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A Related Work

We here focus on the related works on MARL with provable convergence guarantees.

A.1 Multi-agent RL in Markov Games

Stemming from the seminal work Littman [1994], Markov games have been widely recognized as
the benchmark setting for MARL. Littman [1994] focused on the zero-sum setting, and developed
minimax Q-learning algorithm with asymptotic converge guarantees [Szepesvári and Littman, 1999].
However, this algorithm requires each agent to observe the opponent’s action. More importantly, each
agent is fully aware of the zero-sum game being played, and solves a linear program to solve a matrix
game at each iteration. Subsequently, Bowling and Veloso [2001] proposed that a preferable MARL
algorithm should be both rational and convergent: a rational algorithm ensures that the iterates
converge to the opponent’s best-response if the opponent converges to a stationary policy; while a
convergent algorithm ensures convergence to some equilibrium if all the agents apply the learning
dynamics. In this sense, minimax Q-learning is not rational. In contrast, our learning dynamics is
both rational and convergent.

In the same vein as minimax Q-learning, with coordination among agents, asymptotic convergence
has also been established for other Q-learning variants beyond the zero-sum setting [Littman, 2001,
Hu and Wellman, 2003, Greenwald et al., 2003]. Borkar [2002] has also established the asymptotic
convergence of an actor-critic algorithm to a weaker notion of generalized Nash equilibrium. Recently,
there is an increasing interest in studying the non-asymptotic performance of MARL in Markov
games [Pérolat et al., 2015, Wei et al., 2017, Sidford et al., 2019, Xie et al., 2020, Bai and Jin, 2020,
Bai et al., 2020, Zhang et al., 2019, 2020, Shah et al., 2020, Liu et al., 2020, Zhao et al., 2021]. These
algorithms are in essence centralized, in that they require either the control of both agents [Pérolat
et al., 2015, Sidford et al., 2019, Xie et al., 2020, Bai and Jin, 2020, Bai et al., 2020, Zhang et al.,
2019, 2020, Shah et al., 2020, Liu et al., 2020, Zhao et al., 2021], or at least the observation of the
opponent’s actions [Wei et al., 2017, Xie et al., 2020].

Two closely related recent papers Leslie et al. [2020] and Sayin et al. [2020] have presented, respec-
tively, continuous-time best response dynamics and discrete-time fictitious play dynamics that can
converge to an equilibrium in zero-sum Markov games. They have established provable convergence
by addressing the non-stationarity issue through a two-timescale framework. Though these two-
timescale dynamics share a similar flavor with our approach, still, observing the opponent’s mixed
strategy (in Leslie et al. [2020]) or actions (in Sayin et al. [2020]) is indispensable in them and plays
an important role in their analysis. This is in stark contrast to our dynamics that require minimal
information, i.e., being radically uncoupled [Foster and Young, 2006, Leslie and Collins, 2005].

A.2 Decentralized Multi-agent Learning

Decentralized learning is a desired property, and has been studied for matrix games (single-state
Markov games) under the framework of no-regret learning [Cesa-Bianchi and Lugosi, 2006, Freund
and Schapire, 1999, Mertikopoulos and Zhou, 2019]. Leslie and Collins [2005] also proposed
individual softQ-learning dynamics for zero-sum matrix games. For general Markov games, however,
it is known that blindly applying independent/decentralized Q-learning can easily diverge, due to the
non-stationarity of the environment [Tan, 1993, Boutilier, 1996, Matignon et al., 2012]. Despite this,
the decentralized paradigm has still attracted continuing research interest [Arslan and Yuksel, 2017,
Pérolat et al., 2018, Daskalakis et al., 2020, Tian et al., 2020, Wei et al., 2021], since it is much more
scalable and natural for agents to implement. Notably, these works are not as decentralized and as
general as our learning dynamics.

Specifically, the algorithm in Arslan and Yuksel [2017] requires the agents to coordinately explore ev-
ery multiple iterations (the exploration phase), without changing their policies within each exploration
phase, in order to create a stationary environment for each agent. Similar to our work, Pérolat et al.
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[2018] also proposed decentralized and two-timescale algorithms, which, however, is an actor-critic
algorithm where the value functions are estimated at a faster timescale (critic step), and the policy
is improved at a slower one (actor step). More importantly, the algorithm only applies to Markov
games with a “multistage” structure, in which each state can only be visited once. Establishing
convergence in general zero-sum Markov games is posted as an open problem in Pérolat et al. [2018].
In Daskalakis et al. [2020], the agents have to coordinate to use two-timescale stepsizes in the updates.
In contrast, our learning dynamics does not require any coordination among agents, and each agent
plays a symmetric role in learning, referred to as strongly independent in Daskalakis et al. [2020].
In fact, developing provable guarantees for strongly independent algorithms is considered as an
important open question in Daskalakis et al. [2020].

Two recent works Tian et al. [2020], Wei et al. [2021] studied the decentralized setting that is closest
to ours. Tian et al. [2020] focused on the exploration aspect for finite-horizon settings, and considered
a weak notion of regret. It is unclear if the learning dynamics converge to any equilibrium when
both agents apply it4. Contemporaneously, Wei et al. [2021] presented an interesting optimistic
variant of the gradient descent-ascent method, with a strong guarantee of last-iterate convergence
rates, which shares all the desired properties as our learning dynamics. The algorithm is delicately
designed and different from the common value/policy-based RL update rules, e.g., Q-learning, as in
our work. Moreover, to characterize finite-time convergence, in the model-free setting, the agents
need to coordinate to interact multiple steps at each iteration of the algorithm, while our learning
dynamics is coordination-free with natural update rules. These two works can thus be viewed as
orthogonal to ours.

After submitting the first draft of our paper, we were reminded of an independent and concurrent
work of Guo et al. [2021], which also studied a decentralized learning setting in zero-sum Markov
games. We summarize the substantial differences between the two works as follows.

Motivation: In Guo et al. [2021], being “decentralized” is defined as “each player not knowing the
opponent’s action”, to “protect the privacy”, and the goal is to “compute” the Nash equilibrium of
the game; in contrast, in our work, in addition to “being oblivious to the opponent’s action”, we also
allow no “coordination” among agents, so that each agent can simply run the learning dynamics
“individually”, without even being aware of the existence of the opponent. The agents in our setting are
considered as self-interested decision-makers, who seek to adapt to the opponent’s play by inferring
it from the rewards received without seeing the opponent’s actions. The Nash equilibrium, on the
other hand, is the result that “emerge” naturally when both agents follow this self-interested learning
dynamics (and we have proved this). Finally, as our learning dynamics are oblivious to the opponent
and are adaptive to the opponent, we expect it to converge beyond the zero-sum setting (e.g., the
identical-interest setting), which is one of our ongoing research directions. In contrast, the algorithm
in Guo et al. [2021] is specifically developed for the zero-sum setting. These motivations differ
fundamentally from Guo et al. [2021] (and thus creates very different technical challenges, as detailed
below).

Learning dynamics (Algorithms): The algorithm in Guo et al. [2021], is actor-critic, which is a
type of policy-based RL method; the learning dynamics in our work is Q-learning based, which
belongs to value-based RL methods. More importantly, the update-rule in Guo et al. [2021], is of
“double-loop” form, in the sense that it fixes the iterate of Player 1 while updating Player 2’s policy,
so that a “best-response” policy of Player 2 can be obtained. This is an asymmetric update-rule, and
requires coordination between agents. In contrast, our learning dynamics are “symmetric”, without
such a double-loop coordination, where each agent simply runs her own Q-learning dynamics.

Assumptions and results: Guo et al. [2021] considers a function approximation setting, and assumes
that: 1) the “double-loop” update can be implemented by the agents in the decentralized setting;
2) the concentration (or “Concentrability”) coefficient is finite (Assumption 4.1), for “an arbitrary
sequence of policies”; 3) samples are drawn i.i.d. from the stationary state-action distribution; 4)
projection of the iterates onto some ball with radius R, to ensure the iterates’ stability; and 5) zero
approximation error of the Bellman operator (Assumption 4.2). Under these assumptions, non-
asymptotic convergence results were established. In contrast, our work considers a fundamental
tabular setting, and without making these assumptions (1-4), with instead asymptotic convergence

4Note that the same update rule with different stepsize and bonus choices and a certified policy technique,
however, can return a non-Markovian approximate Nash equilibrium policy pair in the self-play setting, by
storing the whole history of the learning process; see Bai et al. [2020] for more details.
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guarantees. With these significantly different assumptions, it is not clear if one paper’s result implies
the other’s.

