
A Implementation Details

A.1 Computational Complexity of Operations

In this section we discuss the computational theoretical complexity of the different operations involved
in the development of this work. We employ Big O notation4. Since in all cases operations are not
nested, but are applied sequentially, the costs can be added resulting in a polynomial expression.
Thus, by applying the properties of the notation, we disregard lower-order terms of the polynomial.

Matrix Operations: For n×nmatrices, the associated complexity of each operation is as follows:5

• Addition and subtraction: O(n2)

• Multiplication: O(n2.4)

• Inversion: O(n2.4)

• Diagonalization: O(n3)

SPD Operations: For n × n SPD matrices, the associated complexity of each operation is as
follows:

• Exp/Log map: O(n3), due to diagonalizations.

• Gyro-Addition: O(n2.4), due to matrix multiplications

• Matrix Scaling: O(n3), due to exp and log maps.

• Isometries: O(n2.4), due to matrix multiplications.

Distance Calculation: The full computation of the distance algorithm in SPDn involves matrix
square root, inverses, multiplications, and diagonalizations. Since they are applied sequentially,
without affecting the dimensionality of the matrices, we can take the highest value as the asymptotic
cost of the algorithm, which is O(n3).

A.2 Tangent Space Optimization

Optimization in Riemannian manifolds normally requires Riemannian Stochastic Gradient Descent
(RSGD) [15] or other Riemannian techniques [11]. We performed initial tests converting the Eu-
clidean gradient into its Riemannian form, but found it to be less numerically stable and also slower
than tangent space optimization [26]. With tangent space optimization, we can use standard Eu-
clidean optimization techniques, and respect the geometry of the manifold. Note that tangent space
optimization is an exact procedure, which does not incur losses in representational power. This is the
case in SPDn specifically because of a completeness property given by the choice of I ∈ SPDn as
the basepoint: there is always a global bijection between the tangent space and the manifold.

B Experimental Details

All models and experiments were implemented in PyTorch [64] with distributed data parallelism, for
high performance on clusters of CPUs/GPUs.

Hardware: All experiments were run on Intel Cascade Lake CPUs, with microprocessors Intel
Xeon Gold 6230 (20 Cores, 40 Threads, 2.1 GHz, 28MB Cache, 125W TDP). Although the code
supports GPUs, we did not utilize them due to higher availability of CPU’s.

4https://en.wikipedia.org/wiki/Big_O_notation
5https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_

operations

18

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

(a) ’Also see’ (b) ’Has part’ (c) ’Instance hypernym’

(d) ’Member meronym’ (e) ’Member of domain region’ (f) ’Member of domain usage’

(g) ’Similar to’ (h) ’Synset domain topic of’ (i) ’Verb group’

Figure 6: Train, negative and validation triples for WN18RR relationships of the SPDF1

Scamodel after
convergence. The red dot corresponds to the relation addition R.

B.1 Knowledge Graph Completion

Setup: We train for 5000 epochs, with batch size of 4096 and 10 negative samples, reducing the
learning rate by a factor of 2 if the model does not improve the performance on the dev set after 50
epochs, and early stopping based on the MRR if the model does not improve after 500 epochs. We
use the burn-in strategy [62] training with a 10 times smaller learning rate for the first 10 epochs.
We experiment with matrices of dimension n × n where n ∈ {14, 20, 24} (this is the equivalent
of {105, 210, 300} degrees of freedom respectively), learning rates from {1e−4, 5e−5, 1e−5} and
weight decays of {1e−2, 1e−3}.

Datasets: Stats about the datasets used in Knowledge graph experiments can be found in Table 4.

Results: In addition to the results provided in §6.1, in Table 5 we provide a comparison with other
state-of-the-art models. We include ComplEx [77], Tucker [9], and Quaternion [92].

Analisis: In Figure 6 we add equivalent plots to the ones explained in §6.4 for other relations from
WN18RR.

B.2 Knowledge Graph Recommender Systems

Setup: We train for 3000 epochs, with batch size from {512, 1024} and 10 negative samples, and
early stopping based on the MRR if the model does not improve after 200 epochs. We use the burn-in
strategy [62] training with a 10 times smaller learning rate for the first 10 epochs. We report average
± standard deviation of 3 runs. We experiment with matrices of dimension 10 × 10 (this is the

Table 4: Statistics for Knowledge Graph completion datasets.
Dataset Entities Relations Train Dev Test

WN18RR 40943 11 86835 3034 3134
FB15k-237 14541 237 272115 17535 20466

19

Table 5: Results for Knowledge graph completion.
WN18RR FB15k-237

Space Model MRR HR@1 HR@3 HR@10 MRR HR@1 HR@3 HR@10

C ComplEx 48.0 43.5 49.5 57.2 35.7 26.4 39.2 54.7
RotC 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3

