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Abstract

Motivated by packet routing in computer networks and resource allocation in radio
networks, online queuing systems are composed of queues receiving packets at
different rates. Repeatedly, they send packets to servers, each of them treating only
at most one packet at a time. In the centralized case, the number of accumulated
packets remains bounded (i.e., the system is stable) as long as the ratio between
service rates and arrival rates is larger than 1. In the decentralized case, individual
no-regret strategies ensures stability when this ratio is larger than 2. Yet, myopically
minimizing regret disregards the long term effects due to the carryover of packets to
further rounds. On the other hand, minimizing long term costs leads to stable Nash
equilibria as soon as the ratio exceeds e

e−1 . Stability with decentralized learning
strategies with a ratio below 2 was a major remaining question. We first argue that
for ratios up to 2, cooperation is required for stability of learning strategies, as
selfish minimization of policy regret, a patient notion of regret, might indeed still
be unstable in this case. We therefore consider cooperative queues and propose
the first learning decentralized algorithm guaranteeing stability of the system as
long as the ratio of rates is larger than 1, thus reaching performances comparable
to centralized strategies.

1 Introduction

Inefficient decisions in repeated games can stem from both strategic and learning considerations.
First, strategic agents selfishly maximize their own individual reward at others’ expense. The price
of anarchy [Koutsoupias and Papadimitriou, 1999] measures this inefficiency as the social welfare
ratio between the best possible situation and the worst Nash equilibrium. Although reaching the
best collective outcome might be illusory for selfish agents, considering the worst Nash equilibrium
might be too pessimistic. In games with external factors, more complex interactions intervene and
might lead the agents to the best equilibrium. Instead, the price of stability [Schulz and Moses, 2003]
measures the inefficiency by the social welfare ratio between the best possible situation and the best
Nash equilibrium.

Second, the agents also have to learn their environment, by repeatedly experimenting different
outcomes. Learning equilibria in repeated games is at the core of many problems in computer science
and economics [Fudenberg et al., 1998, Cesa-Bianchi and Lugosi, 2006]. The interaction between
multiple agents can indeed interfere in the learning process, potentially converging to no or bad
equilibria. It is yet known that in repeated games, if all agents follow no internal regret strategies,
their actions converge in average to the set of correlated equilibria [Hart and Mas-Colell, 2000, Blum
and Monsour, 2007, Perchet, 2014].
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Many related results are known in the classical repeated games [see e.g., Cesa-Bianchi and Lugosi,
2006, Roughgarden, 2010], where a single game is repeated over independent rounds (but the agents
strategies might evolve and depend on the history). Motivated by packet routing in computer networks,
Gaitonde and Tardos [2020a] introduced a repeated game with a carryover feature: the outcome of
a round does not only depend on the actions of the agents, but also on the previous rounds. They
consider heterogeneous queues sending packets to servers. If several queues simultaneously send
packets to the same server, only the oldest packet is treated by the server.

Because of this carryover effect, little is known about this type of game. In a first paper, Gaitonde and
Tardos [2020a] proved that if queues follow suitable no-regret strategies, a ratio of 2 between server
and arrival rates leads to stability of the system, meaning that the number of packets accumulated
by each queue remains bounded. However, the assumption of regret minimization sort of reflects
a myopic behavior and is not adapted to games with carryover. Gaitonde and Tardos [2020b]
subsequently consider a patient game, where queues instead minimize their asymptotic number
of accumulated packets. A ratio only larger than e

e−1 then guarantees the stability of the system,
while a smaller ratio leads to inefficient Nash equilibria. As a consequence, going below the e

e−1
factor requires some level of cooperation between the queues. This result actually holds with perfect
knowledge of the problem parameters and it remained even unknown whether decentralized learning
strategies can be stable with a ratio below 2.

We first argue that decentralized queues need some level of cooperation to ensure stability with a
ratio of rates below 2. Policy regret can indeed be seen as a patient alternative to the regret notion.
Yet even minimizing the policy regret might lead to instability when this ratio is below 2. An explicit
decentralized cooperative algorithm called ADEQUA (A DEcentralized QUeuing Algorithm) is
thus proposed. It is the first decentralized learning algorithm guaranteeing stability when this ratio
is only larger than 1. ADEQUA does not require communication between the queues, but uses
synchronisation between them to accurately estimate the problem parameters and avoid interference
when sending packets. Our main result is given by Theorem 1 below, whose formal version,
Theorem 5 in Section 4, also provides bounds on the number of accumulated packets.

Theorem 1 (Theorem 5, informal). If the ratio between server rates and arrival rates is larger than
1 and all queues follow ADEQUA, the system is strongly stable.

The remaining of the paper is organised as follows. The model and existing results are recalled in
Section 2. Section 3 argues that cooperation is required to guarantee stability of learning strategies
when the ratio of rates is below 2. ADEQUA is then presented in Section 4, along with insights
for the proof of Theorem 1. Section 5 finally compares the behavior of ADEQUA with no-regret
strategies on toy examples and empirically confirms the different known theoretical results.

1.1 Additional related work

Queuing theory includes applications in diverse areas such as computer science, engineering, opera-
tion research [Shortle et al., 2018]. Borodin et al. [1996] for example use the stability theorem of
Pemantle and Rosenthal [1999], which was also used by Gaitonde and Tardos [2020b], to study the
problem of packet routing through a network. Our setting is the single-hop particular instance of
throughput maximization in wireless networks. Motivated by resource allocation in multihop radio
problem, packets can be sent through more general routing paths in the original problem. Tassiu-
las and Ephremides [1990] proposed a first stable centralized algorithm, when the service rates are
known a priori. Stable decentralized algorithms were later introduced in specific cases [Neely et al.,
2008, Jiang and Walrand, 2009, Shah and Shin, 2012], when the rewards Xk(t) are observed before
deciding which server to send the packet. The main challenge then is coordination and queues aim
at avoiding collisions with each other. The proposed algorithms are thus not adapted to our setting,
where both coordination between queues and learning the service rates are required. We refer the
reader to [Georgiadis et al., 2006] for an extended survey on resource allocation in wireless networks.

Krishnasamy et al. [2016] first considered online learning for such queuing systems model, in the
simple case of a single queue. It is a particular instance of stochastic multi-armed bandits, a celebrated
online learning model, where the agent repeatedly takes an action within a finite set and observes its
associated reward. This model becomes intricate when considering multiple queues, as they interfere
when choosing the same server. It is then related to the multiplayer bandits problem which considers
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multiple players simultaneously pulling arms. When several of them pull the same arm, a collision
occurs and they receive no reward [Anandkumar et al., 2010].

The collision model is here different as one of the players still gets a reward. It is thus even more
closely related to competing bandits [Liu et al., 2020a,b], where arms have preferences over the players
and only the most preferred player pulling the arm actually gets the reward. Arm preferences are here
not fixed and instead depend on the packets’ ages. While collisions can be used as communication
tools between players in multiplayer bandits [Bistritz and Leshem, 2018, Boursier and Perchet, 2019,
Mehrabian et al., 2020, Wang et al., 2020], this becomes harder with an asymmetric collision model
as in competing bandits. However, some level of communication remains possible [Sankararaman
et al., 2020, Basu et al., 2021]. In queuing systems, collisions are not only asymmetric, but depend
on the age of the sent packets, making such solutions unsuited.

While multiplayer bandits literature considers cooperative players, Boursier and Perchet [2020]
showed that cooperative algorithms could be made robust to selfish players. On the other hand,
competing bandits consider strategic players and arms as the goal is to reach a bipartite stable
matching between them. Despite being cooperative, ADEQUA also has strategic considerations as
the queues’ strategy converges to a correlated equilibrium of the patient game described in Section 2.

An additional difficulty here appears as queues are asynchronous: they are not active at each round,
but only when having packets left. This is different from the classical notion of asynchronicity
[Bonnefoi et al., 2017], where players are active at each round with some fixed probability. Most
strategies in multiplayer bandits rely on synchronisation between the players [Boursier and Perchet,
2019] to avoid collisions. While such a level of synchronisation is not possible here, some lower level
of synchronisation is still used to avoid collisions between queues.

2 Queuing Model

We consider a queuing system composed of N queues and K servers, associated with vectors of
arrival and service rates λ,µ, where at each time step t = 1, 2, . . . , the following happens:

• each queue i ∈ [N ] receives a new packet with probability λi ∈ [0, 1], that is marked with
the timestamp of its arrival time. If the queue currently has packet(s) on hold, it sends one of
them to a chosen server j based on its past observations.

• Each server j ∈ [K] attempts to clear the oldest packet it has received, breaking ties uniformly
at random. It succeeds with probability µj ∈ [0, 1] and otherwise sends it back to its original
queue, as well as all other unprocessed packets.

At each time step, a queue only observes whether or not the packet sent (if any) is cleared by the
server. We note Qit the number of packets in queue i at time t. Given a packet-sending dynamics, the
system is stable if, for each i in [N ], Qit/t converges to 0 almost surely. It is strongly stable, if for
any r, t ≥ 0 and i ∈ [N ], E[(Qit)

r] ≤ Cr, where Cr is an arbitrarily large constant, depending on r
but not t. Without ambiguity, we also say the policy or the queues are (strongly) stable. Naturally, a
strongly stable system is also stable [Gaitonde and Tardos, 2020a].

In the following, x(i) will denote the i-th order statistics of a vector x, i.e., λ(1) ≥ λ(2) ≥ . . . ≥ λ(N)

and µ(1) ≥ . . . ≥ µ(K). Without loss of generality, we assume K ≥ N (otherwise, we simply add
fictitious servers with 0 service rate). The key quantity of a system is its slack, defined as the largest
real number η such that:

k∑
i=1

µ(i) ≥ η
k∑
i=1

λ(i), ∀ k ≤ N.