Analysis techniques (Technical novelty): The analyses, as well as the technical novelties in both
papers are not comparable. The analysis technique in Guo et al. [2021], is a mirror-descent type
of analysis, based on the convergence analysis of policy gradient (and actor-critic) algorithms in
single-agent RL. The techniques in our paper, however, are based on stochastic approximation theory,
a classic technique in showing the convergence of Q-learning. The challenges we need to address
(our technical novelties) mainly lie in constructing a Lyapunov function and stability of the iterates,
within this non-standard two-timescale stochastic approximation setting, with asynchronous updates.
Such challenges would not be encountered in the analysis of Guo et al. [2021], making the technical
novelties of the two papers fundamentally different.

B Examples

In this section, we provide three sets of parameter examples and highlight whether they satisfy
Assumptions 1 and 2-ii or Assumptions 1 and 2’-ii. Recall that Assumptions 2-i and 2’-i do not
impose conditions on the step sizes nor the temperature parameter.

Example 1. Set the step sizes as αc = c−ρα , βc = c−ρβ , where 1/2 < ρα < ρβ ≤ 1 and the
temperature parameter as

τc =
1

c
τ̄ +

(
1− 1

c

)
ε (18)

for some τ̄ > 0.

In the following, we show that Example 1 satisfies Assumption 1 and 2-ii. Assumption 1-i holds since∑
c>0(1/c)ρ is convergent if ρ > 1, and divergent if ρ ≤ 1. Assumption 1-ii holds since there exists

a non-decreasing polynomial, e.g., C(x) = Mox
m, for all x ≥ 1, where Mo := M−ρβ/(ρβ−ρα) > 0

and m ∈ {m′ ∈ Z+ : m′ ≥ 1/(ρβ − ρα)}. Particularly, we have

βl
αc

=
cρα

lρβ
> λ ⇔ l <

(
1

λ

) 1
ρβ

c
ρα
ρβ . (19)

We claim that Mc ≥ λ−1/ρβcρα/ρβ for all c ≥ C(λ−1) because λ−1/ρβcρα/ρβ ≤Mc yields

c
1− ραρβ ≥

(
1

λ

) 1
ρβ 1

M
⇔ c ≥

(
1

λ

) 1
ρβ−ρα

(
1

M

) ρβ
ρβ−ρα

= Mo

(
1

λ

) 1
ρβ−ρα

. (20)

On the other hand, we have C(λ−1) = Moλ
−m ≥ Moλ

−1/(ρβ−ρα) for all λ ∈ (0, 1) since
m ≥ 1/(ρβ − ρα) by its definition.

Assumption 2-ii holds since {τc} monotonically decreases to ε as c→∞, and

τc+1 − τc
αc

= cρα
[

1

c+ 1
τ̄ +

(
1− 1

c+ 1

)
ε− 1

c
τ̄ −

(
1− 1

c

)
ε

]
(21)

=
cρα

c(c+ 1)
(ε− τ̄), (22)

which goes to zero as c→∞ since ρα < 1, and
∑
c>0 c

−2ρα <∞ since 2ρα > 1. �

Example 2. Set the step sizes as αc = c−ρα , βc = c−ρβ , where 1/2 < ρα < ρβ ≤ 1 and the
temperature parameter as

τ ′c = τ̄
(

1 + τ̄
ραρ

4D
log(c)

)−1

(23)

for some ρ ∈ (0, 2− 1/ρα) and τ̄ > 0.

In the following, we show that Example 2 satisfies Assumption 1 and 2’-ii. Example 2 shares the
same step sizes with Example 1. Therefore, Assumption 1 holds as shown above for Example 1. On
the other hand, Assumption 2’-ii also holds since {τ ′c} monotonically decreases to 0 as c→∞, and

0 ≥
τ ′c+1 − τ ′c

αc
≥ cρα(log(c+ 1)− log(c))

log(c+ 1) log(c)
, (24)
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where the right-hand side goes to zero as c→∞, and

αρc exp

(
4D

τ ′c

)
= c−ραρ exp

(
4D

τ̄

(
1 + τ̄

ραρ

4D
log(c)

))
(25)

= c−ραρ exp

(
4D

τ̄

)
exp (ραρ log(c)) (26)

= exp

(
4D

τ̄

)
, ∀c > 0, (27)

which implies that αρc exp(4D/τ ′c) ≤ C ′ for all c > 0 when C ′ = exp(4D/τ̄). �

Example 3. Set the step sizes as αc = c−ρα , βc = c−ρβ , where 1/2 < ρα < ρβ ≤ 1 and the
temperature parameter as τc = max{ε, τ ′c}, where τ ′c is as described in (23).

In the following, we show that Example 1 satisfies Assumption 1 and 2-ii. Example 3 shares the same
step sizes with Example 1. Therefore, Assumption 1 holds as shown above for Example 1. On the
other hand, Assumption 2-ii also holds since {τc} monotonically decreases to ε as c→∞ (which
follows since {τ ′c} monotonically decreases to 0 as c→∞), and we again have the inequality (24)
and

∑
c>0 c

−2ρα <∞ since 2ρα > 1. �

C Proofs of Propositions 1-3

Proposition 1. Since ᾱik ∈ (0, 1] for all k ≥ 0, βc ∈ (0, 1) for all c > 0, ‖q̂is,0‖∞ ≤ D and
|v̂is,0| ≤ D for all (i, s), the iterates are bounded, e.g., ‖q̂is,k‖∞ ≤ D and |v̂is,k| ≤ D for all (i, s)
and k ≥ 0.

Proof: The proof follows from the fact that the initial iterates are picked within the compact set and
they continue to remain inside it since they are always updated to a convex combination of two points
inside. �

Proposition 2. Suppose that Assumption 1-i and either Assumption 2-ii or 2’-ii hold. Then, there
exists Cs ∈ Z+ for each s ∈ S such that αc exp (2D/τc) < mini=1,2{|Ais|−1}, for all c ≥ Cs.
Correspondingly, the update of the local Q-function estimate (8) reduces to

q̂isk,k+1[aik] = q̂isk,k[aik] +
α#sk

πik[aik]

(
rik + γv̂isk+1,k

− q̂isk,k[aik]
)
,

for all #sk ≥ Csk since α#sk/π
i
k[aik] ≤ |Aisk |α#sk exp (2D/τ#sk) ≤ 1 by (7).

Proof: If Assumption 2-ii holds, then αc exp(2D/τc) ≤ αc exp(2D/ε). Since αc → 0 as c→∞
by Assumption 1-i, there exists such Cs.

If Assumption 2’-ii holds, then

αc exp

(
2D

τc

)
= α1−ρ/2

c

(
αρ exp

(
4D

τc

))1/2

(28)

≤ α1−ρ/2
c

√
C ′, ∀c ≥ C. (29)

Since 1− ρ/2 > 0 and αc → 0 as c→∞, there exists such Cs. �

Proposition 3. Suppose that either Assumption 2 or Assumption 2’ holds. Then, at any stage k,
there is a fixed positive probability, e.g., p > 0, that the game visits any state s at least once within
n-stages independent of how players play. Therefore, #s→∞ as k →∞ with probability 1.