Q Quaternion 48.8 43.8 50.8 58.2 36.6 27.1 40.1 55.6

R
Tucker 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4
MuRE 47.5 43.6 48.7 55.4 33.6 24.5 37.0 52.1
RotE 49.4 44.6 51.2 58.5 34.6 25.1 38.1 53.8
RefE 47.3 43.0 48.5 56.1 35.1 25.6 39.0 54.1

H
MuRP 48.1 44.0 49.5 56.6 33.5 24.3 36.7 51.8
RotH 49.6 44.9 51.4 58.6 34.4 24.6 38.0 53.5
RefH 46.1 40.4 48.5 56.8 34.6 25.2 38.3 53.6

SPD

SPDR
Sca 48.1 43.1 50.1 57.6 34.5 25.1 38.0 53.5

SPDF1
Sca 48.4 42.6 51.0 59.0 32.9 23.6 36.3 51.5

SPDR
Rot 46.2 39.7 49.6 57.8 32.7 23.4 36.1 51.4

SPDF1
Rot 38.6 25.6 48.7 56.8 31.4 22.3 34.7 49.8

SPDR
Ref 48.3 44.0 49.7 56.7 32.5 23.4 35.6 51.0

SPDF1
Ref 48.7 44.3 50.1 57.4 30.7 21.7 33.7 48.8

equivalent of {55} degrees of freedom), learning rates from {5e−4, 1e−4, 5e−5} and weight decay
of 1e−3. Same grid search is applied to baselines.

Datasets: On the Amazon dataset we adopt the 5-core split for the branches "Software", "Luxury
& Beauty" and "Industrial & Scientific", which form a diverse dataset in size and domain. We add
relationships used in previous work [95, 3]. These are:

• also_bought: users who bought item A also bought item B.

• also_view: users who bought item A also viewed item B.

• category: the item belongs to one or more categories.

• brand: the item belongs to one brand.

On the MindReader dataset, we consider a user-item interaction when a user gave an explicit positive
rating to the movie. The relationships added are:

• directed_by: the movie was directed by this person.

• produced_by: the movie was produced by this person/company.

• from_decade: the movie was released in this decade.

• followed_by: the movie was followed by this other movie.

• has_genre: the movie belongs to this genre.

• has_subject: the movie has this subject.

• starring: the movie was starred by this person.

Statistics of the datasets with the added relationships can be seen in Table 6. For dev/test we only
consider users with 3 or more interactions.

Table 6: Statistics for KG Recommender datasets.

Dataset Users Items Other
Entities

Train Relations Dev/Test
User-item Others

Software 1826 802 689 8242 6078 1821
Luxury Beauty 3819 1581 2 20796 26044 3639
Prime Pantry 14180 4970 1100 102848 99118 14133
MindReader 961 2128 11775 11279 99486 953

20

Table 7: Statistics for Question Answering datasets.
TRECQA WIKIQA

Train Qs 1227 2119
Dev Qs 65 127
Test Qs 68 244

Train pairs 53417 20361
Dev Pairs 1117 1131
Test Pairs 1442 2352

B.3 Question Answering

Setup: We train for 300 epochs, with 2 negative samples and early stopping based on the MRR if
the model does not improve after 20 epochs. We use the burn-in strategy [62] training with a 10 times
smaller learning rate for the first 10 epochs. We report average ± standard deviation of 3 runs. We
experiment with matrices of dimension 14× 14 (equivalent of 105 degrees of freedom respectively),
batch size from {512, 1024}, learning rate from {1e−4, 5e−5, 1e−5} and weight decays of 1e−3.
Same grid search was applied to baselines.

Datasets: Stats about the datasets used for Question Answering experiments can be found in
Table 7.

C Differential Geometry of SPDn

C.1 Orthogonal Diagonalization

Every real symmetric matrix may be orthogonally diagonalized: For every point P ∈ SPDn we
may find a positive diagonal matrix D and an orthogonal matrix K such that P = KDKT . This
diagonalization has two practical consequences: it allows efficient computation of important SPDn

operations, and provides another means of generalizing Euclidean notions to SPDn.

With respect to computation, if P ∈ SPDn has orthogonal diagonalization P = KDKT , we may
compute its square root and logarithm as

√
P = K

√
DKT and log(P) = K log(D)KT where√

D = diag(
√
d1, . . . ,

√
dn) and log(D) = diag(log d1, . . . , log dn) for D = diag(d1, . . . , dn).

Similarly, if a tangent vector U ∈ Sn has orthogonal diagonalization U = KΛKT (here Λ =
diag(λ1, . . . , λn) not necessarily positive definite), the exponential map is computed as exp(U) =
KeΛKT , where eΛ = diag(eλ1 , . . . eλn).

We verify this in the two lemmas below.
Lemma 1. If K ∈ O(n) and X is any n× n matrix, then exp(KXKT) = K exp(X)KT .

Proof. As K is orthogonal, KT = K−1. Conjugation is an automorphism of the algebra of n× n
matrices, and so applying this to any partial sum of the exponential exp(X) =

∑∞
n=0

1
n!X

n yields

N∑
n=0

1

n!
(KXK−1)n = K

(
N∑
n=0

1

n!
Xn

)
K−1.