We also denote by P ([K]) the set of probability distributions on [K] and by ∆ the margin of the
system defined by

∆ := min
k∈[N ]

1

k

k∑
i=1

(µ(i) − λ(i)). (1)

Notice that the alternative system where λ̃i = λi + ∆ and µ̃k = µk has a slack 1. In that sense, ∆ is
the largest margin between service and arrival rates that all queues can individually get in the system.
Note that if η > 1, then ∆ > 0. We now recall existing results for this problem, summarized in
Figure 1 below.
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Theorem 2 (Marshall et al. 1979). For any instance, there exists a strongly stable centralized policy
if and only if η > 1.
Theorem 3 (Gaitonde and Tardos 2020a, informal). If η > 2, queues following appropriate no regret
strategies are strongly stable.
For each N > 0, there exists a system and a dynamic s.t. η > 2 − o(1/N), all queues follow
appropriate no-regret strategies, but they are not strongly stable.

In the above theorem, an appropriate no regret strategy is a strategy such that there exists a partitioning
of the time into successive windows, for which the incurred regret is o (w) with high probability on
any window of length w. This for example includes the EXP3.P.1 algorithm [Auer et al., 2002] where
the k-th window has length 2k.

The patient queuing game G = ([N ], (ci)
n
i=1,µ,λ) is defined as follows. The strategy space for each

queue is P ([K]). Let p−i ∈ (P ([K]))N−1 denote the vector of fixed distributions for all queues
over servers, except for queue i. The cost function for queue i is defined as:

ci(pi,p−i) = lim
t→+∞

T it /t,

where T it is the age of the oldest packet in queue i at time t. Bounding T it is equivalent to boundingQit.
Theorem 4 (Gaitonde and Tardos 2020b, informal). If η > e

e−1 , any Nash equilibrium of the patient
game G is stable.

η

No stable
strategies

Stable centralized strategies (Thm. 2)

Stable no regret policies (Thm. 3)

Stable NE without learning (Thm. 4)

Stable decentralized strategies (Thm. 1)

0 1 e
e−1

2

Figure 1: Existing results depending on the slack η. Our result is highlighted in red.

3 The case for a cooperative algorithm

According to Theorems 3 and 4, queues that are patient enough and select a fixed randomization over
the servers are stable over a larger range of slack η than queues optimizing their individual regret.
A key difference between the two settings is that when minimizing their regret, queues are myopic,
which is formalized as follows. Let a1:t = (a1, ..., at) be the vector of actions played by a queue up
to time t and let νt(a1:t) be the indicator that it cleared a packet at iteration t. Classical (external)
regret of queue i over horizon T is then defined as:

Rext
i (T ) := max

p∈P([K])

T∑
t=1

Eãt∼p[νt(a1:t−1, ãt)]−
T∑
t=1

νt(a1:t).

Thus minimizing the external regret is equivalent to maximizing the instant rewards at each iteration,
ignoring the consequences of the played action on the state of the system. However, in the context of
queuing systems, the actions played by the queues change the state of the system. Notably, letting
other queues clear packets can be in the best interest of a queue, as it may give it priority in the
subsequent iterations where it holds older packets. Since the objective is to maximize the total number
of packets cleared, it seems adapted to minimize a patient version of the regret, namely the policy
regret [Arora et al., 2012], rather than the external regret, which is defined by

Rpol
i (T ) := max

p∈P([K])

T∑
t=1

Eã1:t∼⊗ti=1p
[νt(ã1:t)]−

T∑
t=1

νt(a1:t).

That is, Rpol
i (T ) is the expected difference between the number of packets queue i cleared and the

number of packets it would have cleared over the whole period by playing a fixed (possibly random)
action, taking into account how this change of policy would affect the state of the system.
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However, as stated in Proposition 1, optimizing this patient version of the regret rather than the
myopic one could not guarantee stability on a wider range of slack value. This suggests that adding
only patience to the learning strategy of the queues is not enough to go beyond a slack of 2, and that
any strategy beating that factor 2 must somewhat include synchronisation between the queues.
Proposition 1. Consider the partition of the time t = 1, 2, . . . into successive windows, where
wk = k2 is the length of the k-th one. For any N ≥ 2, there exists an instance with 2N queues and
servers, with slack η = 2−O

(
1
N

)
, s.t., almost surely, each queue’s policy regret is o (wk) on all but

finitely many of the windows, but the system is not strongly stable.

To ease comparison, the formulation in the above proposition matches that of the counter-example
used to prove Theorem 3 (Gaitonde and Tardos 2020a). In that counter-example, a set of system
parameters, for which any no external regret policies were unstable, was exhibited. Whereas we
exhibit in our case a specific strategy that satisfies the no policy regret condition, but is unstable.

Sketch of proof. Consider a system with 2N queues and servers with λi = 1/2N and µi = 1/N −
1/4N2 for all i ∈ [2N ]. The considered strategy profile is the following. For each k ≥ 0, the kth

time window is split into two stages. During the first stage, of length dαwke, queues 2i and 2i+ 1
both play server 2i+ t (mod 2N) at iteration t, for all i ∈ [N ]. During the second stage of the time
window, queue i plays server i+ t (mod 2N) at iteration t. This counter example, albeit very specific,
illustrates well how when the queues are highly synchronised, it is better to remain synchronized
rather than deviate, even if the synchronisation is suboptimal in terms of stability. The complete proof
is provided in Appendix C.

Queues following this strategy accumulate packets during the first stage, and clear more packets than
they receive during the second stage. The value of α is tuned so that the queues still accumulate a
linear portion of packets during each time window. For those appropriate α, the system is unstable.

Now suppose that queue i deviates from the strategy and plays a fixed action p ∈ P ([K]). In the
first stage of each time window, queue i can clear a bit more packets than it would by not deviating.
However, during the second stage, it is no longer synchronised with the other queues and collides with
them a large number of times. Because of those collisions, it will accumulate many packets. In the
detailed analysis, we demonstrate that, in the end, for appropriate values of α, queue i accumulates
more packets than it would have without deviating.

According to Theorem 4, the factor e
e−1 can be seen as the price of anarchy of the problem, as for

slacks below, the worst Nash equilibria might be unstable. On the other hand, it is known that for any
slack above 1, there exists a centralized stable strategy. This centralized strategy actually consists
in queues playing the same joint probability at each time step, independently from the number of
accumulated packets. As a consequence, it is also a correlated equilibrium of the patient game and 1
can be seen as the correlated price of stability.

4 A decentralized algorithm

This section describes the decentralized algorithm ADEQUA, whose pseudocode is given in Algo-
rithm 1. Due to space constraints, all the proofs are postponed to Appendix D. ADEQUA assumes
all queues a priori know the number N of queues in the game and have a unique rank or id in [N ].
Moreover, the existence of a shared randomness between all queues is assumed. The id assumption is
required to break the symmetry between queues and is classical in multiplayer bandits without colli-
sion information. On the other side, the shared randomness assumption is equivalent to the knowl-
edge of a common seed for all queues, which then use this common seed for their random generators.
A similar assumption is used in multiplayer bandits [Bubeck et al., 2020].

ADEQUA is inspired by the celebrated ε-greedy strategy. With probability εt = (N +K)t−
1
5 , at

each time step, queues explore the different parameters λi and µi as described below. Otherwise
with probability 1 − εt, they exploit the servers. Each queue i then sends a packet to a server
following a policy solely computed from its local estimates λ̂i, µ̂i of the problem parameters λ and µ.
The shared randomness is here used so that exploration simultaneously happens for all queues. If
exploration/exploitation was not synchronized between the queues, an exploiting queue could collide
with an exploring queue, biasing the estimates λ̂i, µ̂i of the latter.
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Algorithm 1: ADEQUA
input : N (number of queues), i ∈ [N ] (queue id)

1 for t = 1, . . . ,∞ do
2 P̂ ← φ(λ̂, µ̂) and Â← ψ(P̂ ) where φ and ψ are resp. defined by Equations (3) and (4)
3 Draw ω1 ∼ Bernoulli((N +K)t−

1
5 ) and ω2 ∼ U(0, 1) // shared randomness

4 if ω1 = 1 then EXPLORE(i) // exploration

5 else Pull Â(ω2)(i) // exploitation
6 end

Exploration. When exploring, queues choose either to explore the servers’ parameters µk or the
other queues’ parameters λi as described in Algorithm 2 below. In the former case, all queues choose
different servers at random (if they have packets to send). These rounds are used to estimate the
servers means: µ̂ik is the empirical mean of server k observed by the queue i for such rounds. Thanks
to the shared randomness, queues pull different servers here, making the estimates unbiased.

In the latter case, queues explore each other in a pairwise fashion. When queues i and j explore each
other at round t, each of them sends their most recent packet to some server k, chosen uniformly at
random, if and only if a packet appeared during round t. In that case, we say that the queue i explores
λj (and vice versa). To make sure that i and j are the only queues choosing the server k during this
step, we proceed as follows:

• queues sample a matching π between queues at random. To do so, the queues use the same
method to plan an all-meet-all (or round robin) tournament, for instance Berger tables [Berger,
1899], and choose uniformly at random which round of the tournament to play. If the number of
queues N is odd, in each round of the tournament, one queue remains alone and does nothing.

• the queues draw the same number l ∼ U([K]) with their shared randomness. For each pair
of queues (i, j) matched in π, associate k(i,j) = l + min(i, j) (mod K) + 1 to this pair. The
queues i and j then send to the server k(i,j).