Proof: By Borel-Cantelli Lemma, if we have∑
k≥0

P {#ks ≤ λ} <∞, ∀λ ∈ N, (30)

then we have #ks→∞ as k →∞ ith probability 1. To show (30), we partition the time axis into
n-stage intervals and introduce an auxiliary counting process #̄n

ks that increases by 1 at the end of
each interval if state s is visited at least once within the last n-stages. By its definition, we have
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#̄n
ks ≤ #ks. Correspondingly, we have P {#ks ≤ λ} ≤ P

{
#̄n
ks ≤ λ

}
. The right-hand side is one

for all k < nλ. On the other hand, for k ≥ nλ, we have

P
{

#̄n
ks ≤ λ

}
≤

λ∑
l=0

(⌊ k
n

⌋
l

)
1l(1− p)b

k
nc−l (31)

≤ (1− p)b
k
nc−λ

λ∑
l=0

(⌊ k
n

⌋
l

)
(32)

since (1− p) < 1.

Next, we can resort to the following inequality [Flum and Grohe, 2006, Lemma 16.19]

L∑
l=0

(
k

l

)
≤ 2H2(L/k)k, if L/k ≤ 1/2, (33)

where H2(p) := −p log(p)− (1− p) log(1− p). Therefore, for k ≥ 2nλ, (32) and (33) yield that

P
{

#̄n
ks ≤ λ

}
≤ 1

(1− p)λ
[
(1− p)2H2(λ/bk/nc)

]bk/nc
. (34)

Since H2(p) ≥ 0 is an increasing continous function for p ∈ (0, 0.5) and H2(0) = 0, there
exists κ ∈ N such that (1 − p)2H2(λ/bk/nc) < (1 − p)2H2(λ/bκ/nc) < 1 for all k ≥ κ. Define
ξ := (1− p)2H2(λ/bκ/nc). Then we have∑

k≥0

P {#ks ≤ λ} ≤ κ+
1

(1− p)λ
∞∑

k=κ+1

ξbk/nc ≤ κ+
1

ξ(1− p)λ
∞∑

k=κ+1

(ξ1/n)k (35)

and the right-hand side is convergent since ξ1/n < 1, which completes the proof. �

D Preliminary Information on Stochastic Approximation Theory

Here, we present two preliminary results. The former uses a continuous-time approximation to
analyze a discrete-time update [Benaim, 1999]. The latter is about characterizing the convergence
properties of an asynchronous discrete-time update by exploiting certain bounds on their evolution
[Sayin et al., 2020].

D.1 Stochastic Approximation via Lyapunov Function

The following theorem (follows from [Benaim, 1999, Proposition 4.1 and Corollary 6.6]) characterizes
the conditions sufficient to characterize the convergence properties of a discrete-time update:

xk+1 = xk + λk [F (xk) + εk + ωk] , (36)

through its limiting ordinary differential equation (o.d.e.):

dx(t)

dt
= F (x(t)). (37)

Theorem 2. Suppose that there exists a Lyapunov function V : Rm → [0,∞) for (37).5 Furthermore,

i) The step sizes {λk ∈ [0, 1]}∞k=0 decrease at a suitable rate:
∞∑
k=0

λk =∞ and
∞∑
k=0

λ2
k <∞. (38)

ii) The iterates xk ∈ Rm, for k = 0, 1, . . ., are bounded, e.g., supk ‖xk‖∞ <∞.

5We say that a continous function V is a Lyapunov function for a flow provided that for any trajectory of the
flow, e.g., x(t), V (x(t′)) < V (x(t)) for all t′ > t if V (x(t)) > 0 else V (x(t′)) = 0 for all t′ > t.
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iii) The vector field F : Rm → Rm is globally Lipschitz continous.

iv) The stochastic approximation term ωk ∈ Rm satisfies the following condition for allK > 0,6

lim
k→∞

sup
n>k:

∑n−1
l=k λl≤K

{∥∥∥∥∥
n−1∑
l=k

λlωl

∥∥∥∥∥
}

= 0. (39)

v) The error term εk ∈ Rm is asymptotically negligible, i.e., limk→∞ ‖εk‖ = 0, with probabil-
ity 1.

Then the limit set of (36) is contained in the set

{x ∈ Rm : V (x) = 0}, (40)

with probability 1.

D.2 Asynchronous Stochastic Approximation

Consider the scenarios where we update only a subset of entries of the iterate xk with specific step
sizes. For example, the lth entry of the iterate xk ∈ Rm, denoted by xk[l], gets updated only at
certain (possibly random) time instances with a specific step size λk,l ∈ [0, 1]. Furthermore, there is
not necessarily a time-invariant vector field F as in Theorem 2. The following theorem, [Sayin et al.,
2020, Theorem 3], characterizes the limit set of {xk}k≥0 provided that it evolves within a shrinking
envelope.7

Theorem 3. Suppose that the evolution of {xk}k≥0 always satisfies the following upper and lower
bounds:

xk+1[l] ≤ (1− λk,l)xk[l] + λk,l(γ‖xk‖∞ + εk), (41a)
xk+1[l] ≥ (1− λk,l)xk[l] + λk,l(−γ‖xk‖∞ + εk), (41b)

where γ ∈ (0, 1) is a discount factor, ‖xk‖∞ ≤ D for all k ≥ 0 for a fixed D, and the specific step
sizes satisfy the usual conditions:

∞∑
k=0

λl,k =∞ and
∞∑
k=0

λ2
k,l <∞,

and the errors εk, εk ∈ R satisfy

lim sup
k→∞

|εk| ≤ c and lim sup
k→∞

|εk| ≤ c, (42)

for some c ≥ 0, with probability 1. Then, we have

lim sup
k→∞

‖xk‖∞ ≤
c

1− γ
, (43)

with probability 1.

E Convergence Analysis: Proof of Theorem 1

The proof is built on the following observation: The update of the value function estimate, (9), can be
written as

v̂is,k+1 = v̂is,k + 1{s=sk}β#s

[
T i({v̂is′,k}s′∈S)[s]− v̂is,k + εis,k

]
, (44)

where the tracking error εis,k is defined by

εis,k := πis,k · q̂is,k − vali(Q̂is,k) , (45)

6This is a more general condition than assuming that {ωk} is a square-integrable Martingale difference
sequence, e.g., see [Borkar, 2008, Section 2].

7This theorem is a rather straight-forward modification of [Tsitsiklis, 1994, Theorem 3].
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and the operator T i : R|S| → R|S| is defined by

T i({v̂is′,k}s′∈S)[s] := vali(Q̂is,k), (46)

where Q̂is,k ∈ [−D,D]|A
i
s|×|A

−i
s | corresponding to the global Q-function is defined by

Q̂is,k[ai, a−i] := ris(a
1, a2) + γ

∑
s′∈S

p(s′|s, a1, a2)v̂is′,k, ∀i = 1, 2, (47)

and vali : [−D,D]|A
i
s|×|A

−i
s | → R is8 defined by

vali(Qis,k) := max
µi∈∆(Ais)

min
µ−i∈∆(A−is )

{
(µi)TQis,kµ

−i} . (48)

The non-expansiveness property of vali(·), as shown by Shapley [1953], and the discount factor
γ ∈ (0, 1) yield that the operator is a contraction, e.g.,

‖T i(vi)− T i(ṽi)‖∞ ≤ γmax
s∈S
|vis − ṽis|. (49)

Denote the unique fixed point of the contraction T i by {vis,∗}s∈S . Then, we have vis,∗ =

T i({vis′,∗}s′∈S)[s]. Therefore, the update (44) can be written as

v̂is,k+1 − vis,∗ = v̂is,k − vis,∗
+ 1{s=sk}β#s

[
T i({v̂is′,k}s′∈S)[s]− T i({vis′,∗}s′∈S)[s]− (v̂is,k − vis,∗) + εis,k

]
, (50)

Based on Proposition 3, Theorem 3 and (44) yield that the asymptotic behavior of the value function
estimates can be characterized as follows:

lim sup
k→∞

∣∣v̂is,k − vis,∗∣∣ ≤ 1

1− γ
lim sup
k→∞

εis,k (51)

for all (i, s) ∈ {1, 2} × S. The rest of the proof is about characterizing the asymptotic behavior of
the tracking error (45) and showing that

lim sup
k→∞

εis,k ≤
1

1− γ

(
2 + λ− λγ

1− λγ

)
max
s′∈S
{log(|A1

s′ ||A2
s′ |)} lim

c→∞
τc, (52)

for some λ ∈ (1, 1/γ).

