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Abstract

When a graph neural network (GNN) made a prediction, one raises question
about explainability: “Which fraction of the input graph is most influential to the
model’s decision?” Producing an answer requires understanding the model’s inner
workings in general and emphasizing the insights on the decision for the instance at
hand. Nonetheless, most of current approaches focus only on one aspect: (1) local
explainability, which explains each instance independently, thus hardly exhibits the
class-wise patterns; and (2) global explainability, which systematizes the globally
important patterns, but might be trivial in the local context. This dichotomy limits
the flexibility and effectiveness of explainers greatly. A performant paradigm
towards multi-grained explainability is until-now lacking and thus a focus of our
work. In this work, we exploit the pre-training and fine-tuning idea to develop our
explainer and generate multi-grained explanations. Specifically, the pre-training
phase accounts for the contrastivity among different classes, so as to highlight the
class-wise characteristics from a global view; afterwards, the fine-tuning phase
adapts the explanations in the local context. Experiments on both synthetic and
real-world datasets show the superiority of our explainer, in terms of AUC on
explaining graph classification over the leading baselines. Our codes and datasets
are available at https://github.com/Wuyxin/ReFine.

1 Introduction

While graph neural networks (GNNs) [1, 2] have achieved great success in a variety of applications,
they usually come as black-box models. The general problem about GNN explainability [3] is to
answer “What knowledge does the model use to arrive at the conclusions in general and the specific
decision at hand?”. Thoroughly answering this question requires the global understanding of the
model’s inner workings and the local insights on a specific instance. Take a GNN model for molecular
property prediction as an example. The global understanding exhibits the knowledge encoded in the
model, such as the distribution of the chemical groups; meanwhile, the local insight identifies certain
chemical groups responsible for a given molecule’s property. Such multi-grained explainability
flexibly and reliably inspects the decision-making process of the GNN [4, 5], which is critical to the
applications on safety, fairness, and privacy [6, 7].

In the field of GNN explainability [8], explainer models broadly attribute model prediction to the
input graph, then sample a salient subgraph as the explanation for the model prediction. However,
most of current explainers focus on either on local [9, 10, 6, 11, 12] or global explainability [13, 7],
thereby suffer from inherent limitations correspondingly:
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Figure 1: Explanations on Visual Genome dataset generated from ReFine, including the pre-training
and fine-tuning phases. Right indicates the changes before and after the fine-tuning.

• Local explainability aims to customize the explanatory subgraph for each instance individually.
However, such local explanations fall short in systematizing the prototypical patterns shared within
a class or group of instances. Thus, they lack the global understanding of the model’s workings
[7, 13], which is vital to generalize to other instances being explained.

• Global explainability targets at the globally important patterns across multiple instances, which
could violate the local fidelity [14] — the globally important substructure may not be important or
even appear in the local context, thus might fail to explain a specific instance reliably.

Briefly put, these approaches overlook the multi-granularity nature of explainability, while we argue
that the local and global explainability should be exhibited simultaneously to obtain faithful expla-
nations. Taking Figure 1 as an example, the global explainability differentiates the explanations for
various classes, such as livestock-background subgraphs for the farm class, human-sports subgraphs
for the stadium class. When zooming in a specific scene graph, the local explainability refines on the
farm-wise patterns and specifies (sheep, on, meadow) as the final explanation. A paradigm towards
such multi-grained explainability is until-now lacking, to the best of our knowledge.

Towards multi-grained explainability, we propose a novel explainer, ReFine, with pre-training and
fine-tuning [15, 16] techniques for explaining GNN models. Specifically, pre-training aims to
answer “What class-wise knowledge does the GNN leverage to make predictions in general?”. We
combine the contrastive learning [17, 18] into class-wise generative probabilistic models [7], thereby
approach coarser-grained explanations (i.e. saliency maps of all edges). Going beyond the global
view, fine-tuning is to answer “Why the GNN model made the certain prediction for the instance at
hand?”, where we upgrade the coarser-grained explanations to the finer-grained explanations (i.e.
explanatory subgraphs of salient edges). Through this way, ReFine can faithfully generate multi-
grained explanations, and we empirically show its effectiveness as compared to some state-of-the-art
explainers [9, 6, 7, 19]. It is also worth mentioning that, although the general understanding of GNN
predictions has been considered in a recent work PGExplainer [7], it is only exploited to train a
generative probabilistic model shared across all the explained instances, rather than dissecting and
modeling the class-wise knowledge explicitly. Overall, our contributions are summarized as:

• We investigate the local explainability and global explainability for explaining GNNs and put
forward the concept of multi-grained explainability.