Taking the limit of this equality as N →∞ gives the claimed result.

Lemma 2. If D = diag(d1, . . . , dn) is a diagonal matrix, then exp(D) = diag(ed1 , . . . , edn).

Proof. The multiplication of diagonal matrices coincides with the elementwise product of their
diagonal entries. Again applying this to any partial sum of the exponential of D = diag(d1, . . . , dn)
gives

N∑
n=0

1

n!
diag(. . . , di . . .)

n = diag

(
. . . ,

N∑
n=0

1

n!
dni , . . .

)
.

Taking the limit of this equality as N →∞ gives the claimed result.

21

C.2 Metric and Isometries

The Riemannian metric on SPDn is defined as follows: if U, V ∈ Sn are tangent vectors based at
P ∈ SPDn, their inner product is:

〈U, V 〉P = tr(P−1UP−1V).

Note that at the basepoint, this is just the standard matrix inner product 〈U, V 〉I = tr(UV T) as U, V
are symmetric. We now verify the GL(n,R) action given by M acting as P 7→MPMT is an action
by isometries of this metric.

Lemma 3. The action f(P) = MPMT extends to tangent vectors U based at P without change in
formula: f∗(U) = MUMT

Proof. Let P ∈ SPDn and U ∈ Sn be a tangent vector based at P . Then by definition, U = P ′0 is
the derivative of some path Pt of some path of matrices in SPDn throguh P0 = P . We compute the
action of P →MPMT on U by taking the derivative of its action on the path:

d

dt

∣∣∣
t=0

MPtM = MP ′tM
∣∣∣
t=0

= MUMT

Proposition 1. For every M ∈ GL(n;R) the transformation M 7→MPMT preserves the Rieman-
nian metric on SPDn.

Proof. Let M ∈ GL(n;R) and choose arbitrary point P ∈ SPDn, and tangent vectors U, V ∈
TP SPDn. We compute the pullback of the metric under the symmetry f(P) = MPMT . Computing
directly from the definition an the previous lemma,

f∗〈U, V 〉P = 〈f∗U, f∗V 〉f(P)

= 〈MUMT ,MVMT 〉MPMT

= tr
((
MPMT

)−1
MUMT

(
MPMT

)−1
MVMT

)
= tr

(
M−TP−1UP−1VMT

)
= tr

(
P−1UP−1V

)
= 〈U, V 〉P ,

where the penultimate equality uses that trace is invariant under conjugacy.

This provides a vivid geometric interpretation of the previously discussed orthogonal diagonalization
operation on SPDn.

Corollary 1. Given any P ∈ SPDn, there exists a symmetry fixing I which moves P to a diagonal
matrix.

This subspace of diagonal matrices plays an essential role in working with SPDn. As we verify
below, the intrinsic geometry of this subspace of diagonal matrices inherited from the Riemannian
metric on SPDn is flat.

Proposition 2. Let D ⊂ SPDn be the set of diagonal matrices, and define f : Rn → D by
f(x1, . . . , xn) = diag(ex1 , . . . , exn). Then f is an isometry from the Euclidean metric on Rn
to the metric on D induced from SPDn.

Proof. We pull back the metric on D by f , and see that on Rn this results in the standard Euclidean
metric. Given a point x ∈ Rn with tangent vectors y, z ∈ Rn, we compute this as

f∗〈y, z〉x = 〈f∗y, f∗z〉f(x)

22

From the definition of f , we see that the pushforward of y along f is diag(. . . , exiyi, . . .) and
similarly for z. Thus we may compute directly and see the result is the standard dot product on Rn.

〈diag(exiyi),diag(exizi)〉diag(exi) = tr
(
diag(exiyi) diag(e−xi) diag(exiyi) diag(e−xi)

)
= tr (diag(yizi))

=

n∑
i=1

yizi

This subspaceD is in fact a maximal flat for SPDn, the largest dimensional totally geodesic Euclicean
submanifold embedded in SPDn. For more information on the general theory of symmetric spaces
from which the notion of maximal flats arises, see Helgason [39]. For our purposes, it is only
important to note the following fact.

Corollary 2. The set of diagonal matrices in SPDn is an isometrically and totally geodesically
embedded copy of euclidean n-space.

C.3 Exponential and Logarithmic Maps

The Riemannian exponential map gives a connection between the Euclidean geometry of the tangent
space Sn and the curved geometry of SPDn. It assigns the tangent vector U to the point Q = exp(U)
of SPDn reached by traveling along the geodesic starting from the basepoint I in direction U for
distance ‖U‖.
As a consequence of non-positive curvature, exp is a diffeomorphism of Sn onto SPDn, and so
has an inverse: the Riemannian logarithm log : SPDn → Sn. See [10] for a review of the general
theory of manifolds of non-positive curvature. Together, this pair of functions allows one to freely
move between ’tangent space coordinates’ or the original ’manifold coordinates’ which we exploit to
transfer Euclidean optimization schemes to SPDn (see §5).