It is instructive to discuss why the existing results cannot directly address this tracking error’s
asymptotic behavior. For example, there exist several well-established results on convergence
properties of learning dynamics in strategic-form games with repeated play for both zero-sum and
potential games, e.g., see Fudenberg and Levine [2009]. The challenge raises since Q̂is,k is not
time-invariant and it depends on both players’ strategies. On the other hand, the existing results to
characterize the convergence properties of the classical (single-agent) Q-learning is helpful only to
obtain (51) and do not address the tracking error (45). Note that if the players are coordinated to
play the equilibrium behavior, e.g., as in Shapley’s value iteration [Shapley, 1953] or Minimax-Q
[Littman, 1994], then the tracking error would be zero by the nature of the updates. However, this
would imply that the players are coordinated to play the equilibrium since

• Players need to know the zero-sum structure of the game,
• Players always play the conservative strategy against the worst-case strategy of the opponent

and do not attempt to take the best reaction when the opponent is not playing the equilibrium
strategy,

• Players need to observe the opponent’s actions to be able to compute the global Q-function
associated with the joint actions.

A two-timescale learning dynamics can address the dependence of the Q-function estimate on the
strategies and correspondingly address the tracking error. However, there are several challenges
especially for radically uncoupled schemes, where players do not observe the opponent’s actions:

8Note that vali technically also depends on s, since As depends on s. We omit s for notational convenience,
and it shall not cause any confusion from the context.

22



i) The local Q-function estimates for different state and local action pairs can get updated at
different frequencies, which poses a challenge for the two-timescale framework to decouple
the dynamics at fast and slow timescales. Particularly, the normalization of the step size
in the update of the local Q-function estimate can ensure that the estimate for each local
action gets updated at the same rate in the expectation. However, this is not sufficient
since estimates for some local actions can lag behind even the iterates evolving on the slow
timescale.

ii) The Q-function estimates may not necessarily sum to zero in general when the players keep
track of it independently, i.e., if there is no central coordinator providing it to them. This is
important because uncoupled learning dynamics cannot converge to an equilibrium in every
class of games, as shown in Hart and Mas-Colell [2003].

iii) The players can keep track of only localQ-function since they cannot observe the opponent’s
action. However, there may not even exist an opponent (mixed) strategy that can lead to the
local Q-function estimate, i.e., they may not be belief-based, whereas this is not the case if
players can observe the opponent’s actions to form a belief on the opponent’s strategy.

In the following, we follow a three-step approach to address these challenges:

1. Decoupling dynamics at the fast timescale by addressing Challenge i).
2. Zooming into the local dynamics (i.e., learning dynamics specific to a single state) at the

fast timescale to address Challenges ii) and iii) via a novel Lyapunov function.
3. Zooming out to the global dynamics (i.e., learning dynamcis across every state) at the slow

timescale to characterize the asymptotic behavior of the tracking error (45).

In the following, we delve into the details of these steps.

E.1 Decoupling dynamics at the fast timescale

Distinct to the radically uncoupled settings, the players can update only the localQ-function estimate’s
entry specific to the current local action. Although this is an asynchronous update, the normalization
makes the evolution of every entry synchronous in the expectation [Leslie and Collins, 2005]. To
show this, we introduce the stochastic approximation error:

ω1
sk,k

[a1] :=1{a1k=a1}
r1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

sk,k
[a1]

π1
k[a1]

− E

{
1{a1k=a1}

r1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

sk,k
[a1]

π1
k[a1]

∣∣∣ δk} , (53)

for all a1 ∈ A1
s, where δk := {q̂is,k, v̂is,k}(i,s)∈{1,2}×S includes the iterates at stage k, and ω2

sk,k
[a2]

for a2 ∈ A2
s is defined accordingly. The expectation is explicitly given by

E

{
1{a1k=a1}

r1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

sk,k
[a1]

π1
k[a1]

∣∣∣ δk}

= π1
k[a1]

∑
ã2

π2
k[ã2]

Q̂1
sk,k

[a1, ã2]− q̂1
sk,k

[a1]

π1
k[a1]

, (54)

where the auxiliary global Q-function estimate is as described in (47). Since the denominator
disappears in (54), the stochastic approximation error is also given by

ω1
sk,k

[a1] =1{a1k=a1}
r1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

sk,k
[a1]

π1
k[a1]

−

(∑
ã2

Q̂1
sk,k

[a1, ã2]π2
k[ã2]− q̂1

sk,k
[a1]

)
. (55)

By Proposition 2, we can write (8) as

q̂isk,k+1 = q̂isk,k + α#sk

(
Q̂isk,kπ

−i
k − q̂

i
sk,k

+ ωisk,k

)
, (56)
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for i = 1, 2 if #sk ≥ Csk and Proposition 3 yields that there exists κs ∈ N such that #k′sk ≥ Csk
for all k′ ≥ κs.
Our goal is to characterize the limit set of this discrete-time update for every state. Like Leslie and
Collins [2005], we can resort to stochastic approximation methods to transform the problem into a
tractable continuous-time flow. Distinct to Markov games, we cannot characterize the convergence
properties of (56) for each state separately. By (47), the update (56) yields that the current state’s
local Q-function estimate is coupled with any other state’s value function estimate. For example, fix
an arbitrary state s and take a closer look at how the iterates change in-between two consecutive visits
to s, denoted by k and k†. Since the game does not visit state s until k†, we have q̂is,k† = q̂is,k+1

and v̂is,k† = v̂is,k+1 for i = 1, 2, and #k†s = #ks + 1. In contrast, other states’ value function
estimates can change depending on the visits to other states at stages within the interval (k, k†).
Correspondingly, the iterates and the temperature parameter at k† can be written in terms of the
iterates at k in the following compact form:

q̂1
s,k†

q̂2
s,k†

v̂1
s,k†

v̂2
s,k†

...
v̂1
s′,k†

v̂2
s′,k†

τ#s+1


=



q̂1
s,k

q̂2
s,k

v̂1
s,k

v̂2
s,k
...

v̂1
s′,k

v̂2
s′,k

τ#s


+ α#s





Q̂1
s,kBr

2

s(q̂
2
s,k, τ#s)− q̂1

s,k

Q̂2
s,kBr

1

s(q̂
1
s,k, τ#s)− q̂2

s,k

0
0
...
0
0
0


+



0
0

ε1
s,k†

ε2
s,k†

...
ε1
s′,k†

ε2
s′,k†

τ#s+1−τ#s
α#s


+



ω1
s,k

ω2
s,k

0
0
...
0
0
0




, (57)

for all k ≥ κs, where we define the error terms by

εis′,k† :=
v̂is′,k† − v̂

i
s′,k

α#s
, ∀(i, s′) ∈ {1, 2} × S. (58)

Based on Proposition 3, we can focus on asymptotic convergence properties of (57). Therefore, we
are interested in when the convergence properties of (57) can be characterized through the following
ordinary differential equation (in which the dynamics for s is decoupled from the dynamics for any
other state)

dq1
s(t)

dt
= Q̄1

sBr
2

s(q
2
s(t), τ̄)− q1

s(t), (59a)

dq2
s(t)

dt
= Q̄2

sBr
1

s(q
1
s(t), τ̄)− q2

s(t), (59b)

for some Q̄is ∈ [−D,D]|A
i
s|×|A

−i
s | for i ∈ {1, 2} and τ̄ > 0. To this end, we can resort to Theorem 2

by showing that the limiting ordinary differential equation of (59) is given by

dq1
s(t)

dt
= Q1

s(t)Br
2

s(q
2
s(t), τs(t))− q1

s(t), (60a)

dq2
s(t)

dt
= Q2

s(t)Br
1

s(q
1
s(t), τs(t))− q2

s(t), (60b)

dvis′(t)

dt
= 0, ∀(i, s′) ∈ {1, 2} × S, (60c)

dτs(t)

dt
= 0, (60d)

where Qis[a
i, a−i](t) = ris(a

1, a2) + γ
∑
s′∈S p(s

′|s, a1, a2)vis′(t) for i = 1, 2. Conditions i (and
ii) in Theorem 2 are satisfied by Assumption 1-i (and Proposition 1). Furthermore, the corresponding
vector field is Lipschitz continous since it is continously differentiable by (7) and defined over a
compact set by Proposition 1. The following two lemmas show that the conditions iv-v listed in
Theorem 2 are also satisfied. The proofs of these technical lemmas are provided in Subsection §E.4.