As we assumed that the server breaks ties in the packets’ age uniformly at random, the queue i clears
with probability (1− λj

2 )µ̄, where µ̄ = 1
K

∑K
k=1 µk. Thanks to this, λj is estimated by queue i as:

λ̂ij = 2− 2Ŝij/µ̃
i, (2)

where µ̃i =
∑K
k=1N

i
kµ̂
i
k∑K

k=1N
i
k

, N i
k is the number of exploration pulls of server k by queue i and Ŝij is the

empirical probability of clearing a packet observed by queue i when exploring λj .

Algorithm 2: EXPLORE

input :i ∈ [N ] // queue id
1 k ← 0
2 Draw n ∼ U([N +K]) // shared randomness
3 if n ≤ K then // explore µ
4 k ← n+ i (mod K) + 1
5 Pull k ; Update Nk and µ̂k
6 else // explore λ
7 Draw r ∼ U([N ]) and l ∼ U([K]) // shared randomness
8 j ← rth opponent in the all-meet-all tournament planned according to Berger tables
9 k ← l + min(i, j) (mod K) + 1

10 if k 6= 0 and packet appeared at current time step then // explore λj on server k

11 Pull k with most recent packet ; Update Ŝj and λ̂j according to Equation (2)
12 end
13 end

Remark 1. The packet manipulation when exploring λj strongly relies on the servers tie breaking
rules (uniformly at random). If this rule was unknown or not explicit, the algorithm can be adapted:
when queue i explores λj , queue j instead sends the packet generated at time t− 1 (if it exists), while
queue i still sends the packet generated at time t. In that case, the clearing probability for queue i is
exactly (1 − λj)µ̄, allowing to estimate λj . Anticipating the nature of the round t (exploration vs.
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exploitation) can be done by drawing ω1 ∼ Bernoulli(εt) at time t − 1. If ω1 = 1, the round t is
exploratory and the packet generated at time t− 1 is then kept apart by the queue j.

To describe the exploitation phase, we need a few more notations. We denote by BK the set of
doubly stochastic matrices (non-negative matrices such that each of its rows and columns sums to 1)
and by SK the set of permutation matrices in [K] (a permutation matrix will be identified with its
associated permutation for the sake of cumbersomeness).

A dominant mapping is a function φ : RN × RK → BK which, from (λ, µ), returns a doubly
stochastic matrix P such that λi < (Pµ)i for any i ∈ [N ] if it exists (and the identity matrix
otherwise).

A BvN (Birkhoff von Neumann) decomposition is a function ψ : BK → P(SK) that associates to
any doubly stochastic matrix P a random variable ψ(P ) such that E[ψ(P )] = P ; stated otherwise, it
expresses P as a convex combination of permutation matrices. For convenience, we will represent
this random variable as a function from [0, 1] (equipped with the uniform distribution) to SK .

Informally speaking, those functions describe the strategies queues would follow in the centralized
case: a dominant mapping gives adequate marginals ensuring stability (since the queue i clears
in expectation (Pµ)i packets at each step, which is larger than λi by definition), while a BvN
decomposition describes the associated coupling to avoid collisions. Explicitly, the joint strategy is
for each queue to draw a shared random variable ω2 ∼ U(0, 1) and to choose servers according to
the permutation ψ(φ(λ, µ))(ω2)

Exploitation. In a decentralized system, each queue i computes a mapping Âi := ψ(φ(λ̂i, µ̂i))

solely based on its own estimates λ̂i, µ̂i. A shared variable ω2 ∈ [0, 1] is then generated uniformly at
random and queue i sends a packet to the server Âi(ω2)(i). If all queues knew exactly the parameters
λ, µ, the computed strategies Âi would be identical and they would follow the centralized policy
described above.

However, the estimates (λ̂i, µ̂i) are different between queues. The usual dominant mappings and BvN
decompositions in the literature are non-continuous. Using those, even queues with close estimates
could have totally different Âi, and thus collide a large number of times, which would impede the
stability of the system. Regular enough dominant mappings and BvN decompositions are required,
to avoid this phenomenon. The design of φ and ψ is thus crucial and appropriate choices are given
in the following Sections 4.1 and 4.2. Nonetheless, they can be used in some black-box fashion, so
we provide for the sake of completeness sufficient conditions for stability, as well as a general result
depending on the properties of φ and ψ, in Appendix A.

Remark 2. The exploration probability t−
1
5 gives the smallest theoretical dependency in ∆ in our

bound. A trade-off between the proportion of exploration rounds and the speed of learning indeed
appears in the proof of Theorem 1. Exploration rounds have to represent a small proportion of the
rounds, as the queues accumulate packets when exploring. On the other hand, if queues explore more
often, the regime where their number of packets decreases starts earlier. A general stability result
depending on the choice of this probability is given by Theorem 6 in Appendix A.
Yet in Section 5, taking a probability t−

1
4 empirically performs better as it speeds up the exploration.

4.1 Choice of a dominant mapping

Recall that a dominant mapping takes as inputs (λ, µ) and returns, if possible, a doubly stochastic
matrix P such that

λi <
∑K
k=1 Pi,kµk for all i ∈ [N ].

The usual dominant mappings sort the vector λ and µ in descending orders [Marshall et al., 1979].
Because of this operation, they are non-continuous and we thus need to design a regular dominant
mapping satisfying the above property. Inspired by the log-barrier method, it is done by taking the
minimizer of a strongly convex program as follows

φ(λ, µ) = arg min
P∈BK

max
i∈[N ]

− ln
( K∑
j=1

Pi,jµj − λi
)

+
1

2K
‖P‖22. (3)
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Although the objective function is non-smooth because of the max operator, it enforces fairness
between queues and leads to a better regularity of the arg min.
Remark 3. Computing φ requires solving a non-smooth strongly convex minimization problem. This
cannot be computed exactly, but a good approximation can be quickly obtained using the scheme
described in Appendix B. If this approximation error is small enough, it has no impact on the stability
bound of Theorem 5. It is thus ignored for simplicity, i.e., we assume in the following that φ(λ, µ) is
exactly computed at each step.

As required, φ always returns a matrix P satisfying that λ < Pµ if possible, since otherwise the
objective is infinite (and in that case we assume that φ returns the identity matrix). Moreover, the
objective function is 1

K -strongly convex, which guarantees some regularity of the arg min, namely
local-Lipschitzness, leading to Lemma 1 below.

Lemma 1. For any (λ, µ) with positive margin ∆ (defined in Equation (1)), if ‖(λ̂− λ, µ̂− µ)‖∞ ≤
c1∆, for any c1 < 1

2
√
e+2

, then

‖φ(λ̂, µ̂)− φ(λ, µ)‖2 ≤
c2K

∆
‖(λ̂− λ, µ̂− µ)‖∞,

where c2 = 4
(1−2c1)/

√
e−2c1

. Moreover, denoting P̂ = φ(λ̂, µ̂), it holds for any i ∈ [N ],

λi ≤
∑K
k=1 P̂i,kµk −

(
1−2c1√

e
− 2c1

)
∆.

The first property guarantees that if the queues have close estimates, they also have close doubly
stochastic matrices P̂ . Moreover, the second property guarantees that any queue should clear its
packets with a margin of order ∆, in absence of collisions.
Remark 4. An alternative dominant mapping without the regularizing term in Equation (3) can also
be proposed. Yet, its local Lipschitz bound would also depend on the smallest difference between
the λi or the µi, which can be arbitrarily small. If two parameters λi or µi are equal, this choice of
dominant mapping might lead to unstable policies. Using a regularization term in Equation (3) thus
avoids this problem, although a smaller dependency might be possible without this regularization
term when the parameters λi and µi are very distinct.

4.2 Choice of a Birkhoff von Neumann decomposition

Given a doubly stochastic matrix P̂ , Birkhoff algorithm returns a convex combination of permutation
matrices P [j] such that P̂ =

∑
j z[j]P [j]. The classical version of Birkhoff algorithm is non-

continuous in its inputs and it even holds for its extensions as the one proposed by Dufossé et al.
[2018]. Yet it can be smartly modified as in ORDERED BIRKHOFF, described in Algorithm 3, to get a
regular BvN decomposition defined as follows for any ω ∈ (0, 1):

ψ(P )(ω) = P [jω] (4)
where P =

∑
j z[j]P [j] is the decomposition returned by ORDERED BIRKHOFF algorithm

and jω verifies
∑
j≤jω

z[j] ≤ ω <
∑

j≤jω+1

z[j].

For a matrix P in the following, its support is defined as supp(P ) = {(i, j) | Pi,j 6= 0}.
Algorithm 3: ORDERED BIRKHOFF

input :P̂ ∈ BK (doubly stochastic matrix), C ∈ RK×K (cost matrix)
1 j ← 1

2 while P̂ 6= 0 do
3 Ci,k ← +∞ for all (i, k) 6∈ supp(P̂ ) // remove edge (i, k) in induced graph
4 P [j]← HUNGARIAN(C) // matching with minimal cost w.r.t. C

5 z[j]← min(i,k)∈supp(P [j]) P̂i,k

6 P̂ ← P̂ − z[j]P [j] and j ← j + 1
7 end
8 return (z[j], P [j])j

8



Obviously Eω∼U(0,1)[ψ(P )(ω)] = P and permutations avoid collisions between queues. The
difference with the usual Birkhoff algorithm happens at Line 4. Birkhoff algorithm usually computes
any perfect matching in the graph induced by the support of P̂ at the current iteration. This is
often done with the Hopcroft-Karp algorithm, while it is here done with the Hungarian algorithm
with respect to some cost matrix C. Although using the Hungarian algorithm slightly increases the
computational complexity of this step (K3 instead of K2.5), it ensures to output the permutation
matrices P [j] according to a fixed order defined below.