Secondly, the geometry of SPDn is so tightly tied to the algebra of n×nmatrices that the Riemannian
exponential agrees exactly with the usual matrix exponential, and the Riemannian logarithm is the
matrix logarithm (because of this, we do not distinguish the two notationally), as we verify in the
proposition below. Both of these are readily computable via orthogonal diagonalization, as given
in §C.1. This is in stark contrast to general Riemannian manifolds, where the exponential map may
have no simple formula.

Proposition 3. Let expRiem : Sn → SPDn be the Riemannian exponential map based at I ∈ SPDn,
and exp be the matrix exponential. Then expRiem = exp.

Proof. Let U ∈ Sn be a tangent vector to SPDn at the basepoint I , and orthogonally diagonalize
as U = KDKT for some K ∈ O(n), D = diag(d1, . . . , dn). As D is tangent to the maximal flat
D of diagonal matrices, the geodesic segment expRiem(tD) must be a geodesic in D, which we
know from Lemma 3 to be the coordinate-wise exponential of a straight line in Rn. Precisely, this
geodesic is diag(. . . , edit, . . .), and so the original geodesic with initial tangent U = KDKT is
expRiem(tU) = K diag(. . . , edit, . . .)KT by Lemma 1. Specializing to t = 1, this gives the claim:

expRiem(U) = K expRiem(D)KT

= K diag(. . . , edi , . . .)K−1

= K exp(D)K−1

= exp(KDK−1)

= exp(U)

This easily transfers to an understanding of the Riemannian exponential at an arbitrary point P ∈
SPDn, if we identify the tangent space at P with the symmetric matrices Sn as well.

23

Corollary 3. The exponential based at an arbitrary point P ∈ SPDn is given by

expRiem,P (U) =
√
P exp(

√
P−1U

√
P−1)

√
P

Proof. Given P ∈ SPDn and tangent vector U ∈ TP SPDn identified with the set Sn of sym-
metric matrices, note that X 7→

√
P−1X

√
P−1 is a symmetry of SPDn taking P to I and U to√

P−1U
√
P
−1

. Using the fact that we understand the Riemannian exponential at the basepoint, we
see expRiem(

√
P−1U

√
P−1) = exp(

√
P−1U

√
P−1). It only remains to translate the result back to

P , giving the claimed formula.

Proposition 4. Let logRiem : SPDn → Sn be the Riemannian logarithm map based at 0 ∈ Sn, and
log be the matrix logarithm (note that while the matrix logaritm is multivalued in general, it is
uniquely defined on Sn). Then logRiem = log.

Proof. Defined as the inverse of expRiem, the Riemannian logarithm must satisfy

logRiem ◦ expRiem = idSn

LetU ∈ Sn and orthogonally diagonalize asU = KDKT . Applying the Riemannian exponential, we
see logRiem(K exp(D)KT) = KDKT . Recalling from Lemma 3 the relation between isometries
of SPDn and their application on tangent vectors, we see that we may rewrite the left hand side
as logRiem(K exp(D)KT) = K logRiem(exp(D))KT . Appropriately cancelling the factors of
K,KT we arrive at the relationship

logRiem(exp(D)) = D.

That is, restricted to the diagonal matrices, the Riemannian logarithm is an inverse of the matrix
exponential, so Riemannian log equals matrix log. Re-absorbing the original factors of K shows the
same to be true for any positive definite symmetric matrix; thus logRiem = log.

As for the exponential, conjugating by a symmetry moving I to an arbitrary point P , we may describe
the Riemannian logarithm at any point of SPDn.

Corollary 4. The logarithm based at an arbitrary point P ∈ SPDn is given by

logRiem,P (Q) =
√
P log(

√
P−1Q

√
P−1)

√
P

C.4 Vector-valued Distance

Here we collect useful observations about the vector-valued distance on SPDn, culminating in a
proof of the fact that it is a complete invariant of pairs of points, as claimed in §3.

Proposition 5. The vector-valued distance is well-defined: given any pair P,Q ∈ SPDn of points
and any two isometries taking P,Q to the basepoint, a diagonal matrix respectively, the diagonal
matrices differ at most by a permutation of their entries.

Proof. We see heuristically that there is no remaining continuous degree of freedom by dimension
count: the isometry group GL(n;R) has dimension n2, and we require dim(SPDn) = n(n+ 1)/2
degrees of freedom to translate P to the origin, and a further dimO(n) = n(n − 1)/2 degrees of
freedom to diagonalize the image of Q while fixing I . As dimGL(n;R) = dim SPDn + dimO(n),
there are no remaining continuous degrees of freedom. To see that the remaining ambiguity is
precisely permutation of coordinates, note that conjugating a diagonal matrix by an orthogonal matrix
results in another diagonal matrix only if the conjugating matrix is a permutation matrix.

Proposition 6. If two points P,Q ∈ SPDn have the same vector-valued distance from the basepoint
I , then there is an isometry fixing I taking P to Q.