Lemma 1. Suppose Assumption 1 and either Assumption 2 or 2’ hold. Then, the stochastic approxi-
mation terms (ω1

s,k, ω
2
s,k) satisfy (39) for all T > 0, s ∈ S, and i = 1, 2.
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Assumption 2 ensures that the denominator in the update of the local Q-function estimate is bounded
from below by some non-zero term. On the other hand, Assumption 2’ restrains the rate at which the
denominator gets close to zero while letting limc→∞ τc = 0.

Lemma 2. Suppose Assumption 1 and either Assumption 2 or 2’ hold. Then, the error terms in (57),
{εis,k†}(i,s)∈{1,2}×S and (τ#s+1 − τ#s)/α#s, are asymptotically negligible with probability 1.

In the following step, we will zoom into (59) and formulate a Lyapunov function to characterize the
limit set of not only (59) but also the original discrete-time update (57).9

E.2 Zooming into local dynamics at the fast timescale

In this subsection, we focus only on (59) for an arbitrary state s, therefore, we drop the subscript s
for notational simplicity. For t ∈ [0,∞), we focus on the following dynamics

dq1(t)

dt
= Q1Br

2
(q2(t), τ)− q1(t), (61a)

dq2(t)

dt
= Q2Br

1
(q1(t), τ)− q2(t), (61b)

with arbitrary initialization of qi(0) such that ‖qi(0)‖∞ ≤ D, arbitrary matrices Qi such that
‖Qi‖max ≤ D, and τ > 0. The flow (61) resembles to the local Q-functions’ evolution in the
perturbed best response dynamics:

dπ1(t)

dt
= Br

1
(Q1π2(t), τ)− π1(t), (62a)

dπ2(t)

dt
= Br

2
(Q2π1(t), τ)− π2(t), (62b)

where πi : [0,∞) → ∆(Ai). Indeed, they lead to the same trajectory for (q1, q2) if we have
q1(t) = Q1π2(t) and q2(t) = Q2π1(t). However, there may not always exist a strategy, e.g.,
π2 ∈ ∆(A2), such that q1(t) = Q1π2. If there exists such a strategy, we say q1(t) is belief-based,
and vice versa.

We will examine the flow (61) at a higher-dimensional space to mitigate this issue through

dq1(t)

dt
= Q1Br

2
(q2(t), τ)− q1(t), (63a)

dq2(t)

dt
= Q2Br

1
(q1(t), τ)− q2(t), (63b)

dπ1(t)

dt
= Br

1
(q1(t), τ)− π1(t), (63c)

dπ2(t)

dt
= Br

2
(q2(t), τ)− π2(t), (63d)

where πi(0) ∈ ∆(Ai), for i = 1, 2, are initialized arbitrarily. We highlight the differences among (61),
(62), and (63). In (63), the dependence between (q1, q2) and (π1, π2) is one direction, i.e., the evolu-
tion of (q1, q2) is as in (61) and does not depend on (π1, π2). On the contrary, (π1, π2) is not some
isolated process as in (62). Its evolution depends on (q1, q2) due to (Br

1
(q1(t), τ),Br

2
(q2(t), τ))

instead of (Br
1
(Q1π2(t), τ),Br

2
(Q2π1(t), τ)).

We present the following continous and non-negative function as a candidate Lyapunov function for
(63):

V (q1, q2, π1, π2) :=

∑
i=1,2

max
µ∈∆(Ai)

{µ · qi + τνi(µ)} − λζ


+

+
∑
i=1,2

‖qi −Qiπ−i‖2, (64)

9Lyapunov function plays an important role to deduce convergence properties of the discrete-time update via
the limiting o.d.e. because the convergence of the limiting o.d.e. does not necessarily imply the convergence of
the discrete-time update in general (e.g., see Benaim [1999] and Borkar [2008]).
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where we define [g(t)]+ := max{g(t), 0} for a given function g(·), the auxiliary parameter λ ∈
(1, 1/γ) is arbitrary, and we define

ζ := ‖Q1 + (Q2)T ‖max + τ log(|A1||A2|). (65)

Note that ζ ≥ 0 depends on Q1, Q2, and τ implicitly, and it is small when the auxiliary game is close
to zero-sum and the temperature parameter is close to zero. The arbitrary parameter λ > 1 plays an
important role in ensuring that the set {(q1, q2, π1, π2) : V (q1, q2, π1, π2) = 0} is a global attractor
for the flow (63). Furthermore, the condition λγ ∈ (0, 1) will play an important role when we zoom
out to the global dynamics in Subsection §E.3.

Before validating V (·) as a Lyapunov function, let us highlight its differences from other Lyapunov
functions used for the best response dynamics with or without perturbation. For example, Hofbauer
and Hopkins [2005] provided a Lyapunov function for the perturbed best response dynamics in
zero-sum games and showed that such dynamics converge to a Nash distribution for any smooth
function and any positive temperature parameter. However, we must consider arbitrary Q1 and Q2,
which implies that Q1 + (Q2)T may not be a zero matrix in general. In other words, the underlying
game is not necessarily zero-sum. Therefore, we need to consider this deviation in our candidate
function.

On the other hand, Sayin et al. [2020] provided a Lyapunov function for the best response dynamics
in games beyond zero-sum and showed that such dynamics converge to a bounded set with diameter
depending on its deviation from a zero-sum game. Therefore, our candidate (64) has a similar flavor
with the one in Sayin et al. [2020] while addressing also the perturbation and the issue induced by not
being belief-based. For example, V (q1

∗, q
2
∗, π

1
∗, π

2
∗) = 0 implies that∑

i=1,2

max
µ∈∆(Ai)

{µ · qi∗ + τνi(µ)} ≤ λζ, (66)

which yields that ∑
i=1,2

qi∗ · Br
i
(qi∗, τ) ≤ λζ, (67)

since the smooth functions νi(·) are non-negative. Recall that the players update their value function
estimates, e.g., v̂is,k, towards q̂is,k ·Br

i

s(q̂
i
s,k, τ#s). Therefore, such an upper bound plays an important

role in chacterizing the convergence properties of the sum v̂1
s,k + v̂2

s,k and addressing the deviation
from zero-sum settings. Furthermore, V (q1

∗, q
2
∗, π

1
∗, π

2
∗) = 0 also yields that qi∗ = Qiπ−i∗ , i.e., (q1

∗, q
2
∗)

are belief-based. It is also instructive to note that (q1
∗, q

2
∗, π

1
∗, π

2
∗) is not necessarily an equilibrium

point of the flow (63). Indeed, such a Lyapunov function does not exist because the flow (63) (and
best response dynamics) is not globally asymptotically stable for arbitrary matrices (Q1, Q2).

The following lemma shows that the non-negative V (·) is a Lyapunov function for the flow (63) and
its proof is provided in Subsection §E.4.

Lemma 3. Consider any trajecttory of (63) and let x(t) := (q1(t), q2(t), π1(t), π2(t)). Then the
candidate function V (·), as described in (64), satisfies

• V (x(t′)) < V (x(t)) for all t′ > t if V (x(t)) > 0,

• V (x(t′)) = 0 for all t′ > t if V (x(t)) = 0.