• We propose a pre-training and fine-tuning framework to generate multi-grained explanations, which
has both global understanding of model workings and local insights on specific instances.

• We achieve state-of-the-art performance on various datasets w.r.t. predictive accuracy on explaining
GNNs. Quantitative and qualitative results verify multi-granularity explainability of ReFine.

2 Background & Task Formulation

In this section, we begin with the backgrounds on GNNs and frame the task of generating multi-
grained explainability for GNN models.
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Figure 2: Model construction of proposed ReFine. Left represents the pre-training phase for a graph
example, which is labeled and predicted as “Cycle”, from the BA-3motif dataset. Right demonstrates
the fine-tuning process where the saliency map is fine-tuned on the instance to achieve local fidelity.

Graph Neural Networks. We denote the graph data as G = (V, E) with the node set V and the edge
set E . The structural feature of a graph can be represented by an adjacency matrix A ∈ {0, 1}|V|×|V|,
where Aij = 1 indicates an edge starting from node i to node j, and Aij = 0 otherwise. The node
feature matrix is represented as X ∈ R|V|×d.

Graph neural networks (GNNs) [1, 2] aim to generate powerful representation on graphs in an
end-to-end fashion. Such representation facilitates the downstream tasks, such as node classification
[20, 21], link prediction [22, 23, 24, 25], and graph classification [26]. Without loss of generality, we
consider a graph classifier f : G→ RC , which classifies an input graph G ∈ G in C categories and
outputs prediction by c = argmaxi f(G)i. Typically, f consists of three components: (1) learning
of node representations, which distills vectorized information from neighboring nodes and updates
node representations recursively; (2) learning of graph representation, which aggregates the node
representations to establish the representation for the holistic graph; (3) graph classification, which
maps the graph representation into the probability distribution of different categories.

Explaining Graph Neural Networks. The explainer model (aka. the explanation method) usually
performs two consecutive operations: (1) feature attribution [27, 28], which associates each feature
of an input G ∈ G with the relevance score for the classifier’s prediction; (2) feature selection [29, 6],
which extracts salient features based on the relevance scores to construct an explanatory subgraph.
The subgraph is regarded as the evidence for the GNN to make the prediction.

We follow previous works [6, 7, 10, 19] and focus on the contributions of the structural features (i.e.
edges). Our explainer consists of two components: an attribution module T for edge attribution and a
selection moduleH for edge selection. Specifically, T assigns the adjacency matrix A with a saliency
map, i.e.

M = T (G, f, c), (1)

where M ∈ R|V|×|V|, each element of which is the importance score of the edge to the prediction
class c. Such saliency map can further result in an attentive graph Gatt = A�M. Then, the selection
moduleH identifies the edges of explanatory subgraph based on the attentive graph:

S = H(Gatt, f, c, ρ), (2)

where S ∈ R|V|×|V| constructs the explanatory subgraph Gexp = A � S, and ρ is the explanation
budget [27] that equals to the number of nonzero elements in S.

3 Methodology

Here we present our explainer that purses multi-grained explainability by pre-training and fine-tuning,
as Figure 2 shows. In the pre-training phase, the attribution module distills the class-wise knowledge,
which contrasts the salient structures based on the prediction, answering the question “Why did the
GNN model assign a group of graphs with the same prediction?”. In the next phase, the selection
module goes beyond the class-wise knowledge and fine-tunes the saliency maps on a specific instance
for answering “Why the GNN model made the certain prediction for the specific graph?”.
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3.1 Pre-training Towards Global Explainability

Class-aware Attribution Module. Towards the global explainability of GNN, it is important to
specify the class-wise knowledge across the instances with the same prediction. Inspired by the
success of generative models [7, 30, 31] in capturing the succinct structures from the graphs, we
hire multiple generative probabilistic models [7] as our attribution models (short for attributor), i.e.
Tθ = {T (c)|c = 1, · · · , C} which is parameterized by θ. The attributor T (c) is responsible for
uncovering the hidden patterns from some graph instances O(c) = {G|c = argmaxi f(G)i} with the
same prediction class c.