24

Proof. For two matrices to have the same vector-valued distance from I is equivalent to those two
matrices having the same set of eigenvalues. Let λ1, . . . , λn be a list of these eigenvalues with
multiplicity, and construct two orthonormal bases (vi), (wi) of Rn as follows. For each i, let vi be an
eigenvector of P with eigenvalue λi, and wi an eigenvector of Q with eigenvalue λi (in the case the
eigenvalues are distinct, such bases are unique up to flipping the sign of each vector, but nontrivial
choices must be made in the case of coincident eigenvalues). Given this pair of orthonormal bases,
let K ∈ O(n) be the orthogonal matrix which takes (vi) to (wi). It is then an easy observation of
linear algebra to note that Q = KPK−1, but recalling KT = K−1 we see this is interpreted in the
geometry of SPDn to say that there is an isometry X 7→ KXKT fixing I and taking P to Q.

Combining Propositions 5 and 6, after translating appropriately to the basepoint yields the following
cornerstone of the theory, showing the vector-valued distance to be the best possible invariant.
Corollary 5. The vector-valued distance is a complete invariant of pairs of points. Two pairs of
points (P,Q) and (P ′, Q′) cam be mapped to one another by an isometry if and only if they have the
same vector-valued distance.

It’s important to note that while the vector-valued distance is not literally a metric distance (it is
vector valued, instead of positive-real-number valued, for one) it enjoys some properties analogous to
traditional metric distances. For a brief review of some of these (the vector-valued triangle inequality,
etc) see Kapovich, Leeb & Porti. [46], and Kapovich, Leeb & Millison [45].

One property distinguishing the vector-valued distance from traditional metrics is its assymmetry.
We will wish to recall this relationship later on, and so prove it here for completeness.
Lemma 4. For P,Q ∈ SPDn, the vector-valued distance satisfies

dvv(P,Q) = −dvv(Q,P)

with equality understood up to permutation of coordinates.

Proof. The computation of dvv(P,Q) differs from that of dvv(Q,P) in the first step, where we
reduce it to computing a function of the eigenvalues of P−1Q orQ−1P respectively. Noting these are
inverses of one another, their eigenvalues are reciprocals we may perform the following calculation,
where {λi(X)} denotes the eigenvalues of X .

dvv(Q,P) = log(. . . , λi(Q
−1P), . . .)

= log(. . . , λi((P
−1Q)−1), . . .)

= log(. . . , λi((P
−1Q)−1), . . .)

= log

(
. . . ,

1

λi((P−1Q))
, . . .

)
= − log(. . . , λi((P

−1Q)), . . .)

= −dvv(P,Q)

C.5 Riemannian Distance

This Riemannian metric allows the computation of the length of curves γ : [0, 1]→ SPDn as

length(γ) =

∫ 1

0

√
〈γ′(t), γ′(t)〉γ(t) dt.

This in turn induces a distance function d : SPDn× SPDn → R, by taking the infimum of the
lengths of all paths joining two points:

d(P,Q) = inf
γ : [0,1]→SPDn

γ(0)=P, γ(1)=Q

{
length(γ)

}
While for general Riemannian manifolds such a distance function may be impossible to explicitly
compute, the symmetries of SPDn provide a readily computable formula.

25

Proposition 7. The Riemannian distance from the basepoint I to a point P ∈ SPDn is given by
d(I, P) =

√∑n
i=0 log(λi(P)) where {λi(P)} are the eigenvalues of of P .

Proof. Let P ∈ SPDn be arbitrary, and orthogonally diagonalize as P = KDKT . As K ∈ O(n),
the isometry X 7→ KDKT fixes I , so the distance d(I, P) equals the distance d(I,D). Note as
this action of K is by conjugacy, the diagonal entries di of D are precisely the eigenvalues of P .
As D lies in the totally geodesic Euclidean subspace D, this distance is realized by the unique
Euclidean geodesic connecting I to D. Using Lemma 2, we may translate to familiar coordinates on
Rn and notice this is the distance from the origin 0 to the point x = (log(d1), . . . , log(dn)). That is,
d(I,D) =

√∑
i log(di)2 as claimed.

This immediately generalizes to the distance between a pair of arbitrary points, via conjugating by
a symmetry moving one to the origin. However, with a little more work one may get a simpler
expression for the general distance.

Proposition 8. The Riemannian distance between two arbitrary points P,Q ∈ SPDn is given by
d(P,Q) =

√∑
i log(λi(P−1Q)) where {λi(P−1Q)} are the eigenvalues of of P−1Q.