Based on Lemma 3, we can characterize the convergence properties of the discrete-time update
(57). There is a sequence of beliefs {π̂js,k ∈ ∆(Ajs)}k≥0 for the sequence {q̂is,k}k≥0 and it evolves
according to

π̂js,k+1 =

{
π̂js,k + α#s

(
πjk − π̂

j
s,k

)
if s = sk

π̂js,k o.w.
(68)

with some arbitrary initialization, and satisfies

lim
k→∞

‖q̂is,k − Q̂is,kπ̂
j
s,k‖

2 = 0, (69)
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where j 6= i. Denote Q̄s,k := Q̄1
s,k + (Q̄2

s,k)T . Then, Lemma 3 yields that

lim
k→∞

∑
i=1,2

(
q̂is,k · πik + τ#sν

i
s(π

i
k)
)
− λ

(
‖Q̄s,k‖max + τ#s log(|A1

s||A2
s|)
)

+

= 0,

which implies that there exists {es,k ≥ 0}k≥0 and limk→∞ es,k = 0 such that∑
i=1,2

(
q̂is,k · πik + τ#sν

i
s(π

i
k)
)
≤ λ

(
‖Q̄s,k‖max + τ#s log(|A1

s||A2
s|)
)

+ es,k, ∀k ≥ 0. (70)

In the following, we characterize the convergence properties of the value function estimates based
on (69) and (70), respectively, showing that the local Q-function estimates are asymptotically belief-
based and characterizing an upper bound on the sum of the (perturbed) values.

E.3 Zooming out to global dynamics at the slow timescale

Next, we focus on the evolution of the value function estimates. To this end, we first consider how
the sum of the players’ value function estimates specific to state s (denoted by v̄s,k := v̂1

s,k + v̂2
s,k)

evolves:

v̄s,k+1 =

{
v̄s,k + β#s

[∑
i=1,2 π

i
k · q̂is,k − v̄s,k

]
if s = sk

v̄s,k o.w.
(71)

We can view (71) as the sum v̄s,k moving toward (or tracking) the target
∑
i=1,2 π

i
k · q̂is,k. The target

is bounded from above by∑
i=1,2

πik · q̂is,k ≤ λ‖Q̄s,k‖max + λτ#s log(|A1
s||A2

s|) + es,k, ∀k ≥ 0, (72)

by (70). We can also bound the target from below by using the smooth best response definition and
(69) as follows:∑
i=1,2

(
πik · q̂is,k + τ#sν

i
s(π

i
s,k)
)
≥ (π̂1

s,k)T Q̄s,kπ̂
2
s,k + τ#s

∑
i=1,2

νis(π̂
i
s,k) + es,k, ∀k ≥ 0, (73)

where the error term is given by

es,k :=
∑
i=1,2

(π̂is,k)T (q̂is,k − Q̂is,kπ̂−is,k) (74)

and it is asymptotically negligible by (69). Since π̂is,k ∈ ∆(Ais), we obtain∑
i=1,2

πik · q̂is,k ≥ −‖Q̄s,k‖max + τ#s
∑
i=1,2

(νis(π̂
i
s,k)− νis(πik)) + es,k (75)

≥ −λ‖Q̄s,k‖max − λτ#s log(|A1
s||A2

s|) + es,k, (76)

where the last inequality follows since λ > 1 and νis : ∆(Ais)→ [0, log(|Ais|)].
Based on the fact that r1

s(a
1, a2) + r2

s(a
1, a2) = 0 for all (a1, a2), we can formulate a bound on

‖Q̄s,k‖max from above in terms of {v̄s′,k}s′∈S as follows:

‖Q̄s,k‖max = max
(a1,a2)

∣∣∣∣∣r1
s(a

1, a2) + r2
s(a

1, a2) + γ
∑
s′∈S

p(s′|s, a1, a2)v̄s′,k

∣∣∣∣∣
≤ γmax

s′∈S
|v̄s′,k|. (77)

Combining (72), (76), and (77), we obtain

−λγmax
s′∈S
|v̄s′,k| − λτ#s log(|A1

s||A2
s|)+ es,k ≤

∑
i=1,2

πik · q̂is,k

≤ λγmax
s′∈S
|v̄s′,k|+ λτ#s log(|A1

s||A2
s|) + es,k, (78)
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for all s ∈ S and k ≥ 0, with some asymptotically negligible error terms es,k and es,k. The condition
λγ ∈ (0, 1) yields that the target in (71) shrinks in absolute value as k → ∞. Based on (71) and
Theorem 3, we obtain

lim sup
k→∞

max
s∈S
|v̄s,k| ≤

1

1− λγ
λξ lim

c→∞
τc, (79)

where ξ := maxs∈S{log(|A1
s||A2

s|)} since #s → ∞ as k → ∞ with probability 1 by Proposition
3. Therefore, the auxiliary games get close to (or become) zero-sum asymptotically like the two-
timescale fictitious play in Sayin et al. [2020] but with a radically uncoupled scheme.

The next and last step is about characterizing the asymptotic behavior of the tracking error (45):

lim sup
k→∞

∣∣∣π1
s,k · q̂1

s,k − val1(Q̂1
s,k)
∣∣∣

(a)

≤ lim sup
k→∞

∣∣∣∣max
µ1

{
(µ1)T Q̂1

s,kπ̂
2
s,k

}
− val1(Q̂1

s,k)

∣∣∣∣
+ lim sup

k→∞

∣∣∣∣max
µ1

{
(µ1)T Q̂1

s,kπ̂
2
s,k

}
− π1

s,k · q̂1
s,k

∣∣∣∣
(b)

≤ lim sup
k→∞

∣∣∣∣max
µ1

{
(µ1)T Q̂1

s,kπ̂
2
s,k

}
− val1(Q̂1

s,k)

∣∣∣∣+ ξ lim
c→∞

τc

(c)

≤ lim sup
k→∞

∣∣∣∣max
µ1

{
(µ1)T Q̂1

s,kπ̂
2
s,k

}
−min

µ2

{
(π̂1
s,k)T Q̂1

s,kµ
2
}∣∣∣∣+ ξ lim

c→∞
τc

(d)

≤ lim sup
k→∞

∣∣∣∣max
µ2

{
(µ2)T Q̂2

s,kπ̂
1
s,k

}
+ min

µ2

{
(µ2)T (Q̂1

s,k)T π̂1
s,k

}∣∣∣∣
+ lim sup

k→∞

∣∣∣∣∣∣
∑
i=1,2

max
µi
{µi · Q̂is,kπ̂−is,k}

∣∣∣∣∣∣+ ξ lim
c→∞

τc

(e)

≤ lim sup
k→∞

‖Q̄s,k‖max + lim sup
k→∞

∣∣∣∣∣∣
∑
i=1,2

max
µi
{µi · Q̂is,kπ̂−is,k}

∣∣∣∣∣∣+ ξ lim
c→∞

τc

(f)

≤ γ lim sup
k→∞

max
s′∈S
|v̄s′,k|+ lim sup

k→∞

∣∣∣∣∣∣
∑
i=1,2

max
µi
{µi · Q̂is,kπ̂−is,k}

∣∣∣∣∣∣+ ξ lim
c→∞

τc

(g)

≤ γ lim sup
k→∞

max
s′∈S
|v̄s′,k|+ lim sup

k→∞

∣∣∣∣∣∣
∑
i=1,2

max
µi
{µi · q̂is,k}

∣∣∣∣∣∣+ ξ lim
c→∞

τc

(h)

≤ γ lim sup
k→∞

max
s′∈S
|v̄s′,k|+ lim sup

k→∞

∣∣∣∣∣∣
∑
i=1,2

πik · q̂is,k

∣∣∣∣∣∣+ 2ξ lim
c→∞

τc

(i)

≤ (λγ + γ) lim sup
k→∞

max
s∈S
|v̄s,k|+ (λ+ 2)ξ lim

c→∞
τc

(j)

≤
(
λ(λγ + γ)

1− λγ
+ (λ+ 2)

)
ξ lim
c→∞

τc

=

(
2 + λ− λγ

1− λγ

)
ξ lim
c→∞

τc. (80)

Particularly, (a) follows from triangle inequality; (b) follows since
πik · q̂is,k + τ#s log(|Ais|) ≥ max