Formally, each attributor T (c) is composed of a GNN encoder GNN(c) and a MLP decoder MLP(c),
whose parameters are shared when explaining graphs in O(c), so as to systematize the class-wise pat-
terns. Next we introduce the construction of each class-wise attributor, while we omit the superscript
for conciseness. Specifically, the encoder GNN embeds each node i in G with representation zi and
summarize the representations of all nodes as:

Z = GNN(G,X), (3)

where Z ∈ R|V|×d′ encodes the structural feature A and node feature X. On the top of the node
representations, we model the graph structure as edge distributions and frame the generation of
explanatory subgraphs by sampling from the edge distributions:

P (M|Z) =
∏

(i,j)∈E

P (Mij |zi, zj), (4)

where Mij indicates the importance of edge (i, j). Then the MLP encoder takes the concatenation of
node representations zi and zj as the inputs and outputs the importance score. To approximate the
importance score to the discrete distribution and optimize the generator via gradient propagation, we
adopt the reparameterization trick [7], where an independent random variable ε ∼ Uniform(0, 1) is
introduced. As such, the edge probability is formulated as:

P (Mij |zi, zj) = σ((log
ε

1− ε
+ αij)/β), with αij = MLP([zi, zj ]), (5)

where σ is the sigmoid function, and β denotes the temperature hyperparameter. It is worth empha-
sizing that our attributors is different from PGExplainer [7], where only one generative probabilistic
model is involved. Thus, their attribution results are limited in differentiating the patterns of different
classes and systematizing the class-wise knowledge.

Pre-training Class-wise Attribution Module. We devise the following objective function for
training the class-wise attributors.

min
θ
L1 + γLcts, (6)

where γ is the trade-off hyperparameter. We start from maximizing the mutual information between
the attentive graphs and the target prediction of the graph, which is a widely-used learning paradigm
in the literature [32, 6, 7]. It guides us to find the prediction-relevant explanatory subgraph, which
equals to minimizing the following loss:

L1 = −EGEεEc′ [P (Y = c′|G = G) logP (Y = c′|G = G(c)att)], (7)

where G and Y are the graph and prediction variables, respectively; G is the full graph instance
to explain; by sampling ε ∈ Uniform(0, 1) and c′ ∈ {1, · · · , C}, the class-wise saliency map M(c)

can be generated from Equation (4); P (Y = c′|G = G) = f(G)c′ is the output probabilities of the
prediction being c′ when feeding G to the GNN model f ; analogously, P (Y = c′|G = G(c)att) =

f(G(c)att)c′ audits the output probability when feeding G(c)att = A�M(c).

Moreover, we introduce a contrastive learning [33, 34, 18, 35, 36, 37] loss to emphasize differences
among the class-wise patterns — the substructure of the full graph that is distant to that of the graphs
with a different prediction but close to that of the graphs with the same prediction. It makes each
attributor focus on the unique and discriminative information within the class. Specifically, for the
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saliency maps G(c1)att1 of G1 and G(c2)att2 of G2, it encourages the agreements between G(c1)att1 and G(c2)att2
when c1 = c2, compared to that when c1 6= c2:

Lcts = EG,G′Eε,ε′ [(−1)I(c1=c2) × µ(`(G(c1)att1,G
(c2)
att2))], (8)

where µ is the softplus function [34]; ` measures the similarity between two subgraphs, which is set
as the representation similarity — `(G(c1)att1,G

(c2)
att2) = h>1 h2 where h1 is the graph representations by

feeding G(c1)att1 into the encoder GNN(c1) and aggregating the node representations. Similar for h2.
In addition, following [6], we adopt the element-wise entropy and L1 norm on the edge probability.
By jointly optimizing these two losses in Equation (6), the class-wise attribution module learns to
stratify the discriminative information for different classes and generate the saliency maps with a
global view of the target GNN. Taking an information-theoretical look at Equation (8), minimizing
contrastive learning loss is maximizing a lower bound of the mutual information between the latent
graph representations of two graphs within the same class.

3.2 Fine-tuning Towards Local Explainability

Having established the saliency map that exhibits the importance of each edge, the standard way is to
rank all edges based on their importance scores and simply select the top edges as the explanatory
subgraphs. However, we argue that such a coarser-grained selection fails to consider the dependencies
of these selected edges explicitly. Within a high-quality explanatory subgraph, edges are supposed to
cooperate with each other, form the coalition, and approach the target prediction better than individuals
[38, 39]. Without considering such coalition effect, the quality of the explanatory subgraph is greatly
limited.For example, when explaining why the molecule graph is classified as mutagenic [13], two
connected nitrogen-oxygen (N-O) bonds form a chemical group NO2 and present more discriminative
information about the mutagenic property [13]; whereas, two salient but disconnected N-O bonds
from different chemical groups are less informative to interpret the mutagenic property.