Definition 1. A cost matrix C induces an order ≺C on the permutation matrices defined, for any
P, P ′ ∈ SK by

P ≺C P ′ iff
∑
i,j Ci,jPi,j <

∑
i,j Ci,jP

′
i,j .

This order might be non-total as different permutations can have the same cost. However, if C is
drawn at random according to some continuous distribution, this order is total with probability 1. The
order ≺C has to be the same for all queues and is thus determined beforehand for all queues.

Lemma 2. Given matrices C ∈ RK×K and P ∈ BK , ORDERED BIRKHOFF outputs a sequence
(z[j], P [j])j of length at most K2 −K + 1, such that

P =
∑
j z[j]P [j], where for all j, z[j] > 0 and P [j] ∈ SK .

Moreover if the induced order ≺C is total, z[j] is the j-th non-zero element of the sequence
(zl(P ))1≤l≤K! defined by

zj(P ) = min
(i,k)∈supp(Pj)

(
P −

j−1∑
l=1

zl(P )Pl

)
i,k

(5)

where (Pj)1≤j≤K! is a ≺C -increasing sequence of permutation matrices, i.e., Pj ≺C Pj+1 for all j.

Lemma 2 is crucial to guarantee the regularity of ψ, given by Lemma 3.

Lemma 3. Consider ψ defined as in Equation (4) with a cost matrix C inducing a total order ≺C ,
then for any doubly stochastic matrices P, P ′∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω ≤ 22(K2−K+1)‖P − P ′‖∞.

Lemma 3 indeed ensures that the probability of collision between two queues remains small when
they have close estimates. Unfortunately, the regularity constant is exponential in K2, which yields
a similar dependency in the stability bound of Theorem 5. The existence of a BvN decomposition
with polynomial regularity constants remains unknown, even without computational considerations.
The design of a better BvN decomposition is left open for future work and would directly improve
the stability bounds, using the general result given by Theorem 6 in Appendix A. The number of
accumulated packets yet remain reasonably small in the experiments of Section 5, suggesting that the
bound given by Lemma 3 is not tight and might be improved in future work.

4.3 Stability guarantees

This section finally provides theoretical guarantees on the stability of the system when all queues
follow ADEQUA. The success of ADEQUA relies on the accurate estimation of all problem parame-
ters by the queues, given by Lemma 9 in Appendix D.4. After some time τ , the queues have tight
estimations of the problem parameters. Afterwards, they clear their packets with a margin of order ∆,
thanks to Lemmas 1 and 3. This finally ensures the stability of the system, as given by Theorem 5.

Theorem 5. For any η > 1, the system where all queues follow ADEQUA, for any queue i and any
r ∈ N, there exists a constant Cr depending only on r such that

E[(Qit)
r] ≤ CrKN

(
N

5
2K

5
2 25(K2−K+1)

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r
, for all t ∈ N.

As a consequence, for any η > 1, this decentralized system is strongly stable.
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Despite yielding an exponential dependency in K2, this anytime bound leads to a first decentralized
stability result when η ∈ (1, e

e−1 ), which closes the stability gap left by previous works. Moreover it
can be seen in the proof that the asymptotic number of packets is much smaller. It actually converges,
in expectation, to the number of packets the queues would accumulate if they were following a stable
centralized strategy from the beginning. As already noted by Krishnasamy et al. [2016] for a single
queue, the number of packets first increases during the learning phase and then decreases once the
queues have tight enough estimations, until reaching the same state as in the perfect knowledge
centralized case. This is empirically confirmed in Section 5.

5 Simulations

Figures 2 and 3 compare on toy examples the stability of queues, when either each of them follows
the no-regret strategy EXP3.P.1, or each queue follows ADEQUA. For practical considerations, we
choose the exploration probability εt = (N +K)t−

1
4 for ADEQUA, as the exploration is too slow

with εt of order t−
1
5 .

These figures illustrate the evolution of the average queue length on two different instances with
N = K = 4. The code for the experiments is available at gitlab.com/f_sen/queuing_systems.

In the first instance shown in Figure 2, for all i ∈ [N ], λi = (N + 1)/N2. Moreover µ1 = 1 and for
all i ≥ 2, µi = (N − 1)/N2. Here η < 2 and no-regret strategies are known to be unstable [Gaitonde
and Tardos, 2020a]. It is empirically confirmed as the number of packets in each queue diverges
when they follow EXP3.P.1. Conversely, when the queues follow ADEQUA, after a learning phase,
the queues reach equilibrium and all succeed in clearing their packets.

In the second instance shown in Figure 3, for all i ∈ [N ], λi = 0.55− 0.1 · i and µi = 2.1λi. Here
η > 2 and both strategies are known to be stable, which is again empirically confirmed. However,
ADEQUA requires more time to learn the different parameters, suggesting that individual no-regret
strategies might be better on easy instances where η > 2.
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Figure 2: Hard instance, η < 2.
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Figure 3: Easy instance, η > 2.

6 Conclusion

In this work, we showed that minimizing a more patient version of regret was not necessarily
stable when the system’s slack is smaller than two and we argued that some level of cooperation
was then required between learning queues to reach stability. We presented the first decentralized
learning algorithm guaranteeing stability of any queuing system with a slack larger than 1. Our
stability bound presents an exponential dependency in the number of queues and remains open for
improvement, e.g., through a better dominant mapping/BvN decomposition or a tighter analysis of
ours. The proposed algorithm relies heavily on synchronisation between the queues, which all start the
game simultaneously and share a common time discretisation. In particular, the shared randomness
assumption merely results from this synchronisation when the players use a common random seed.
Stability of asynchronous queues thus remains open for future work, for which Glauber dynamics
approaches used in scheduling problems might be of interest [see e.g., Shah and Shin, 2012].
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A General version of Theorem 5

ADEQUA is described for specific choices of the functions φ and ψ given by Sections 4.1 and 4.2.
It yet uses them in a black box fashion and different functions can be used, as long as they verify
some key properties. This section provides a general version of Theorem 5, when the used dominant
mapping and BvN decomposition respect the properties given by Assumptions 1 and 2.
Assumption 1 (regular dominant mapping). There are constants c1, c2 > 0 and a norm ‖ · ‖ on
RK×K , such that if ‖(λ̂− λ, µ̂− µ)‖∞ ≤ c1∆, then

‖φ(λ̂, µ̂)− φ(λ, µ)‖ ≤ Lφ · ‖(λ̂− λ, µ̂− µ)‖∞.

Moreover, P̂ = φ(λ̂, µ̂) is doubly stochastic and for any i ∈ [N ],

λi ≤
∑K
k=1 P̂i,kµk − c2∆.

Assumption 2 (regular BvN decomposition). Consider the same norm ‖ · ‖ as Assumption 1 on
RK×K . For any doubly stochastic matrices P, P ′∫ 1

0

ψ(P )(ω)dω = P

and
∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω ≤ Lψ · ‖P − P ′‖.

Lemmas 1 and 3 show that the functions described in Sections 4.1 and 4.2 verify Assumptions 1 and 2
with the constants Lφ and Lψ respectively of order K∆ and 22K2

with the norm ‖ · ‖∞. Designing
a dominant mapping and a BvN decomposition with smaller constants Lφ and Lψ is left open for
future work. It would lead to a direct improvement of the stability bound, as shown by Theorem 6.
Theorem 6. Assume all queues follow ADEQUA, using an exploration probability εt = xt−α with
x > 0, α ∈ (0, 1) and functions φ and ψ verifying Assumptions 1 and 2 with the constants Lφ, Lψ.
The system is then strongly stable and for any r ∈ N, there exists a constant Cr such that:

E[(Qit)
r] ≤ Cr

 xr/α

∆r/α
+KN

(
N2KL2

φL
2
ψ

min(1,Kµ̄)
¯
λ∆2x

) r
1−α
 , for all t ∈ N

The proof directly follows the lines of the proof of Theorem 5 in Appendix D.4 and is thus omitted
here. From this version, it can be directly deduced that α = 1

5 gives the best dependency in
∆ for ADEQUA. Moreover the best choice for x varies with r. When r → ∞, it actually is
x = N

2
5K

3
5 2

4
5K

2

for ADEQUA. The choice x = N +K is preferred for simplicity and still yields
quite similar problem dependent bounds.

B Efficient computation of φ

As mentioned in Section 4.1, computing exactly φ(λ̂, µ̂) is not possible. Even efficiently approximat-
ing it is not obvious, as the function to minimize is neither smooth nor Lipschitz. We here describe
how an approximation of φ can be efficiently computed with guarantees on the approximation error.

First define the empirical estimate of the margin ∆:

∆̂ := min
k∈[N ]

1

k

(
k∑
i=1

µ̂(i) − λ̂(i)

)
.

It can be computed in time O (N log(N)) as it only requires to sort the vectors λ̂ and µ̂. If ∆̂ ≤ 0,
then the value of the optimization problem is +∞ and any matrix can be returned. Assume in
the following ∆̂ > 0. Similarly to the proof of Lemma 1, it can be shown that the value of the
optimization problem is smaller than− ln(∆̂/

√
e). Noting by BK the set ofK×K doubly stochastic

matrices, the optimization problem given by Equation (3) is then equivalent to

arg min
P∈X

g(P ), (6)
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where

X =

{
P ∈ BK | ∀i ∈ [N ],

∑K
j=1 Pi,jµj − λi ≥

∆̂√
e

}
,

and g(P ) = maxi∈[N ]− ln(
∑K
j=1 Pi,jµj − λi) + 1

2K ‖P‖
2
2.