Proof. If P,Q are arbitrary points in SPDn, we may use an isometry to translate P to the basepoint,
while simultaneously moving Q to R =

√
P−1Q

√
P−1. As isometries preserve distances, we have

d(P,Q) = d(I,R), and by Proposition 7, this distance is completely determined by the eigenvalues
of R. As these are invariant under conjugacy, we replace R with its conjugate by

√
P−1 to get the

matrix

R′ =
√
PR
√
P
−1

=
√
P−1
√
P−1Q

√
P−1
√
P

= P−1Q

C.6 Finsler Distances

The Riemannian distance function on a manifold is completely determined by its Riemannian metric,
a choice of inner product on the tangent bundle. Generalizing this, Finsler metrics are the class of
distance functions which may be constructed from a smoothly varying choice of norm ‖ · ‖F on the
tangent bundle (which need not be induced by an inner product). The basic theory proceeds in direct
analogy to the Riemannian case: the length of a curve γ : [0, 1]→ SPDn with respect to a Finsler
metric is still defined via integration of this norm along the path,and the distance between points by
the infimum of this over all rectifiable curves joining them

lengthF (γ) =

∫ 1

0

‖γ′‖F dt, dF (P,Q) = inf
γ : [0,1]→SPDn

γ(0)=P, γ(1)=Q

{
lengthF (γ)

}

The geometry of SPDn allows the computaiton of all Finsler metrics directly from the vector-valued
distance. As Riemannian metrics are in particular a special case of Finsler metrics, we begin by
recasting our previous observations in this light. In §C.5 we derived a formula for the Riemannian
distance function directly from the infintesimal Riemannian metric. But in light of Corollary 5, since
the Riemannian distance is a function which depends only on its input points up to isometry, it must
also be recoverable from the vector-valued distance. Indeed, looking at Proposition 7 we see there is
a simple rephrasing to this effect:

Corollary 6. The Riemannian distance from the basepoint I to an arbitrary point P ∈ SPDn is the
Euclidean norm of the vector-valued distance from I to P .

One of the great advantages of higher rank symmetric spaces is the generalizations to which this
rephrasing lends itself. Namely, the Euclidean metric is not special in this construction, and any
sufficiently symmetric norm on Rn can induce a distance function on SPDn in this way.

26

Proposition 9. Let ‖−‖ be any norm on Rn which is invariant under the permutation of coordinates.
Then ‖ − ‖ induces a distance function d on SPDn by

d(P,Q) = ‖dvv(P,Q)‖

Proof. We first note this function is well-defined, as by Proposition 5 the vector-valued distance
of (P,Q) is well-defined up to permutation of coordinates, and our norm is invariant under this
symmetry by hypothesis. To see that d is in fact a distance function on SPDn, we now need to show
it satisfies the axioms of a metric:

1. d(P,Q) ≥ 0, d(P,Q) = 0 =⇒ P = Q

2. d(P,Q) = d(Q,P)

3. d(P,R) ≤ d(P,Q) + d(Q,R)

To check the identity of indescernibles (1), note that d is necessarily nonnegative as ‖ − ‖ is, and if
d(P,Q) = 0 then the norm of dvv(P,Q) is zero, so the vector-valued distance itself is zero. But as
this is a complete invariant and dvv(P, P) = 0, this means P = Q.

Note that symmetry (2) is not automatic as the vector-valued distance itself is asymmetric. However
recalling Lemma 4, we see that changing the order causes only a global negative sign, and the central
symmetry of ‖ − ‖, as a virtue of being a norm, gives equality.

The triangle inequality (3) is more subtle, and requires an understanding of the triangle inequality for
the vector-valued distance. See the dissertation of Planche [66], Chapter 6 and the work of Kapovich,
Leeb and Millson [45] for details.

For our experiments, the most important such distances are induced by the `1 and `∞ norms on Rn.
For completeness, the resulting distance functions are described below.
Proposition 10. The distance function induced from the `1 metric applied to the vector-valued
distance can be computed as dF1

(P,Q) =
∑n
i=1 | log λi(P

−1Q)|, where λi(P−1Q) runs over the
eigenvalues of P−1Q.

Proof. The vector-valued distance dvv(P,Q) is the vector of logarithms of the eigenvalues of R =
P−1Q, and its `1 norm is the sum of their absolute values:

‖(log(λ1(R), . . . , λn(R))‖`1 =

n∑
i=1

| log λi(R)|

where λi(R) is the ith eigenvalaue of R, in decreasing order.

A similar calculation yields the formula for the F∞ distance function.
Proposition 11. The distance function induced from the `∞ metric applied to the vector-valued
distance can be computed as dF∞(P,Q) = λ1(P−1Q) where λ1(−) returns the largest eigenvalue
of the input matrix.

C.7 Relations with Other Metrics

Other distances previously used in the literature can be reconstructed from the vector-valued distance,
by applying a suitable function:

The Affine Invariant metric of [65] is nothing but the usual Riemannian metric discussed in §C.5.

The symmetric Stein divergence [71], is given by

S(P,Q) := log det
P +Q

2
− 1

2
log det(PQ)

This can be computed from the vector-valued distance

dvv(P,Q) = log(λ1(P−1Q), . . . , λn(P−1Q))

27

by applying the function

‖v‖S =

n∑
i=1

log
e−vi/2 + evi/2

2
.