µi∈∆(Ais)
{µi · q̂is,k} ≥ πik · q̂is,k, (81)

by definition of best response and smooth best response and since q̂is,k is asymptotically belief-based
and max{·} is a continuous operator; (c) follows from the fact that

max
µ1

{
(µ1)T Q̂1

s,kπ̂
2
s,k

}
≥ val1(Q̂1

s,k) ≥ min
µ2

{
(π̂1
s,k)T Q̂1

s,kµ
2
}

; (82)
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(d) follows from the triangle inequality; (e) follows since we have

∣∣∣∣max
µ2

{
(µ2)T Q̂2

s,kπ̂
1
s,k

}
+ min

µ2

{
(µ2)T (Q̂1

s,k)T π̂1
s,k

}∣∣∣∣
=

∣∣∣∣max
µ2

{
(µ2)T Q̂2

s,kπ̂
1
s,k

}
−max

µ2

{
(µ2)T (−Q̂1

s,k)T π̂1
s,k

}∣∣∣∣ (83)

≤ ‖Q̄s,k‖max, (84)

where (83) corresponds to the difference between the maximum values player 2 would get in
the scenarios in which it has the payoff matrices Q̂2

s,k versus (−Q̂1
s,k) in an auxiliary strategic-

form game, given that the opponent’s play is fixed, and this difference is bounded from above by
‖Q̂2

s,k − (−Q̂1
s,k)‖max = ‖Q̄s,k‖max; (f) follows from (77); (g) follows since q̂is,k is asymptotically

belief-based; (h) follows from (81); (i) follows since (78) yields that

lim sup
k→∞

∣∣∣∣∣∣
∑
i=1,2

πik · q̂is,k

∣∣∣∣∣∣ ≤ λγ lim sup
k→∞

max
s∈S
|v̄s,k|+ λξ lim

c→∞
τc; (85)

and finally (j) follows from (79). This completes the first part of the result on the asymptotic behavior
of {v̂is,k}k≥0.

On the other hand, the weighted time-average of smoothed best responses corresponds to π̂is,k, as
described iteratively in (68). Note that viπ∗(s) = vali(Qiπ∗(s, ·)) by its definition. Therefore, for
any s, we define v−i∗,π−i(s) := min

πi
v−iπi,π−i(s) = −max

πi
viπi,π−i(s) =: −vi∗,π−i(s). Note that the

convention is that for agent i and her value function viπi,π−i , we use vi∗,π−i to denote the max over
her own strategy πi, and viπi,∗ to denote the min over her opponent’s strategy π−i. In other words,
agent i always maximizes her value, while her opponent always minimizes it. Also note that for
fixed strategy of one player, the problem is a Markov decision process, which always admits some
maximizing/minimizing strategy for all s, i.e., these best-response values are well-defined. Finally,
for these value functions, one can define the corresponding Q-functions satisfying the following
Bellman equations:

Qi∗,π−i(s, a
1, a2) = ris(a

1, a2) + γ
∑
s′∈S

vi∗,π−i(s
′)p(s′|s, a1, a2), ∀(s, a1, a2)

vi∗,π−i(s) = max
µ

Eai∼µ, a−i∼π−is
[
Qi∗,π−i(s, a

1, a2)
]
, ∀ s,

and

Qiπ∗(s, a
1, a2) = ris(a

1, a2) + γ
∑
s′∈S

viπ∗(s
′)p(s′|s, a1, a2), ∀(s, a1, a2)

viπ∗(s) = max
µ

min
ν

Eai∼µ, a−i∼ν
[
Qiπ∗(s, a

1, a2)
]
, ∀ s.

Other quantities can be defined similarly.
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Therefore, we have

0 ≤ v−iπ∗ (s)− v−i∗,π̂−ik
(s) = −max

µi
(µi)TQiπ∗(s, ·)π

−i
s,∗ + max

µi
(µi)TQi∗,π̂−ik

(s, ·)π̂−is,k (86)

≤
∣∣∣max
µi

(µi)TQi∗,π̂−ik
(s, ·)π̂−is,k −max

µi
(µi)TQiπ∗(s, ·)π̂

−i
s,k

∣∣∣
+
∣∣∣max
µi

(µi)TQiπ∗(s, ·)π̂
−i
s,k −max

µi
(µi)TQiπ∗(s, ·)π

−i
s,∗

∣∣∣ (87)

≤ γ ·max
s∈S

∣∣vi∗,π̂−ik (s)− viπ∗(s)
∣∣+
∣∣∣vali(Q̂is,k)−max

µi
(µi)TQiπ∗(s, ·)π

−i
s,∗

∣∣∣
+
∣∣∣max
µi

(µi)TQiπ∗(s, ·)π̂
−i
s,k − vali(Q̂is,k)

∣∣∣ (88)

≤ γ ·max
s∈S

∣∣v−iπ∗ (s)− v−i∗,π̂−ik
(s)
∣∣+
∣∣∣vali(Q̂is,k)−max

µi
(µi)TQiπ∗(s, ·)π

−i
s,∗

∣∣∣
+
∣∣∣max
µi

(µi)TQiπ∗(s, ·)π̂
−i
s,k −max

µi
(µi)T Q̂is,k(s, ·)π̂−is,k

∣∣∣
+
∣∣∣max
µi

(µi)T Q̂is,k(s, ·)π̂−is,k − vali(Q̂is,k)
∣∣∣, (89)

where (86) is due to one-step Bellman equation and the zero-sum structure of the underlying game,
(87) follows by inserting maxµi (µi)TQiπ∗(s, ·)π̂

−i
s,k, (88) follows by the fact that∣∣∣max

µi
(µi)TQi∗,π̂−ik

(s, ·)π̂−is,k −max
µi

(µi)TQiπ∗(s, ·)π̂
−i
s,k

∣∣∣
≤ max

µi

∣∣∣(µi)TQi∗,π̂−ik (s, ·)π̂−is,k − (µi)TQiπ∗(s, ·)π̂
−i
s,k

∣∣∣ ≤ γ ·max
s∈S

∣∣vi∗,π̂−ik (s)− viπ∗(s)
∣∣

and by inserting vali(Q̂is,k), and finally, (89) follows by inserting maxµi (µi)T Q̂is,k(s, ·)π̂−is,k, and by
the zero-sum property of the values. The last three terms in (89) can be further bounded as follows:
1) by definitions, we have∣∣∣vali(Q̂is,k)−max

µi
(µi)TQiπ∗(s, ·)π

−i
s,∗

∣∣∣ ≤ ∥∥Q̂is,k −Qiπ∗(s, ·)∥∥max

≤ γmax
s′∈S
|viπ∗(s

′)− v̂is′,k|; (90)∣∣∣max
µi

(µi)TQiπ∗(s, ·)π̂
−i
s,k −max

µi
(µi)T Q̂is,k(s, ·)π̂−is,k

∣∣∣
≤
∥∥Q̂is,k −Qiπ∗(s, ·)∥∥max

≤ γmax
s′∈S
|viπ∗(s

′)− v̂is′,k|; (91)

2) by (c)-(i) in (80), we have

lim sup
k→∞

∣∣∣∣max
µi

(µi)T Q̂is,kπ̂
−i
s,k − vali(Q̂is,k)

∣∣∣∣ ≤ ( 1 + λ

1− λγ

)
ξ lim
c→∞

τc. (92)

Hence, combining (89)-(92), we have

lim sup
k→∞

max
s∈S

∣∣v−iπ∗ (s)− v−i∗,π̂−ik
(s)
∣∣ ≤ 1

1− γ
·

[
2γ lim sup

k→∞
max
s′∈S
|viπ∗(s

′)− v̂is′,k|+
(

1 + λ

1− λγ

)
ξ lim
c→∞

τc

]

≤ 1

1− γ
·

[
2γξg(γ) lim

c→∞
τc +

(
1 + λ

1− λγ

)
ξ lim
c→∞

τc

]
. (93)

Finally, notice the fact that

0 ≤ vi∗,π̂−ik (s)− vi
π̂ik,π̂

−i
k

(s) ≤ vi∗,π̂−ik (s)− viπ̂ik,∗(s) = −v−i∗,π̂−ik
(s) + v−i

π̂ik,∗
(s) (94)

= −viπ̂ik,∗(s) + viπ∗(s) + v−iπ∗ (s)− v−i∗,π̂−ik
(s)

≤ max
s∈S

∣∣viπ∗(s)− viπ̂ik,∗(s)∣∣+ max
s∈S

∣∣v−iπ∗ (s)− v−i∗,π̂−ik
(s)
∣∣
max

,

where the last inequality follows from (93) and its counterpart by switching the role of −i and i there
in. Combined with the definition of ε-Nash equilibrium with (93)-(94), we complete the proof.
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E.4 Proofs of Technical Lemmas 1-3

Lemma 1. Suppose Assumption 1 and either Assumption 2 or 2’ hold. Then, the stochastic
approximation terms (ω1

s,k, ω
2
s,k) satisfy (39) for all T > 0, s ∈ S, and i = 1, 2.