Thanks to this new constraint set, the objective function of Equation (6) is now (
√
e

∆ + 1)-Lipschitz.
We can now use classical results for Lipschitz strongly convex minimization to obtain convergence
rates of order 1

t for the projected gradient descent algorithm [see e.g., Bubeck, 2014, Theorem 3.9].
These results yet assume that the projection on the constraint set can be exactly computed in a short
time. This is not the case here, but it yet can be efficiently approximated using interior point methods
[see e.g., Bubeck, 2014, Section 5.3], which has a linear convergence rate. If this approximation is
good enough, similar convergence guarantees than with exact projection can be shown similarly to
the original proof.

Algorithm 4 then describes how to quickly estimate φ(λ̂, µ̂), where Π̂X returns an approximation of
the orthogonal projection on the set X and ∂g is a sub-gradient of g. It uses an averaged value of the
different iterates, as the last iterate does not have good convergence guarantees.

Algorithm 4: Compute φ

input : function g, constraint set X , P 0 ∈ X
1 P, P̂ ← P 0

2 for t = 1, . . . , n do
3 P ← Π̂X

(
P − 2N

(t+1)∂g(P )
)

// approximated projection

4 P̂ ← t
t+2 P̂ + 2

t+2P

5 end
6 return P̂

In practice, the approximation can even be computed faster by initializing P 0 in Algorithm 4 with
the solution of the previous round t− 1.

C Unstable No-Policy regret system example

Algorithm 5: Unstable No-policy regret system example

input : wk, N , α, λ = (1/N, . . . , 1/N), µ = (2(N − d)/N2, . . . , 2(N − d)/N2)
1 for k = 1, . . . ,∞ do
2 for t = 1, . . . , dαwke do
3 Queues 2i and 2i+ 1 play server 2i+ t (mod N) // stage 1
4 end
5 for t = dαwke+ 1, . . . , wk do
6 Queue i plays server i+ t (mod N) // stage 2
7 end
8 end

Lemma 4. Consider the system where the queues play according to the policy described in Algo-
rithm 5 over successive windows of length wk = k2. If α > 1− d

N−d , the system is not stable.

Proof. Note that the system is equivalent to a system where each queue or pair of queue would always
pick the same server. For simplicity, the analysis deals with that equivalent system. Also, wlog, we
analyse the subsystem with the two first queues and the two first servers. Let

{
Bit
}
i∈[n],t≥1

be the

independent random variables indicating the arrival of a packet on queue i at time t,
{
Sit
}
i∈[n],t≥1

be the indicators that server j would clear a packet at iteration ` if one were sent to it. For each queue
i ∈ [N ] and t ≥ 0, we have by Chernoff bound

Pr

(∣∣∣∣∣∑̀
t=1

Bit − λi`

∣∣∣∣∣ ≥√` ln(`)

)
≤ 2

`2
.
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The same holds for each queue, thus the probability that this event happens for queue 1 or queue 2
is at most, 4

`2 . As it is summable in `, The Borel-Cantelli Lemma implies that, for large enough `,
almost surely, for any i ∈ [2]: ∑̀

`=1

Bit = λi`± Õ
(√

`
)
. (7)

Let Wk =
∑k
i=1 wi. Note that Wk = Θ

(
k3
)

= Θ
(
w

3/2
k

)
. Again by Chernoff bound and Borel-

Cantelli, for large enough k, almost surely, for any i ∈ {1, 2}:

Wk−1+dαwke∑
t=Wk−1

Sit = µiαwk ± Õ (
√
wk) ,

Wk∑
t=Wk−1+dαwke

Sit = µi(1− α)wk ± Õ (
√
wk) . (8)

Thus, for any large enough k, the total number of packet in both queues at time Wk is almost surely
lower bounded as:

Q1
Wk

+Q2
Wk
≥

Wk∑
t=1

(B1
t +B2

t )−
Wk∑
t=1

S1
t −

k∑
l=1

 Wl∑
t=Wl−1+dαwle

S2
t

 (9)

≥
[

2

N
− 2(N − d)

N2
− (1− α)

2(N − d)

N2

]
Wk − Õ

(
W

2/3
k

)
(10)

≥2 [α(N − d)− (N − 2d)]

N2
Wk − Õ

(
W

2/3
k

)
(11)

which is a diverging function of Wk. Note that this result also holds for any two pair of queues
(2i− 1, 2i), with i ∈ [N/2].

Lemma 5. Consider the same setting as in Lemma 4. For any i ∈ [N ], for any large enough k,
queue i clears (

N − d
N2

+ (1− α)
N − d
N2

+ o(1)

)
wk

packets almost surely over window wk.

Proof. The proof starts by showing that for any large enough t, all the queues hold roughly the same
number of packets. Then, as they receive roughly the same number of packets over a time window
and we can compute the approximate total number of packets cleared, the results follows.

Let T ti be the age of the oldest packet in queue i at time t. By Chernoff bound,

P(|T ti −NQti| ≥ N
√
t ln(t)) ≤ 2

t2
.

Thus, using the Borel-Cantelli lemma, for any queue i, almost surely, for any large enough k and any
t ∈ [Wk−1 + 1,Wk],

|T ti −NQti| ≤ N
√
t ln(t) = Õ(w

3/4
k ). (12)

For any (i, j) ∈ [N ]2, define

φ+
t (i, j) :=

(
Qit −Q

j
t − 2N

√
t ln(t)

)
+

and φ−t (i, j) :=
(
Qit −Q

j
t + 2N

√
t ln(t)

)
−
.

Let Cit be the indicator function that queue i clears a packet at iteration t. Note that for any large
enough t, φ+

t (i, j) is a supermartingale. Indeed,

E[φ+
t+1(i, j)|φ+

1:t(i, j)] ≤φ
+
t (i, j) + E[Bit −B

j
t |φ+

1:t(i, j)]− E[Cit − C
j
t |φ+

1:t(i, j)]

≤φ+
t (i, j).
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The second inequality comes from Equation (12), that implies that for any large enough t, if φ+
t (i, j)

is strictly positive, queue i holds the oldest packet and thus clears one with higher probability than
queue j. By the same arguments, φ−t (i, j) a submartingale. Also, |φ+

t+1(i, j)−φ+
t (i, j)| ≤ 2(N + 1)

for any t ≥ 0, and the same holds for φ−t (i, j). Let τij be the stopping time of the smallest iteration
after which Equation (12) always holds for queues i and j. By Azuma-Hoeffding’s inequality,

Pr
(
φ+
` (i, j)− φ+

τij (i, j) ≥ 3(N + 1)
√
` ln(`)

)
≤ 2

`2

and

Pr
(
φ−` (i, j)− φ+

τij (i, j) ≤ −3(N + 1)
√
` ln(`)

)
≤ 2

`2
.

This, together with a union bound and Borel-Cantelli’s Lemma implies that almost surely, for any
large enough t, for any (i, j) ∈ [N ]2

Qit −Q
j
t = Õ

(√
t
)
. (13)

This with Equation (9) implies that for any large enough k, for any i ∈ [N ], almost surely,

QiWk
≥ [α(N − d)− (N − 2d)]

N2
Wk − Õ

(
W

2/3
k

)
.

This means that for any large enough k, every queue holds at least one packet over the whole window
wk. This and Equation (8) is already enough to show that for any time-window wk, for any large
enough k, the total number of packets cleared by any couple of queue (2i− 1, 2i), i ∈ [N/2] is:

2

(
N − d
N2

+ (1− α)
N − d
N2

)
wk + Õ (

√
wk) .

During time window wk, according to Equation (7), both every queue receives αwk/N + Õ
(
w

3/4
k

)
packets almost surely for any large enough k. Equation (13) implies that for any i ∈ [N/2]

Q2i−1
Wk
−Q2i

Wk
= Õ

(
w

3/4
k

)
and Q2i−1

Wk−1
−Q2i

Wk−1
= Õ

(
w

3/4
k

)
.

Therefore, over each time-window wk, for any large enough k, each queue clears(
N − d
N2

+ (1− α)
N − d
N2

+ o(1)

)
wk

packets almost surely.

Lemma 6. Consider again the system where the queues play according to the policy described in
Algorithm 5 over successive windows of length wk = k2. If α < 1− 1

N−1 , the queues have o (wk)
policy regret in all but finitely many of the windows.

Wlog, let us consider that queue 1 deviates, and plays at every iteration a server chosen from the
probability distribution p = (p1, ..., pN ), with pi the probability to play server i. To upper bound the
number of packets queue 1 clears over each time window, we can assume it always has priority over
queue 2 and ignore it in the analysis.

Before proving Lemma 6, we prove the following technical one.

Lemma 7. Consider that a queue deviates from the strategy considered in Lemma 6 and plays at every
iteration a server chosen from the probability distribution p = (p1, ..., pN ), with pi the probability
to play server i. For any large enough k, almost surely, the number of packets the deviating queue
clears of the first stage of the kth window is(

1

2
+

1

N

)
2(N − d)

N2
αwk + Õ

(
w

3/4
k

)
.

Proof. The proof starts by showing that for any large enough t, every non-deviating queue holds
approximately the same number of packets.
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Fist note that for any large enough t, Equation (12) still holds surely for any queue i. For any
(i, j) ∈ {3, . . . , N}2, define

φ+
` (i, j) :=

(
Qid`Ne −Q

j
d`Ne − 4N

√
d`Ne ln(d`Ne)

)
+

and
φ−` (i, j) :=

(
Qid`Ne −Q

j
d`Ne + 4N

√
d`Ne ln(d`Ne)

)
−
.