Indeed
S(P,Q) = log det P+Q

2 − 1
2 log det(PQ)

= log detP
(

Id+P−1Q
2

)
− log det(P

√
P−1Q)

= log det Id+P−1Q
2 − log det(

√
P−1Q)

=
∑n
i=1 log λi

(
Id+P−1Q

2
√
P−1Q

)
=
∑n
i=1 log

(
λi(P

−1Q)−1/2+λi(P
−1Q)1/2

2

)
In particular we obtain, thanks to the vector-valued distance, a more direct proof of [72].

Instead the Log-Euclidean metric dLE [5, 6] is flat, and as such doesn’t reflect the curved geometry of
SPD. More precisely dLE is the pushforward, through the exponential map expRiem : Sn → SPD of
the Euclidean metric on Sn. As a result, for this choice (SPDn, dLE) is isometric to the flat manifold
Sn. Since the group GL(n,R) does not act by isometries on (SPDn; dLE), and the distance is
therefore not related to the vector-valued distance nor can be computed from it.

Similarly the Bures-Wasserstein metric dBW inspired from quantum information theory [13] leads to
a non-negatively curved manifold, and thus, again, has a different isometry group. More precisely

dBW (P,Q) =

√
tr(P) + tr(Q)− 2

√
tr(PQ).

It is computed in [13, Page 15] that the group of isometries of (SPDn, dBW) is reduced to O(n). As
a result, once again, dBW cannot be reconstructed from dvv .

D Gyrocalculus

A primary difficulty of building analogs of Euclidean quantities in curved spaces is the lack of a vector
space structure, making the translation of operations like vector addition or scalar multiplication
difficult to immediately interpret. The need for these is already well-noted stumbling block in
hyperbolic geometry, as any algorithm using the Euclidean addition of points cannot be implemented
directly (for example considering the Poincare disk model, the sum of two points in the disk need not
lie in the disk: and even when it does, the result is rarely geometrically meaningful). To combat this,
means of interfacing with hyperbolic geometry using "vector-space-like" operations was developed
by Ungar [81], which provides an analog of addition⊕ : Hn×Hn → Hn and of scalar multiplication
⊗ : R×Hn → Hn called ‘gyro-addition’ and ’gyro-scalar multiplication’ respectively. We give a
brief introduction to this general theory below, see Ungar’s treatment from the lens of differential
geometry [80] for further information.

D.1 Gyrogroups

Gyrogroups are a generalization of groups which encode algebraically some of the geometric
properties of symmetric spaces. More precisely, a gyrogroup structure on a set G is given by a binary
operation ⊕, which is assumed to have an identity element 0 ∈ G and left inverses 	g for each
g ∈ G. Keeping with the conventions familiar from arithmetic, we write a	 b to mean a⊕ (b). The
crucial difference from group theory is that ⊕ is not required to be associative. Instead, the additional
structure of a gyration operator gyr : G×G→ Aut(G) captures the nonassociativity of ⊕ by

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr(a, b)c

.

For (G,⊕, gyr) to form a gyrogroup, an additional axiom is imposed on this gyration, namely that it
satisfy the left loop identity, gyr(a, b) = gyr(a⊕ b, b).

Gyrogroups generalize groups in the sense that every group G is a gyrogroup with its usual binary
operation as ⊕, and trivial gyration. As with standard groups, it is helpful to have at one’s disposal
a collection of elementary deductions from these axioms, which may significantly simplify further
calculations.

28

Proposition 12. The identity of a gyrogroup is unique, every left inverse is also a right inverse, and
every element has a unique (left, and hence also right) inverse.

See [80] §3 for a proof of this proposition, which uses only the axioms of a gyrogroup. It can be
shown that when a gyrogroup structure exists on a set G, it is determined by the operation ⊕ alone,
in the sense that for any a, b, c we have

gyr(a, b)c = ((a⊕ b))⊕ (a⊕ (b⊕ c)) (11)

We record also useful properties of the gyration operator following from this, which simplify
calculation.
Proposition 13. The following gyrations are trivial: the gyration of any element with zero
gyr(0, a) = gyr(0, a) = gyr(a, a) = idG, or with its inverse gyr(a, a) = gyr(a,	a) = idG. A
useful consequence of these is the nested gyration identity:

gyr(a,	 gyr(a, b)b) gyr(a, b) = idG

These are also proven in [80] §3 , and follow directly from the axioms of a gyrogroup.

Because of the additional complexity of ⊕ compared to the binary operation of a standard group, it is
often useful in applications to introduce a second binary operation, the gyrogroup co-operation �
and its inverse �, defined by

a� b = a⊕ gyr(a,	b)b a� b = a�	a
This operation provides a useful shorthand for solving equations in gyrogroups, which we discuss in
D.2.1.

Finally, we give a means of computing the VVD in terms of these operations as claimed in §4.
Proposition 14. The vector-valued distance from P toQ is the vector of logarithms of the eigenvalues
of (P)⊕Q.