Clearly, the coarser-grained saliency maps are insufficient to exhibit the coalition effect of edges, thus
might be redundant and suboptimal explanations. Hence, we move forward to learn a finer-grained
explanatory subgraph. Technically, on the top of the well-trained class-wise attribution module, we
add the selection module:

S(c) = H(G(c)att, f, c, ρ), (9)

where ρ is the number of edges selected in the explanatory subgraph; H is a sampling (selection)
function; S(c) preserves the elements selected by the selection function and sets the other elements as
0. Instead of the hard selection that picks up the edges with the highest probability,H samples edges
according to their probabilities. Allowing edges with low probabilities to be sampled can prevent the
explainer from collapsing to suboptimal solutions with limited coalition effect.

With the new stochastic adjacency matrix S(c), we are able to extract the subgraph G(c)exp. To fine-tune
the attribution and selection modules, we resort to maximize the mutual information between the
explanation candidate G(c)exp and the target prediction of the full graph:

L2 = −EGEεEc′ [P (Y = c′|G = G) logP (Y = c′|G = G(c)exp)]. (10)

By optimizing the loss above, the selection module accounts for the edge coalition within S(c), so
as to achieve higher local fidelity. Moreover, as the selection module discards some elements in
the stochastic adjacency matrix, it blocks parts of gradient backpropagation and possibly acts as a
dropout function to avoid the overfitting on the instance-level explanations.

4 Experiments

We mainly aim to investigate the following questions:

• RQ1: How effective is the pre-training phase of ReFine, as compared to that of existing methods?

• RQ2: How effective is the fine-tuning phase of ReFine, as compared to that of the pre-training
phase?
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4.1 Experimental Settings

Datasets and Target GNNs. We consider four datasets with various target GNNs:

• Molecule graph classification. We use the Mutagenicity dataset [40, 41], where 4, 337 molecule
graphs are classified into two classes based on their mutagenic effect on a bacterium. The well-
trained Graph Isomorphism Network (GIN) [26, 42] has achieved a 100% testing accuracy.

• Scene graph classification. Following the previous work [10], we select 4, 443 (images, scene
graphs) pairs from Visual Genome [43] to construct the VG-5 dataset. Wherein, the graphs are
labeled with five classes: stadium, street, farm, surfing, forest. Each graph contains regions of the
objects as the nodes, while edges indicates the relationships between object nodes. The target GNN
is an APPNP [44] which achieves 64.3% testing accuracy.

• Handwriting graph classification. We use the MNIST superpixel dataset [45], which converts
70,000 images into the graphs of superpixel adjacency. Every graph is labeled as one of ten digit
classes. We trained a Spline-based GNN [46] which gains 97.9% accuracy in the testing dataset.

• Motif graph classification. We follow prior studies [6, 7] to create a synthetic dataset, BA-3motif,
which contains 3,000 graphs. Specifically, we adopt the Barabasi-Albert (BA) graphs as the base,
and attach each base with one of three motifs: house, cycle, grid. The trained GNN model, ASAP
[47], classifies them according to the type of attached motifs and achieved 100% testing accuracy.

Baselines. We compare our ReFine with the state-of-the-art explanation methods:

• SA [9] directly uses the gradients of the model prediction w.r.t. the adjacency matrix of the input
graph as the importance of edges.

• GNNExplainer [6] applies the soft masks on the messages carried by edges, where each mask
indicates an edge’s importance. Note that the masks of graph instances are trained individually.

• PGExplainer [7] hires a neural network to learn to generate the masks for the input edges. The
generative model is trained over multiple explained instances.

• PGM-Explainer [19] collects the prediction change on the random node perturbations, and then
learns a Bayesian network from these perturbation-prediction observations, so as to capture the
dependencies among the nodes and the prediction. Here we transfer it to model the edge importance.

Optimization. For the parametric explanation methods (GNNExplainer, PGExplainer, PGM-
Explainer), we apply a grid search to tune their own hyperparameters. For our ReFine framework, we
use the Adam optimizer and set the learning rate of pre-training and fine-tuning as 1e-3 and 1e-4,
respectively. All experiments are done on a single Tesla V100 SXM2 GPU (32 GB).

Evaluation Metrics. It is challenging to quantitatively evaluate the quality of explanations, since
the ground-truth explanations are usually unavailable. In the literature, there are three widely-used
evaluation metrics:

• Predictive Accuracy (ACC@ρ) [32, 48, 27]. It measures the fidelity of the explanatory subgraphs
by feeding it solely into the target model and auditing how well it recovers the target prediction.
We report the average ACC@ρ over all graphs in the testing sets, and further denote ACC-AUC as
the area under the ACC curve over different selection ratios ρ ∈ {0.1, 0.2, · · · , 0.9, 1.0}. ACC@ρ
and ACC-AUC are suitable for all the datasets.