For any interval [d`Ne, d(`+ 1)Ne] where Equation (12) holds for queues 1, i and j, if φ+
` (i, j) is

strictly positive, then

E

d(`+1)Ne∑
t=d`Ne

Cjt − Cit
∣∣∣∣φ+

1:t(i, j)

 ≤ 0.

Indeed, if φ+
` (i, j) is strictly positive and Equation (12) holds, queue i holds the oldest packets

throughout the interval. Also, queue i and queue j collide with queue 1 the same number of times over
the interval in expectation, and if at one iteration of the interval, queue 1 holds an older packet than
queue i, it holds an older packet than queue j over the whole interval. Thus φ+

` (i, j) is a submartingale.
By the same arguments, φ+

` (i, j) is a supermartingale. Also, |φ+
`+1(i, j)− φ+

` (i, j)| ≤ 4(N + 1)2

and the same holds for φ−` (i, j). Finishing with the same arguments used to prove Equation (13),
almost surely, for any (i, j) ∈ {3, . . . , N}2,

Qit −Q
j
t = Õ

(√
t
)
. (14)

We now show that for any large enough t, queue 1 can not hold many more packets than the non-
deviating queues. Define

φ+
t :=

(
Q1
t −max

i≥3
Qit − 2N

√
t ln(t)

)
+

.

Once again, at every iteration where φ+
t is strictly positive and Equation (12) holds, queue 1 holds

the oldest packet and thus has priority on whichever server it chooses. This implies that for any large
enough t, φ+

t is a supermartingale. It also holds that for any t ≥ 0, |φ+
t+1 − φ

+
t | ≤ 2(N + 1). Thus,

with the same arguments used to prove Equation (13), almost surely,(
Q1
t −max

i≥3
Qit

)
+

= Õ
(√

t
)
. (15)

With that at hand, we prove that for any large enough k, queue 1 does not get priority often over the
other queues during the first stage of the kth window. For any i ∈ {2, . . . , N/2}, pose:

ψi` =
1

2

(
Q2i−1
d`Ne +Q2i

d`Ne

)
−Q1

d`Ne −
2(N − d)

N3
(d`Ne −Wk−1)

For any ` s.t. {d`Ne; d(`+ 1)N − 1e} is included in the first phase of a window, we have

d(`+1)Ne−1∑
t=d`Ne

E
[
C1
t

∣∣∣∣ψ+
1:`(i, j)

]
≥
d(`+1)Ne−1∑
t=d`Ne

E
[
Sti1{queue 1 and only queue 1 picks server i}

∣∣∣∣ψ+
1:`(i, j)

]

≥ N − d
N

+
2(N − d)

N2

as well as
d(`+1)Ne−1∑
t=d`Ne

E
[

1

2

(
C2i
t + C2i−1

t

) ∣∣∣∣ψ+
1:`(i, j)

]
≤
d(`+1)Ne−1∑
t=d`Ne

E
[

1

2
Sti+t (mod N)

∣∣∣∣ψ+
1:`(i, j)

]

≤ N − d
N

.
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Those two inequalities imply:

E[ψi`+1|ψ+
1:`(i, j)] =ψ+

` (i, j) +

d(`+1)Ne−1∑
t=d`Ne

E
[

1

2
(B2i

t −B2i−1
t )−B1

t

∣∣∣∣ψ+
1:`(i, j)

]

−
d(`+1)Ne−1∑
t=d`Ne

E
[

1

2
(C2i

t − C2i−1
t )− C1

t

∣∣∣∣ψ+
1:`(i, j)

]
− 2(N − d)

N2

≥ψ+
` (i, j).

Thus, for any ` s.t. {d`Ne; d(` + 1)N − 1e} is included in the first phase of a window, ψi` is a
submartingale. Moreover, for any ` ≥ 0, |ψi`+1−ψi`| ≤ 3N . Thus, by Azuma-Hoeffding’s inequality,
for any ` s.t.{d`Ne; d(`+ 1)N − 1e} ⊂ [Wk−1,Wk−1 + αwk],

Pr
(
ψi` − ψiWk

≤ −6N
√
`N ln(`N)

)
≤ 1

(`N)2
.

Borel-Cantelli’s lemma implies, that for any large enough ` s.t.{d`Ne; d(` + 1)N − 1e} ⊂
[Wk−1,Wk−1 + αwk], almost surely:

ψi` ≥ ψiWk
− 6N

√
`N ln(`N).

This and Equation (15) applied at t = Wk, imply that for any large enough k, for any t ∈
[Wk−1,Wk−1 + αwk],

1

2

(
Q2i−1
t +Q2i

t

)
≥Q1
d`Ne +

2(N − d)

N3
(t−Wk−1) + ψiWk

− Õ(
√
t)

≥Q1
d`Ne +

2(N − d)

N3
(t−Wk−1)− Õ(w

3/4
k ).

This and Equation (12) imply that during the first stage of the time window, queue 1 holds younger
packets than any other queues i ≥ 3 after at most Õ(w

3/4
k ) iterations.

By Chernoff bound and the Borel-Cantelli lemma again, for any large enough k, almost surely, the
number of packets queue 1 clears during the first stage of the kth window on servers where it does not
collide with other queues is:

Wk−1+αwk∑
t=Wk−1+1

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} = (
1

2
+

1

N
)
2(N − d)

N2
αwk + Õ (

√
wk) .

Since we have shown that for any large enough k, almost surely, queue 1 does not have priority over
the other queues after at most Õ(w

3/4
k ) iterations, for any large enough k, almost surely, the number

of packets queue 1 clears of the first stage of the kth window is(
1

2
+

1

N

)
2(N − d)

N2
αwk + Õ

(
w

3/4
k

)
.

We are now ready to prove Lemma 6.

Proof. By Chernoff bound and the Borel-Cantelli lemma, almost surely for any large enough k, the
number of packets queue 1 clears during the second stage of the window on servers where it does not
collide with other queues is:

Wk−1∑
t=Wk−1+αwk

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} =
4(N − d)

N3
(1− α)wk + Õ (

√
wk) . (16)
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Suppose that during the second stage of the window, queue 1 never gets priority over another queue.
In that case, according to Equation (16) and Lemma 7, for any large enough k, almost surely, the
total number of packets cleared by queue 1 during the time window is(

α

2
+

2− α
N

)
2(N − d)

N2
wk + Õ(w

3/4
k ).

For any large enough k, if α ≤ 1− 1
N−1 this is smaller than the number of packets queue 1 would

have cleared had it not deviated, according to Lemma 5.

On the other hand, suppose that queue gets priority over some other queue i at some iteration τ of the
second stage of the window. In that case, at that iteration, queue 1 holds the oldest packets, which,
according to Equation (12), implies

Qτ1 > Qτi − Õ(w
3/4
k )

During the second stage of the window, for any i ≥ 3, γit :=
(
Qti −Qt1 − 2N

√
t ln(t)

)
+

is a

supermartingale with bounded increments for any t where Equation (12) holds for queues 1 and i.
Indeed, in that case, if γit is strictly positive, queue i holds an older packet than queue 1, and thus,
whether they collide or not, it has a higher probability to clear a packet than queue 1. Thus, by
Azuma-Hoeffding and the Borel-cantelli lemma again, for any large enough k, almost surely,

QWk
i −QWk

1 ≤ Qτi −Qτ1 + Õ(w
3/4
k ).

Thus it holds that QWk
1 ≥ QWk

i − Õ(w
3/4
k ) for any i ≥ 2. This and Equation (15) imply that all

the queues clear approximately the same number of packets over those time windows for any large
enough k almost surely. Thus queue 1 clears[

(2− α)(N − 2) + (α+
4− 2α

N
)

]
(N − d)

(N − 1)N2
wk + Õ

(
w

3/4
k

)
packets almost surely, which again is smaller than the number of packets it would have cleared had it
not deviated.

Thus, the deviating queue clears almost surely less packets by time window than it would have had it
not deviated on all but finitely many of the time windows, which implies that it has no policy regret
on all but finitely many of the time windows.

D Proofs of Section 4

D.1 Proof of Lemma 1

We want to show that if ‖(λ̂− λ, µ̂− µ)‖∞ ≤ c1∆, then

‖φ(λ̂, µ̂)− φ(λ, µ)‖2 ≤
c2K

∆
‖(λ̂− λ, µ̂− µ)‖∞, (17)

with the constants c1, c2 given in Lemma 1.

Recall that φ is defined as
φ(λ, µ) = arg min

P∈BK

f(P, λ, µ),

where BK is the set of K ×K doubly stochastic matrices and f is defined as:

f(P, λ, µ) := max
i∈[N ]

− ln(

K∑
j=1

Pi,jµk − λi) +
1

2K
‖P‖22

Let P ∗ and P̂ ∗ be the minimizers of f with the respective parameters (λ, µ) and (λ̂, µ̂). They are
uniquely defined as f is 1

K strongly convex.

As the property of Lemma 1 is symmetric, we can assume without loss of generality that
f(P ∗, λ, µ) ≥ f(P̂ ∗, λ̂, µ̂).
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Given the definition of ∆, we have the bound

− ln(∆) +
1

2
≥ f(P ∗, λ, µ) ≥ − ln(∆).

The lower bound holds because the term in the ln is at most ∆ for at least one i. For the upper bound,
some matrix P ensures that the term in the ln is at least ∆ for all i and ‖P‖22 ≤ K.

Similarly for P̂ ∗, it follows:

− ln((1− 2c1)∆) +
1

2
≥ f(P̂ ∗, λ̂, µ̂) ≥ − ln((1 + 2c1)∆).