Proof. This is the matrix (P)⊕Q = P−1 ⊕Q =
√
P 1Q

√
P−1, which is conjugate to P−1Q (as

in 8), and so has the same eigenvalues. But the logarithm of these eigenvalues is precisely the vector
value distance as defined in §3.1.

D.2 Gyro-vector Spaces

Though the operation ⊕ is not commutative in the usual sense, a gyrogroup G is called gyro-
commutative if it commutes up to gyrations: ie for every a, b ∈ G, a⊕ b = gyr(a, b)(b⊕ a). It is
within this restricted class of gyro-commutative gyrogroups that a satisfactory analog of familiar
vector space operations can be constructed [82].

A gyrovector space is a gyro-commutative gyrogrorup (G,⊕) together with a scalar multiplication
⊗ : R × G → G such that 1 acts as the identity, and its interaction with standard multiplication,
gyro-addition and gyration are constrained by

r1 ⊗ (r2 ⊗ a) = r1r2 ⊗ a
(r1 + r2)⊕ a = (r1 ⊗ a)⊕ (r2 ⊗ a)

r ⊗ gyr(a, b)c = gyr(a, b)(r ⊗ c)
gyr(r1 ⊗ a, r2 ⊗ a) = I

(12)

Typically a gyrovector space is also assumed to be constructed within an ambient real inner product
space, and there are additional compatibility relations between the operations of (G,⊕,⊗) and the
ambient vector space addition (+) and norm ‖v‖ =

√
v · v.

Gyro-vector spaces generalize vector spaces much as gyro-groups generalized groups: every vector
space is a gyro-vector space with trivial gyration. As such, the formalism of gyro-vector spaces
provides a convenient generalization where one may attempt to replace +,−,× in formulas familiar
from Euclidean spaces with⊕,	,⊗; being careful to recall that gyro-addition is neither commutative
nor associative, and gyro-multiplication rarely distributes over ⊕.

29

D.2.1 Solving Equations in Gyrogroups

As an example of the difficulties posed by this, if one requires the solution to the Euclidean equation
a + x = b, it is equally correct to write x = b − a or x = −a + b. But the translations x = b 	 a
and x = 	a ⊕ b into a gyrogroup G need not be equal, and generically only the latter solves the
gyrovector equation a⊕ x = b.

To make this more systematic, note that working inwards respecting the order of operations, we are
able to solve any equation in a gyrogroup if we compute a left cancellation law, right cancellation
law and invert scalar multiplication.
Proposition 15 (Left-Cancellation). Let a, b be elements of a gyrogroup G. Then the relation
a⊕ x = b is satisfied by the unique value x = (a)⊕ b.

Proof. Substituting the claimed expression for x, we verify by direct computation from the axioms
of a gyrogroup, and the basic properties of Propositions 12.

a⊕ x = a⊕ ((a)⊕ b)
= (a⊕	a)⊕ gyr(a,	a)b

= 0⊕ gyr(a,	a)b

= idG(b)

= b

Proposition 16 (Right-Cancellation). Let a, b be elements of a gyrogroup G. Then the relation
x ⊕ a = b is satisfied by the unique value x = b � a = a 	 gyr(a,	b)b, where � is the additive
inverse of the gyrogroup co-operation from Section D.1.

Proof. To begin, we put the proposed solution b� a in a more usable form:

b� a = b�	a
= b⊕ gyr(b,		 a)	 a
= b	 gyr(b, a)a

We now verify the claim by subsituting the given value of x, and using the properties described in
Propositions 12 and 13, (in particular, in the third step we expand a using nested gyration)

x⊕ a = (b� a)⊕ a
= (b	 gyr(b, a)a)⊕ idG(a)

= (b	 gyr(b, a)a)⊕ (gyr(b,	 gyr(b, a)a) gyr(b, a)a)

= b⊕ (gyr(b, a)a⊕ gyr(b, a)a)

= b⊕ 0

= b

Proposition 17 (Inverting Scalar Multiplication). Let r ∈ R be any scalar, and a an element of a
gyrogroup G. Then the relation r ⊗ x = a is satisfied by the unique element x =

(
1
r

)
⊗ a.

Proof. Substituting x immediately yeidls the result given the axioms of gyro-scalar multiplication:

r⊗ = r ⊗
(

1

r
⊗ a
)

=

(
r × 1

r

)
⊗ a

= 1⊗ a
= a

30

These three cancellation laws allow one work correctly with the gyro-translations of Euclidean vector
space statements. Take for example the vector space expression a+ rx+ b = c for vectors a, b, c, x
and scalar r. One possible gyro-vector space translation of this is (a⊕ (r ⊗ x))⊕ b = c — and given
this translation, we may work fully within the gyrovector space to solve for x as follows:

(a⊕ (r ⊗ x))⊕ b = c

a⊕ (r ⊗ x) = c� b

r ⊗ x = (a)⊕ (c� b)

x =
1

r
⊗ ((a)⊕ (c� b))

31