• Recall@N . As suggested in prior studies [6, 7, 32], we can create the “ground-truth explanations”
for the synthetic dataset. Specifically, for BA-3motif, the motif of each graph can be viewed as the
discriminative information coherent in the model knowledge. As such, we can frame the evaluation
problem as the task of top edge ranking. To be more specific, for an explanatory subgraph, the edges
within the motif are positive, while the others are negative. To this end, recall can be adopted as the
evaluation protocols. More formally, Recall@N = EG [|Gs ∩ G∗s |/|G∗s |] where Gs is composed of
the top-N edges and G∗s is the ground-truth explanatory subgraph.

4.2 Quantitative Evaluations

Influence of Pre-training (RQ1). To investigate the effectiveness of pre-training, we first compare
the performance of the attribution module with the state-of-the-art explainers. We denote this variant
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Table 1: Structure/Training Difference of PGExplainer, ReFine and its ablation models.

Pre-training Fine-tuning

Class-wise Attributors Contrastive Learning

PG-Explainer - - -
Refine-CT " - -
Refine-FT " " -
Refine " " "

Table 2: Comparison of our ReFine and other baseline explainers

Mutagenicity VG-5 MNIST BA-3motif

ACC-AUC ACC-AUC ACC-AUC ACC-AUC Recall@5

SA 0.769 0.769 0.559 0.518 0.243
GNNExplainer 0.895±0.010 0.895±0.003 0.535±0.013 0.528±0.005 0.157±0.002
PG-Explainer 0.631±0.008 0.790±0.004 0.504±0.010 0.586±0.004 0.293±0.001
PGM-Explainer 0.714±0.007 0.792±0.001 0.615±0.003 0.575±0.002 0.250±0.000

ReFine-CT 0.888±0.008 0.891±0.002 0.526±0.007 0.610±0.004 0.248±0.001
ReFine-FT 0.945±0.011 0.906±0.002 0.587±0.008 0.616±0.003 0.299±0.002
ReFine 0.955±0.005 0.914±0.001 0.636±0.003 0.630±0.006 0.304±0.000

Relative Impro. 6.7% 2.1% 3.4% 7.5% 3.8%

by ReFine-FT, which disables the fine-tuning phase and simply constructs the explanatory subgraphs
based on the saliency scores. Moreover, we build another variant ReFine-CT, which removes the
contrastive loss (Equation (8)) from the pre-training phase, to study the effect of the contrastive loss on
the class-wise knowledge modeling. To be more clear, we present the difference of PGExplainer [7],
ReFine and its ablation models in Table 4.2. Table 2 presents the performance comparisons, from
which we have several findings:

• ReFine-FT outperforms the baseline explainers in most cases. To be more specific, it achieves
significant relative improvements over the strongest baselines w.r.t. ACC-AUC by 5.6% and 5.1%
in Mutagenicity and BA-3motif, respectively. This demonstrates the rationality and effectiveness
of the attribution module. We attribute these improvements to the class-wise knowledge modeling:
(1) By specifying the attributor models for each class, ReFine-FT is able to capture the underlying
patterns shared across the instances within the same class; and (2) Conducting the contrastive
learning between different class-aware attributors makes ReFine-FT better stratify the discriminative
information for different classes. The class-wise knowledge endows ReFine-FT with the global
view of the target model’s workings.

• Although PGExplainer is also equipped with the global view of the target model, its performance
is worse than that of ReFine-FT. We ascribe this to the limitations of PGExplainer’s global view,
which is founded upon all the explained instances, but fails to differentiate the class-wise patterns.
This again verifies the rationality and effectiveness of our attribution module.

• ReFine-FT outperforms ReFine-CT by a large margin, indicating that the contrastive learning plays
a critical role in exhibiting the class-wise knowledge. Specifically, it summarizes the patterns across
similar instances and focuses on the information pertinent to specific classes, while filtering the
irrelevant and redundant information out.

• Interestingly, in MNIST, the result of ReFine-FT is worse than that of PGM-Explainer. One
possible reason is that the random perturbations in PGM-Explainer create a collection of broken
graphs and offer a more comprehensive observation of the graphs. We leave the exploration of
subgraph-prediction relations as future work.

Influence of Fine-tuning (RQ2). To justify the effectiveness of the fine-tuning phase, we report the
performance of ReFine with our selection module in Tables 2 and 3, as compared to the performance
before fine-tuning. We have the following observations:
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Table 3: Performance under different selection ratios before and after fine-tuning.