As a consequence, it holds for any i ∈ [N ]:

− ln

 K∑
j=1

P̂ ∗i,jµ̂j − λ̂i

 ≤ f(P̂ ∗, λ̂, µ̂)

≤ − ln((1− 2c1)∆/
√
e)

K∑
j=1

P̂ ∗i,j µ̂j − λ̂i ≥ (1− 2c1)∆/
√
e.

Note that for any i ∈ [N ],

K∑
j=1

P̂ ∗i,j µ̂j − λ̂i ≤
K∑
j=1

P̂ ∗i,jµj − λi + 2‖(λ̂− λ, µ̂− µ)‖∞.

It then yields the second point of Lemma 1:

K∑
j=1

P̂ ∗i,jµj − λi ≥
(
(1− 2c1)/

√
e− 2c1

)
∆

Moreover, it follows

− ln

 K∑
j=1

P̂ ∗i,j µ̂j − λ̂i

 ≥ − ln

 K∑
j=1

P̂ ∗i,jµj − λi

− ln

(
1 +

2‖(λ̂− λ, µ̂− µ)‖∞∑K
j=1 P̂

∗
i,jµj − λi

)

≥ − ln

 K∑
j=1

P̂ ∗i,jµj − λi

− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆

Recall that for a 1
K -strongly convex function g of global minimum x∗ and any x:

‖x− x∗‖2 ≤ 2K(g(x)− g(x∗))

As a consequence, it follows:

f(P̂ ∗, λ̂, µ̂) ≥ f(P̂ ∗, λ, µ)− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆

≥ f(P ∗, λ, µ)− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆

+
1

2K
‖P ∗ − P̂ ∗‖2.

Equation (17) then follows.
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D.2 Proof of Lemma 2

The coefficient Ci,j is replaced by +∞ as soon as the whole weight Pi,j is exhausted. Thanks to this,
the HUNGARIAN algorithm does return a perfect matching with respect to the bipartite graph with
edges (i, j) where there remains some weight for Pi,j . Because of this, it can be shown following the
usual proof of Birkhoff algorithm [Birkhoff, 1946] that the sequence (z[j], P [j]) is indeed of length
at most K2 −K + 1 and is a valid decomposition of P .

Now assume that ≺C is a total order. At each iteration j of HUNGARIAN algorithm, denote P̃ j =

P −
∑j−1
s=1 z[s]P [s] the remaining weights to attribute.

Let lj be such that P [j] = Plj for any iteration j of HUNGARIAN algorithm.

It can now be shown by induction that

P̃ j = P −
lj∑
l=1

zl(P )Pl.

where zl(P ) are defined by Equation (5). Indeed, by definition

P̃ j+1 = P̃ j − z[j + 1]P [j + 1]

= P̃ j − z[j + 1]Plj+1

The HUNGARIAN algorithm returns the minimal cost matching with respect to the modified cost
matrix C where the coefficients i, k such that P̃ ji,k = 0 are replaced by +∞. Thanks to this, Plj+1

is
the minimal cost permutation matrix Pl (for ≺C) such that P̃ ji,k > 0 for all (i, k) ∈ supp(Pl).

This means that for any l < lj+1

min
(i,k)∈supp(Pl)

(P̃ j)i,k = 0.

Using the induction hypothesis, this implies that zl(P ) = 0 for any lj < l < lj+1. And finally, this
also implies that zlj+1

(P ) = z[j + 1].

This finally concludes the proof as P̃ j = 0 after the last iteration.

D.3 Proof of Lemma 3

For z and z′ the respective decompositions of P and P ′ defined in Lemma 2, then∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω = Pω∼U(0,1) (ψ(P )(ω) 6= ψ(P ′)(ω)) .

In the following, note A = ψ(P ) and A′ = ψ(P ′). It follows for Pn defined as in Lemma 2

∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω =

K!∑
n=1

P(A = Pn and A′ 6= Pn)

=
1

2

K!∑
n=1

P(A = Pn and A′ 6= Pn) +
1

2

K!∑
n=1

P(A′ = Pn and A 6= Pn)

=
1

2

K!∑
n=1

vol

n−1∑
j=1

zj(P ),

n∑
j=1

zj(P )

	
n−1∑
j=1

zj(P
′),

n∑
j=1

zj(P
′)

 ,

where vol denotes the volume of a set and A	B = (A \B) ∪ (B \A) is the symmetric difference
of A and B. The last equality comes from the expression of ψ with respect to the coefficients zj(P ),
thanks to Lemma 2.
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It is easy to show that
vol ([a, b]	 [c, d]) ≤ (|c− a|+ |d− b|)1 (b > a or c > d) .

The previous equality then leads to

∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω ≤ 1

2

K!∑
n=1

∣∣∣∣∣∣
n−1∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣
1 (zn(P ) + zn(P ′) > 0)

≤
K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣1 (zn(P ) + zn(P ′) > 0) . (18)

The last inequality holds because
∑k
j=1 zj(P )− zj(P ′) is counted twice when zk(P ) + zk(P ′) is

positive: when n = k and for the next n such that the elements are counted in the sum.

Thanks to Lemma 2, only 2(K2 −K + 1) elements zj(P ) and zj(P ′) are non-zero. Let kn be the
index of the n-th non-zero element of (zs(P ) + zs(P

′))1≤s≤K!. Note that zs(P ′) can be non-zero
while zs(P ) is zero (or conversely). Let also

(ikn , jkn) ∈ arg min
(i,j)∈supp(Pkn )

Pi,j −
∑
l<kn

zl(P )1 ((i, j) ∈ supp(Pkn)) ,

(i′kn , j
′
kn) ∈ arg min

(i,j)∈supp(Pkn )

P ′i,j −
∑
l<kn

zl(P
′)1 ((i, j) ∈ supp(Pkn)) .

It then comes, thanks to Lemma 2

zkn(P )− zkn(P ′) ≤ Pi′kn ,j′kn − P
′
i′kn ,j

′kn
−
∑
l<kn

(zl(P )− zl(P ′))1
(
(i′kn , j

′
kn) ∈ supp(Pkn)

)
≤ Pi′kn ,j′kn − P

′
i′kn ,j

′
kn
−
∑
l<n

(zkl(P )− zkl(P ′))1
(
(i′kn , j

′
kn) ∈ supp(Pkn)

)
The second inequality holds, because for l′ 6∈ {kl | l < 2K2}, the term in the sum is zero by
definition of the sequence kl.

A similar inequality holds for zkn(P ′)− zkn(P ), which leads to

|zkn(P )− zkn(P ′)| ≤ ‖P − P ′‖∞ +
∑
l<n

|zkl(P )− zkl(P ′)|.

By induction, it thus holds
|zkn(P )− zkn(P ′)| ≤ 2n−1‖P − P ′‖∞.

We finally conclude using Equation (18)∫ 1

0

1 (ψ(P )(ω) 6= ψ(P ′)(ω)) dω ≤
K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣1 (zn(P ) + zn(P ′) > 0)

≤
2(K2−K+1)−1∑

n=1

∣∣∣∣∣∣
kn∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣
≤

2(K2−K+1)−1∑
n=1

∣∣∣∣∣
n∑
l=1

zkl(P )− zkl(P ′)

∣∣∣∣∣
≤

2(K2−K+1)−1∑
n=1

n∑
j=1

2j−1‖P − P ′‖∞

≤ 22(K2−K+1)‖P − P ′‖∞.

In the fourth inequality, the 2(K2 −K + 1)-th term of the sum is ignored. It is indeed 0 as z and z′
both sum to 1.
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D.4 Proof of Theorem 5

First recall below a useful version of Chernoff bound.
Lemma 8. For any independent variables X1, . . . , Xn in [0, 1] and δ ∈ (0, 1),

P

(
n∑
i=1

Xi ≤ (1− δ)
n∑
i=1

E[Xi]

)
≤ e−

δ2
∑n
i=1 E[Xi]

2 .

We now prove the following concentration lemma.
Lemma 9. For any time t ≥ (N +K)5 and ε ∈ (0, 1

4 ),

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 3 exp

(
−λi

(
t
4
5 − 1

)
ε2
)

P
(
|λ̂ij(t)− λj | ≥ ε

)
≤ 6 exp

(
−λiKµ̄

t
4
5 − 1

145
ε2

)
.

Proof.
Concentration for µ̂. Consider agent i in the following and denote by Nk(t) the number of ex-
ploratory pulls of this agent on server k at time t. By definition, the probability to proceed to an
exploratory pull on the server k at round t is at least λi min(t−

1
5 , 1

N+K ). The term λi here appears
as a pull is guaranteed if a packet appeared at the current time step. Yet the number of exploratory
pulls might be much larger in practice as queues should accumulate a large number of uncleared
packets at the beginning.

For t ≥ (N +K)5, it holds:
t∑

n=1

min(n−
1
5 ,

1

N +K
) =

(N+K)5∑
n=1

1

N +K
+

t∑
n=(N+K)5+1

n−
1
5

≥ (N +K)4 +

∫ t

(N+K)5
x−

1
5 dx− 1

≥ 1

4

(
5t

4
5 − (N +K)4 − 4

)
≥ t 4

5 − 1.

Lemma 8 then gives for Nk(t):

P (Nk(t) ≤ (1− δ)E[Nk(t)]) ≤ exp

(
−δ

2E[Nk(t)]

2

)

P
(
Nk(t) ≤ (1− δ)λi

(
t
4
5 − 1

))
≤ exp

−λiδ2
(
t
4
5 − 1

)
2

 .

