with x = (x1, · · · ,xT ) be an input sequence of
length T and y = (y1, · · · , yT ) be the sequence of labels, we let Lt be the loss at the timestamp t
and the total loss on the whole sequence be

L =

T∑
t=1

Lt, (71)

the vanishing or exploding issue can be shown following (70).

For neural ODEs, note that the adjoint state a(t) is defined as ∂L/∂h(t), which also tends to explode
or vanish during training.
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C.1 Derivation of equation (18)

GHBNODE can be viewed as a system of higher dimensional NODE as in equation (64). With

z =

[
h
m

]
, z satisfies NODE equation, and therefore it also satisfies the equation for relative gradient

information as in (44),

dzT
dzt

= exp

{
−
∫ t

T

∂f

∂z
(z0(τ), τ, θ0)dτ

}
. (72)

By definition of multivariate derivatives, we have

dzT
dzt

=

[
∂hT

∂ht

∂hT

∂mt
∂mT

∂ht

∂mT

∂mt

]
, (73)

and
∂f

∂z
=

[
0 ∂σ

∂m
∂f
∂h − ξI −γI

]
. (74)

With equations (73) and (74), we can rewrite equation (72) in terms of h and m as[
∂hT

∂ht

∂hT

∂mt
∂mT

∂ht

∂mT

∂mt

]
= exp

{
−
∫ t

T

[
0 ∂σ

∂m
∂f
∂h − ξI −γI

]}
ds. (75)

In particular, since HBNODEs are GHBNODEs with ξ = 0 and σ being the identity map, the gradient
equation of HBNODEs takes the form[

∂hT

∂ht

∂hT

∂mt
∂mT

∂ht

∂mT

∂mt

]
= exp

{
−
∫ t

T

[
0 I
∂f
∂h −γI

]}
ds. (76)

This concludes the derivation of equation (18).

D Proof of Proposition 4

Proof. Let F = 1
t−T

∫ t
T
∂f
∂h (h(s), s, θ)ds− ξI , J = 1

t−T
∫ t
T

∂σ
∂m (m(s))ds, and H = 1

t−TM , then
we have the following equation

H =
1

t− T
M =

[
0 J
F −γI

]
. (77)

As (λ+ γ)I commutes with any matrix F , the characteristics polynomials of H and JF satisfy the
relation

chH(λ) = det(λI −H) = det

[
λI −J
−F (λ+ γ)I

]
= det(λ(λ+ γ)I −JF ) = −chJF (λ(λ+ γ)).

(78)
Since the characteristics polynomial of JF splits in the field C of complex numbers, i.e. chJF (x) =∏n
i=1(x− λJF ,i), we have

chH(λ) = −chJF (λ(λ+ γ)) = −
n∏
i=1

(λ(λ+ γ)− λJF ,i). (79)

Therefore, the eigenvalues of H appear in n pairs with each pair satisfying the quadratic equation

λ(λ+ γ)− λJF ,i = 0. (80)

By Vieta’s formulas, the sum of these pairs are all −γ. Therefore, the eigenvalues of M comes in n
pairs and the sum of each pair is −(t− T )γ.
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E Experimental details
We first list some common settings below:

• NODE and ANODE do not have initial layers.

• For SONODE n∗ = 2n, and for other ones n∗ = n.

• Hyper parameters are listed in Table 3

• HTanh: HardTanh(-5, 5)

• LReLU: LeakyReLU(0.3)

• tpad: Padding with time t within ODE. i.e., transform the shape c×x× y to (c+ 1)×x× y
by concatenating with a tensor of shape 1× x× y filled with all t.

• For all tasks, we use learnable γ with ε = 1 for both HBNODE and GHBNODE, and
learnable ξ.

• fcn: a fully connected layer with output dimension to be n.

Table 3: The hyper-parameters for each models.