Mutagenicity VG-5 MNIST BA-3motif

ACC@ρ 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

ReFine-FT 96.8% 94.0% 91.3% 91.4% 41.4% 61.4% 36.0% 65.7%
ReFine 97.8% 96.2% 92.2% 93.4% 71.4% 82.0% 39.0% 72.8%

Improvement +1.0% +2.2% +0.9% +2.0% +30.0% +20.6% +3.0% +7.1%

Pre-trained

Fine-tuned

Figure 3: Qualitative Results in MNIST Superpixels dataset. Handwriting graphs are in black, which
respectively represent number “0”, “2”, “8” within each block from left to right. Explanatory graphs
are in red, where the top 10% edges are highlighted.

• Fine-tuning with the selection module can improves the explanation performance sustainably,
which indicates the effectiveness of our pre-training and fine-tuning paradigm. Specifically, in
MNIST, the predictive accuracy of the explanations after fine-tuning improves from 41.4% to
71.4% when the selection rato is 0.4. We attribute these improvements to the local insights on
specific instances: (1) Benefiting from the saliency map obtained in the pre-training phase, the
selection module is able to filter noisy edges out and narrow down to where the target model looks
to make decisions; (2) Fine-tuning the explanatory subgraphs considers the coalition effect of edges,
thus approaches more information to recover the target prediction.

• Jointly analyzing Tables 2 and 3, ReFine consistently outperforms all baselines across the four
datasets. Advantageous to the local or global explanations, our multi-grained explanations not only
have the global understanding of model workings (i.e. the class-wise knowledge), but also account
for the local insights on specific instances (i.e. the coalition effect of edges in the local context). It
illustrates the superiority of our ReFine paradigm.

Overall, the empirical supports justify the significance of fine-tuning well. The contributions of
fine-tuning w.r.t. the overall improvements over PG-Explainer are 37.1% and 31.8% in MNIST and
BA-3motif datasets, respectively. One possible reason that fine-tuning contributes only 3.1% and
6.4% portion of overall improvements in Mutagenicity and VG-5 as compared to PG-Explainer is the
existance of rich node features in these two datasets. With the assistance of node features, the global
patterns might be well-captured durining pre-training, thus leaving little space for the local patterns
to improve.

4.3 Qualitative Analysis

We present the qualitative results on MNIST superpixel in Figure 3, where the pre-trained and
fine-tuned explanations are the explanatory subgraphs before fine-tuning (i.e. extracted based on the
saliency map) and after fine-tuning (i.e. derived from the selection module), respectively.

Influence of Pre-training (RQ1). The pre-trained results (first row) well demonstrate the global
patterns, where the explanatory subgraphs for interpreting the digit “0” focus more on the edges
between hollows in the middle and the fringe of the number. While interpreting the prediction “5”,
the explanations identify the edges spread on the bend of the number as the most important features.
Also, we observe an interesting pattern in the results for explaining the prediction “8”, where the
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Figure 4: Qualitative Results in Mutagenicity dataset. The prediction of the molecule in the first row
is mutagenic, while the molecule in the second row is predicted as non-mutagenic. The selection
ratios range from 10% to 50%. Note that some opposite edges are visually coincident.

Table 4: Time costs (in second) of GNNExplainer, PG-Explainer and the fine-tuning phase of Refine.

Mutagenicity VG-5 MNIST BA-3motif

GNNExplainer 2.03 1.88 0.637 1.11
PG-Explainer 0.030 0.035 0.040 0.032
Refine(Fine-tuning) 0.821 0.583 0.535 0.423

background edges draw more attention, rather than edges relevant to the digits, revealing the evidence
for the target GNN to classify. It also shows the supporting evidence of the difference between the
model explanation and the human explanation which focuses more on the digit graphs other than
the background graphs. Through the pre-trained examples, the global patterns offer vital model
understanding and inspections for the model’s decision-making process.

Influence of Fine-tuning (RQ2). We now compare the pre-trained and fine-tuned explanations.
Clearly, the fine-tuned explanatory graphs make clearer boundaries on the instances. The explanation
adapted with the user-defined ratio pays greater attention to details that are only applicable to the
specific instances. For example, one can take a closer look at the explanations in the 4-th column.
Without the fine-tuning phase, the explanation may distracted by the edges across the digit and
the background, such that these transition edges might be deemed as the most important features
while achieve suboptimal predictive accuracies. In contrast, the fine-tuned explanation dispels such
misunderstanding, with a higher local accuracy. Similar patterns can be found in other examples.

The qualitative results on Mutagenicity are presented in Figure 4, where each explanation has been
fine-tuned on the corresponding ratio. We can see the flexibility on ReFine, which enables the
fine-tuning on a specific user-defined ratio. With the selection ratio increases, the class probability
output by the target GNN is generally stable or further improved. Moreover, the fine-tuning phase
focuses more on the combination of features, with the constraint of selection ratio, to purse the higher
accuracy rather than intercepting on a ranking based on the static edge importance, which is only
valid under the addictive feature assumption [32].