Which leads for δ = 1
2 to

P
(
Nk(t) ≤ λi

2

(
t
4
5 − 1

))
≤ exp

(
−λi

t
4
5 − 1

8

)
. (19)

The number of exploratory pulls and the observations on the server k are independent. Thanks to this,
Hoeffding’s inequality can be directly used as follows

P
(
|µ̂ik(t)− µk| ≥ ε | Nk(t)

)
≤ 2 exp

(
−2Nk(t)ε2

)
.

Using Equation (19) now gives the first concentration inequality for ε ≤ 1
4 ≤

1
2
√

2
:

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 2 exp

(
−λi

(
t
4
5 − 1

)
ε2
)

+ exp

(
−λi

t
4
5 − 1

8

)
≤ 3 exp

(
−λi

(
t
4
5 − 1

)
ε2
)
.
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Concentration for λ̂. Consider agent i in the following. First show a concentration inequality for µ̃.
Denote by N(t) the total number of exploratory pulls on servers proceeded by player i at round t,
i.e., N(t) =

∑K
k=1Nk(t). Similarly to Equation (19), it can be shown that

P

(
N(t) ≤ λiK

t
4
5 − 1

2

)
≤ exp

(
−λiK

t
4
5 − 1

8

)
.

Lemma 8 then gives for δ ∈ (0, 1):

P (|µ̃− µ̄| ≥ δµ̄) ≤ 2 exp

(
−λiKδ2µ̄

t
4
5 − 1

8

)
+ exp

(
−λiK

t
4
5 − 1

8

)

≤ 3 exp

(
−λiKδ2µ̄

t
4
5 − 1

8

)
.

Note that |µ̃− µ̄| ≤ δµ̄ implies | 1µ̄ −
1
µ̃ | ≤

δ
(1−δ)µ̄ . So this gives the following inequality:

P
(∣∣∣∣ 1µ̄ − 1

µ̃

∣∣∣∣ ≥ δ

(1− δ)µ̄

)
≤ 3 exp

(
−λiKδ2µ̄

t
4
5 − 1

8

)
. (20)

A concentration bound on Ŝij can be shown similarly for any δ ∈ (0, 1)

P
(∣∣∣∣Ŝij(t)− (1− λj

2
)µ̄

∣∣∣∣ ≥ δµ̄) ≤ 3 exp

(
−λiKδ2µ̄

t
4
5 − 1

8

)
. (21)

Now recall that the estimate of λj is defined by λ̂j = 2− 2Ŝij
µ̃ . We then have the following identity:

λ̂j − λj = 2(
1

µ̃
− 1

µ̄
)Ŝij +

2

µ̄

(
(1− λj

2
)µ̄− Ŝij

)
.

Since Ŝj ∈ [0, 1], it yields for ε ≤ 1
4 and x ∈ (0, 1):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ P

(∣∣∣∣2(
1

µ̃
− 1

µ̄
)Ŝij

∣∣∣∣ ≥ xε or
∣∣∣∣ 2µ̄
(

(1− λj
2

)µ̄− Ŝj
)∣∣∣∣ ≥ (1− x)ε

)
≤ P

(∣∣∣∣ 1µ̃ − 1

µ̄

∣∣∣∣ ≥ xε

2Ŝij
| Ŝij ≤ (1 +

1− x
8

)µ̄

)
+ P

(∣∣∣∣Ŝij(t)− (1− λj
2

)µ̄

∣∣∣∣ ≥ (1− x)µ̄ε

2

)
≤ P

(∣∣∣∣ 1µ̃ − 1

µ̄

∣∣∣∣ ≥ δ

(1− δ)µ̄
for δ =

4xε

9

)
+ P

(∣∣∣∣Ŝij(t)− (1− λj
2

)µ̄

∣∣∣∣ ≥ (1− x)µ̄ε

2

)
Taking x = 9

17 leads to 4x
9 = 1−x

2 and thus, using Equations (20) and (21):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ 6 exp

(
−λiK

(
8

17

)2

µ̄
t
4
5 − 1

32
ε2

)

≤ 6 exp

(
−λiKµ̄

t
4
5 − 1

145
ε2

)

In the following, let c1 = 0.1 and c2 = 4
(1−2c1)/

√
e−2c1

≈ 14. For a problem instance, let the good
event Et at time t be defined as
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Et :=

{
‖(λ̂i − λ, µ̂i − µ)‖∞ ≤

0.1∆2

2c222K2KN
, ∀i ∈ [N ]

}
.

As ∆ is smaller than 1, the right hand term in the definition of Et is smaller than c1∆. Thanks to
Lemmas 1 and 3, Et then guarantees that any player will collide with another player with probability
at most 0.1∆, i.e., , ∀i ∈ [N ],

Pω∼U(0,1)

(
∃j ∈ [N ], Âit(ω) 6= Âjt (ω) | Et

)
≤ 0.1∆.

Moreover, thanks to Lemma 1, under Et,

λi ≤
K∑
k=1

P̂i,kµk −
(

1− 2c1√
e
− 2c1

)
∆.

These two last inequalities lead to the following lemma.

Lemma 10. For t ≥ 25K5

0.085∆5 , denote byHt the history of observations up to round t. Then

E
[
Sit | Et,Ht

]
≥ λi + 0.1∆.

Proof. This is a direct consequence of the following decomposition:

E
[
Sit | Et,Ht

]
≥

proba to exploit︷ ︸︸ ︷
(1− (N +K)t−

1
5 )


proba to clear︷ ︸︸ ︷
P̂i,kµk −

collision proba︷ ︸︸ ︷
P
(
∃j ∈ [N ], Âit(ω) 6= Âjt (ω)∃ | Et

)
≥ (1− (N +K)t−

1
5 )(λi +

(
1− 2c1√

e
− 2c1

)
∆− 0.1∆)

≥ (1− (N +K)t−
1
5 )(λi + 0.18∆).

The last inequality is given by c1 = 0.1 and it leads to

E
[
Sit | Et,Ht

]
≥ λi + 0.18∆− (N +K)t−

1
5 .

For t ≥ 25K5

0.085∆5 , the last term is smaller than 0.08∆, giving Lemma 10.

Define the stopping time

τ := min

{
t ≥ 25K5

0.085∆5
| ∀t ≥ s, Es holds

}
. (22)

Lemma 11. For any integer r ≥ 1,

E[τ r] = O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r)
,

where the O notation hides constant factors that only depend on r.

Proof. Define for this proof t0 =
⌈

25K5

0.085∆5

⌉
. By definition, if Et does not hold for t > t0, then τ ≥ t.

As a consequence, for any t > t0 and thanks to Lemma 9:

P(τ ≥ t) ≤ P(¬Et)

≤ (3eKN + 6eN2) exp
(
−ct 4

5

)
,

where c = c0
min(1,Kµ̄)

¯
λ∆4

N2K224K2 for some universal constant c0 ≤ 1.

26



We can now bound the moments of τ :

E[τ r] = r

∫ ∞
0

tr−1P (τ ≥ t) dt

≤ tr0 + (3eKN + 6eN2)r

∫ ∞
0

tr−1e−ct
4
5 dt.

Using the change of variable u = ct
4
5 , it can be shown that∫ ∞

0

tr−1e−ct
4
5 dt =

5

4
c−

5r
4 Γ

(
5r

4

)
,

where Γ denotes the Gamma function. It finally allows to conclude:

E[τ r] = O
(
K5r

∆5r
+KNc−

5r
4

)
= O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r)
.

Let Xt be a random walk biased towards 0 with the following transition probabilities:

P(Xt+1 = Xt + 1) = p, P(Xt+1 = Xt − 1|Xt > 0) = q,

P(Xt+1 = Xt|Xt > 0) = 1− p− q, P(Xt+1 = Xt|Xt = 0) = 1− p, (23)

and X0 = 0.

Lemma 12. The non-asymptotic moments of the random walk defined by Equation (23) are bounded.
For any t > 0, r > 0:

E [(Xt)
r] ≤ r!

(ln (q/p))
r .

Proof : Let π be the stationary distribution of the random walk. It verifies the following system of
equations: 

π(z) = pπ(z − 1) + qπ(z + 1) + (1− p− q)π(z), ∀z > 0

π(0) = (1− p)π(0) + qπ(1)∑
π(z) = 1

which gives:

π(z) =
q − p
q

(
p

q

)z
.

Equivalently, π(z) = P(bY c = z) with Y an exponential random variable of parameter ln(q/p). This
gives:

EX∼π [(X)r] ≤ r!

(ln (q/p))
r .

Let X̃t be the random walk with the same transition probabilities as Xt and X̃0 ∼ π. For any t > 0,
X̃t ∼ π. Moreover, for any t > 0, X̃t stochasticaly dominates Xt, which terminates the proof. �

Proof of Theorem 5. For τ the stopping time defined by Equation (22), Lemma 11 bounds its mo-
ments as follows

E[τ r] = O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r)
.

Let
pi = λi(1− λi − 0.1∆) and qi = (λi + 0.1∆)(1− λi).
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Let Xi
t be the random walk biased towards 0 with parameters pi and qi, with Xi

t = 0 for any t ≤ 0.
According to Lemma 10, past time τ , Qit is stochastically dominated by the random process τ+Xi

t−τ .
Thus, for any t > 0, for any r > 0

E[
(
Qti
)r

] ≤ max(1, 2r−1)
(
E[τ r] + E[(Xi

t−τ )r]
)

= O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r
+

1

ln(qi/pi)r

)

= O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r
+ ∆−r

)

= O

(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ̄)
¯
λ)

5
4 ∆5

)r)
.
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