Model NODE ANODE SONODE HBNODE GHBNODE

n (Initialization) 1 2 1 1 1
h (Initialization) 22 22 22 22 22
n (Point Cloud) 2 3 2 2 2
h (Point Cloud) 20 20 13 14 14
n (MNIST) 1 6 5 5 6
h (MNIST) 92 64 50 50 45
n (CIFAR) 3 13 12 12 12
h (CIFAR) 125 64 50 51 51

Table 4: The hyper-parameters for ODE-RNN integration models.

Model ODE-RNN ANODE-RNN SONODE-RNN HBNODE-RNN GHBNODE-RNN

d 1 1 2 2 2
n (Plane Vibration) 21 27 19 20 20
h1 (Plane Vibration) 63 83 19 20 20
h2 (Plane Vibration) 84 108 19 20 20

n (Walker 2D) 24 24 23 24 24
h1 (Walker 2D) 72 72 46 48 48
h2 (Walker 2D) 48 48 46 48 48

E.1 Network architecture used in Section 3 Initialization Test

• ODE : inputn∗+1 → fcn

E.2 Experimental details for 5.1

• Initial Velocity : input2 → fch → HTanh→ fch → HTanh→ fcn
• ODE : inputn∗ → fch → ELU→ fch → ELU→ fcn
• Output : inputn → fc1 → Tanh

E.3 Experimental details for 5.2

E.3.1 MNIST

• Initial Velocity : input1×28×28 → convh,1 → LReLU → convh,3 → LReLU →
conv2n−1,1

• ODE : inputn∗×28×28 → tpad → convh,1 → ReLU → tpad → convh,3 → ReLU →
tpad→ convn,1

• Output : inputn×28×28 → fc10
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E.3.2 CIFAR

• Initial Velocity : input3×28×28 → convh,1 → LReLU → convh,3 → LReLU →
conv2n−3,1

• ODE : inputn∗×32×32 → tpad → convh,1 → ReLU → tpad → convh,3 → ReLU →
tpad→ convn,1

• Output : inputn×32×32 → fc10

E.4 Experimental details for 5.3

• ODE : inputn∗ → fch1 → ReLU→ fch2 → ReLU→ fcn
• RNN : inputdn+k → fcdn
• Output : inputn → fc5

E.5 Experimental details for 5.4

• ODE : inputn∗ → fcn
• RNN : inputdn+k → fch1 → Tanh→ fch2 → Tanh→ fcdn
• Output : inputn → fc17

E.6 ODE vs. HBODE on Rosenbrock and Beale benchmarks

We compare the trajectory of ODE limit of gradient descent and HBODE on the Rosenbrock and
Beale functions, which are described below.

Rosenbrock function. The Rosenbrock function is given by

F (x) := F (x, y) = 100(y − x2)2 + (1− x)2,

which has the minimum (x, y) = (1, 1). Starting from (0, 0), we apply Dormand–Prince-45 solver
using a step size ∆t = 0.001 to solve both ODEs (7) and (8) for t from 0 to 1. For the HBODE, we
set γ = 0.9 and set the initial value of dx/dt = (0, 0).

Beale function. The Beale function is given by

F (x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
ODE

HBODE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
ODE

HBODE

Figure 9: Comparing the trajectory of ODE
and HBODE when F (x) is the Rosenbrock
(left) and Beale (right) functions.

which has the minimum (x, y) = (3, 0.5). Starting
from (0, 0), we apply Dormand–Prince-45 solver
using a step size 0.01 to solve both ODEs in (7)
and (8) for t from 0 to 2. For the HBODE, we set
γ = 0.7 and set the initial value of dx/dt = (0, 0).

To numerically show that the HBNODE (7) con-
verges faster to the stationary point than the
ODE limit of gradient descent (8), we apply the
Dormand–Prince-45 ODE solver, which is the de-
fault solver for NODEs, to solve both ODEs. We
set F (x) to be the Rosenbrock and the Beale func-
tions. Fig. 9 shows that with the same numerical
ODE solver, HBODE converges to the stationary
point (marked by stars) faster than (8).
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