4.4 Discussions

Efficiency for Generating Explanations. The inference time [7] to explain a new instance by the
pre-trained ReFine is the same as PGExplainer under the same attributor construction. Different
from GNNExplainer which has to retrain the model for each graph, ReFine only needs a few fine-
tuning steps on the pre-trained model (20 steps on average). Thus, ReFine can gain a boosting
performance for explaining graphs while remaining efficient in terms of time complexity. Specifically,
we summarize the time costs in the Table 4. Clearly, our ReFine is more efficient than GNNExplainer
and is computationally comparable to PG-Explainer.
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Limitations. Although ReFine can well-encode the class-wise knowledge by learning the parameters
of multiple attributors, it can hardly map such knowledge to the structure representation as XGNN [13].
This limits the human understanding on the core of input data via a conciseness substructure.

5 Related Work

We consider two classes of related work for GNNs explainability: studies on local explainability,
which independently explain for each input graph without referring to other knowledge, e.g., training
data; studies on global explainability, which provide explanations for multiple instances with the
guide of the model-level or class-level knowledge. See [49, 8, 50] for more overviews.

• Local Explainability. In general, there are two research lines. (1) Non-parametric explanation
methods [10, 9, 11] use some heuristics as the feature contributions of a specific instance, without
involving additional trainable models. Gradient-like scores [10, 9, 11] are wisely-used heuristics,
which is obtained by backpropagating the model prediction or loss to the input features, such as
adjacency matrix [10], along with the model architecture. (2) Parametric explanation methods
[6, 19, 51, 52] additionally train a parametrized explainer model to generate the saliency maps
or explanatory subgraphs for individual instances. The explainer model is typically optimized
towards local fidelity [32, 48, 27], which uses the explanations to recover the target predictions. For
example, GNNExplainer [6] learns soft masks for an instance and applies them on the adjacency
matrix. PGM-Explainer [19] trains an Bayesian network upon the pairs of graph perturbations and
prediction changes. However, these methods fall short in capturing the prototypical patterns shared
within the same groups or classes.

• Global Explainability. This direction is less explored compared to the local explainability of
GNNs [8]. To provide a global understanding of the model prediction, PGExplainer [7] formulates
the generation of multiple explanations based on its collective and inductive property, and designs
the attributor as a deep neural network whose parameters are shared across the explained instances.
XGNN [13] explains GNNs by training a graph generator, which outputs class-wise graph patterns
to explain this class. As it is designed to explain the holistic class, making it hardly applicable on
an specific instance, e.g., the graph patterns may not even exit on the instance.

6 Conclusion and Future Work

Multi-grained explainability promises to offer a flexible and all-round inspection of deep models’
decision-making, which has been less explored in the literature. Motivated by this, we proposed
a novel generative probabilistic model, ReFine, to approach the multi-granularity explainability
via pre-training and fine-tuning. To exhibit global explanations with the prototypical patterns, the
pre-training phase is founded upon the class-aware attribution modules and distills the class-level
knowledge by contrastive learning. When given a specific instance, the fine-tuning phase further
adapts the global explanations in the local context with high fidelity. In the fashion of pre-training
and fine-tuning, we can generate explanations with both global patterns and local features. Extensive
results in four datasets show that our method indeed improves the quality of explanatory subgraphs.

As future direction, we consider the extension of ReFine to fulfill the counterfactual explanation
[53], which answers ‘Why the target GNN model made a certain prediction, rather than another
prediction?”, to enrich the multi-granularity explainability. Further, multi-grained explainability can
be exhibited to explore the model robustness and heuristically guide the model construction.

Acknowledgments and Disclosure of Funding

Funding in direct support of this work: the Sea-NExT Joint Lab, Singapore MOE AcRF T2; the
National Natural Science Foundation of China (U19A2079, 62121002); the National Key Research
and Development Program of China (2020YFB1406703).

References
[1] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier

Bresson. Benchmarking graph neural networks. CoRR, abs/2003.00982, 2020.

10



[2] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. TNNLS, 32(1):4–24, 2021.

[3] Shruthi Chari, Daniel M. Gruen, Oshani Seneviratne, and Deborah L. McGuinness. Directions
for explainable knowledge-enabled systems. In Knowledge Graphs for eXplainable Artificial
Intelligence: Foundations, Applications and Challenges, pages 245–261. 2020.

[4] Christopher J. Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, and
Pan Kessel. Fairwashing explanations with off-manifold detergent. In ICML, pages 314–323,
2020.

[5] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech
Samek, and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what
machines really learn. Nature communications, 10(1):1–8, 2019.

[6] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In NeurIPS, pages 9240–9251, 2019.

[7] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. In NeurIPS, 2020.

[8] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. CoRR, abs/2012.15445, 2020.

[9] Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional
networks. CoRR, abs/1905.13686, 2019.

[10] Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In CVPR, pages 10772–10781,
2019.

[11] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, K. T. Schutt, Klaus-Robert
Muller, and Grégoire Montavon. Higher-order explanations of graph neural networks via
relevant walks. arXiv, 2020.

[12] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks
for NLP with differentiable edge masking. CoRR, abs/2010.00577, 2020.

[13] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: towards model-level explanations of
graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors,
KDD, pages 430–438, 2020.

[14] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining
the predictions of any classifier. In KDD, pages 1135–1144, 2016.

[15] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. In ACL, pages 328–339, 2018.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[17] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. In ICML, volume 119, pages 1597–1607,
2020.

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast
for unsupervised visual representation learning. In CVPR, pages 9726–9735, 2020.

[19] Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for
graph neural networks. In NeurIPS, 2020.

[20] Hongyang Gao and Shuiwang Ji. Graph u-nets. In ICML, volume 97, pages 2083–2092, 2019.

11



[21] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

[22] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In NeurIPS, pages 1024–1034, 2017.

[23] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collabo-
rative filtering. In SIGIR, pages 165–174, 2019.

[24] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. KGAT: knowledge
graph attention network for recommendation. In KDD, pages 950–958, 2019.

[25] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, pages
639–648, 2020.

[26] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[27] Ian Covert, Scott Lundberg, and Su-In Lee. Feature removal is a unifying principle for model
explanation methods. In NeurIPS, 2020.

[28] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In ICLR, 2018.

[29] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani, and Xeno-
fon D Koutsoukos. Local causal and markov blanket induction for causal discovery and feature
selection for classification part i: Algorithms and empirical evaluation. JMLR, 11(1), 2010.

[30] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social
network analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

[31] Max Welling Thomas N. Kipf. Variational graph auto-encoders. In NeurIPS Workshops, 2016.

[32] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In ICML, pages 882–891, 2018.

[33] Lukas Faber, Amin K Moghaddam, and Roger Wattenhofer. Contrastive graph neural network
explanation. 2021.

[34] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

[35] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
ICLR, 2020.

[36] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In NeurIPS, 2020.

[37] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
Self-supervised graph learning for recommendation. In SIGIR, pages 726–735, 2021.

[38] Christopher Frye, Damien de Mijolla, Laurence Cowton, Megan Stanley, and Ilya Feige.
Shapley-based explainability on the data manifold. In ICLR, 2021.

[39] H. W. Kuhn and A. W. Tucker. Contributions to the theory of games, volume 2. Princeton
University Press, 1953.

[40] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005.

[41] Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern
recognition and machine learning. In SPR and SSPR, pages 287–297, 2008.

12



[42] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2020.

[43] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
Visual genome: Connecting language and vision using crowdsourced dense image annotations.
IJCV, 123(1):32–73, 2017.

[44] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR, 2019.

[45] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In CVPR, pages 5425–5434, 2017.

[46] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In CVPR, pages 869–877, 2018.

[47] Ekagra Ranjan, Soumya Sanyal, and Partha P. Talukdar. ASAP: adaptive structure aware pooling
for learning hierarchical graph representations. In AAAI, pages 5470–5477, 2020.

[48] Jian Liang, Bing Bai, Yuren Cao, Kun Bai, and Fei Wang. Adversarial infidelity learning for
model interpretation. In KDD, pages 286–296, 2020.

[49] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. CoRR, 2020.

[50] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt, Klaus-
Robert Müller, and Grégoire Montavon. XAI for graphs: Explaining graph neural network
predictions by identifying relevant walks. CoRR, abs/2006.03589, 2020.

[51] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. ArXiv, 2021.

[52] Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under
uncertainty. In NeurIPS, pages 10220–10230, 2019.

[53] Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and Huan Liu. Causal
interpretability for machine learning-problems, methods and evaluation. SIGKDD Explorations,
22(1):18–33, 2020.

13


	Introduction
	Background & Task Formulation
	Methodology
	Pre-training Towards Global Explainability
	Fine-tuning Towards Local Explainability

	Experiments
	Experimental Settings
	Quantitative Evaluations
	Qualitative Analysis
	Discussions

	Related Work
	Conclusion and Future Work