Proof: By (53), the stochastic approximation term ω1
s,k[a1] (and ω2

s,k) can be written as

ω1
s,k[a1] =

ω̃1
s,k[a1]

π1
k[a1]

, ∀a1 ∈ A1
s, (95)

where we define

ω̃1
s,k[a1] :=1{a1k=a1}(r

1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

s,k[a1])

− E
{
1{a1k=a1}(r

1
s(a

1, a2
k) + γv̂1

sk+1,k
− q̂1

s,k[a1])
∣∣∣ δk} (96)

=1{a1k=a1}(r
1
s(a

1, a2
k) + γv̂1

sk+1,k
)

− E
{
1{a1k=a1}(r

1
s(a

1, a2
k) + γv̂1

sk+1,k
)
∣∣∣ δk} , (97)

which is a square-integrable Martingale difference sequence since the iterates remain bounded
by Proposition 1. Then, the proof follows from the proof of [Benaim, 1999, Proposition 4.2] by
substituting the step size α#s with α#s

πik[ai]
and showing that

∑
k≥0:s=sk

(
α#s

πik[ai]

)2

<∞, ∀ai ∈ Ais and s ∈ S. (98)

If Assumption 2 holds, then the analytical form of πik[ai], as described in (7), yields that πik[ai] ≥
1
|Ais|

exp(−2D/ε). Correspondingly, the sum in (98) is bounded from above by

∑
k≥0:s=sk

(
α#s

πik[ai]

)2

≤ |Ais|2 exp

(
4D

ε

) ∑
k≥0:s=sk

α2
#s. (99)

The right-hand side is a convergent sum by Assumption 2-ii.

On the other hand, if Assumption 2’ holds, then we no longer have a fixed lower bound on πik[ai].
Instead, we have πik[ai] ≥ 1

|Ais|
exp{−2D/τ#s}. Correspondingly, the sum in (98) is now bounded

from above by ∑
k≥0:s=sk

(
α#s

πik[ai]

)2

≤ |Ais|2
∑

k≥0:s=sk

α2
#s exp

(
4D

τ#s

)
. (100)

By Assumption 2’-ii, we have exp(4D/τc) < C ′α−ρc for all c ≥ C. Therefore, we obtain

∑
k≥0:s=sk

(
α#s

πik[ai]

)2

≤ |Ais|2
C−1∑
c=0

α2
c exp

(
4D

τc

)
+ |Ais|2C ′

∑
c≥C

α2−ρ
c . (101)

The right-hand side is a convergent sum by Assumption 2’-ii. This completes the proof. �

Lemma 2. Suppose Assumption 1 and either Assumption 2 or 2’ hold. Then, the error terms in (57),
{εis,k†}(i,s)∈{1,2}×S and (τ#s+1 − τ#s)/α#s, are asymptotically negligible with probability 1.

Proof: The error term (τ#s+1 − τ#s)/α#s is asymptotically negligible with probability 1 either by
Assumption 2-ii or Assumption 2’-ii. On the other hand, the definition of εis′,k† , as described in (58),
and the evolution of v̂is′,k yield that

εis′,k† =

∑k†−1
l=k 1{sl=s′}β#ls′(q̂

i
s′,l · πil − v̂is′,l)

α#ks
, ∀s′ ∈ S. (102)
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Since {βc}c>0 is non-increasing by Assumption 1-i and the iterates are bounded by D by Proposition
1, the error term εis′,k† is bounded from above by

|εis′,k† | ≤
β#ks′

α#ks
(k† − k)2D, ∀s′ ∈ S. (103)

By Borel-Cantelli Lemma, if we have
∞∑
k=0

P
{
β#ks′

α#ks
(k† − k) > λ

}
<∞ (104)

for any λ > 0, then |εis′,k† | → 0 as k → ∞ with probability 1. To this end, we will focus on the
argument of the summation (104). Since #ks ≤ k and {αc}c>0 is a non-increasing sequence by
Assumption 1-i, we have

P
{
β#ks′

α#ks
(k† − k) > λ

}
≤ P

{
β#ks′

αk
(k† − k) > λ

}
, (105)

=

∞∑
κ=1

P
{
k† − k = κ

} k∑
l=0:

βl
αk
>λ
κ

P
{
l = #ks

′ | k† − k = κ
}
, (106)

=

∞∑
κ=1

P
{
k† − k = κ

}
P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
, (107)

where `k
(
λ
κ

)
:= max

{
l ∈ Ξk

(
λ
κ

)}
with Ξk(λ) := max

{
l ∈ Z : l ≤ k and βl

αk
> λ

}
∪ {−1}.

Therefore, we obtain
∞∑
k=0

P
{
β#ks′

α#ks
(k† − k) > λ

}
≤
∞∑
k=0

∞∑
κ=1

P
{
k† − k = κ

}
P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
.

(108)
Since the argument of the summation on the right-hand side is non-negative, convergence of the
following:
∞∑
κ=1

∞∑
k=0

P
{
κ = k† − k

}
P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}

=

∞∑
κ=1

P
{
κ = k† − k

} ∞∑
k=0

P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
, (109)

where the order of summations is interchanged would imply the convergence of (108). Correspond-
ingly, we will show that (109) is convergent instead.

Partition the time axis into n-stage intervals and define #̄n
ks
′ as a counting process that increases by

1 at the end of an n-stage interval if s′ is visited at least once within the last n-stage. More precisely,
#̄n
ks
′ is, recursively, given by

#̄n
k+1s

′ =

{
#̄n
ks
′ + 1 if 0 ≡ k mod n and ∃ l ∈ (k − n, k] : sl = s′

#̄n
ks
′ o.w. (110)

By its definition, we have #̄n
ks
′ ≤ #ks

′, and therefore, we obtain

P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
≤ P

{
#̄n
ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
. (111)

Either Assumption 2 or 2’ yield that the probability that state s′ is visited within an n-stage interval
is bounded from below, e.g., by some p > 0, for every sequence of actions. Correspondingly,
Correspondingly, the probability that s′ is not visited within the n-stage interval is bounded from
above by 1− p. Therefore, we can bound the right-hand side of (111) from above by

P
{

#̄n
ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
≤

b knc∑
l=0:l≤`k(λκ )

(⌊ k
n

⌋
l

)
1l(1− p)b

k
nc−l. (112)
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Assumption 1-ii yields that for any M ∈ (0, 1), there exists a non-decreasing polynomial function
CM (·) such that

`k

(
λ

κ

)
≤Mk < nM

(⌊
k

n

⌋
+ 1

)
, ∀k ≥ CM

(κ
λ

)
. (113)

For k ≥ n, (113) can also be written as

`k (λ/κ)

bk/nc
≤ nM

(
1 +

1

bk/nc

)
≤ 2nM, ∀l ≥ max{CM (κ/λ), n}. (114)

Since M ∈ (0, 1) is arbitrary, there exists M such that 2nM < 1, i.e, M ∈ (0, 1/2n). Therefore, we
have

b knc∑
l=0:l≤`k(λκ )

(⌊ k
n

⌋
l

)
1l(1− p)b

k
nc−l ≤ (1− p)b

k
nc−`k(λκ )

`k(λκ )∑
l=0

(⌊ k
n

⌋
l

)
, (115)

for all k ≥ max{CM (κ/λ), n}, since (1− p) ∈ [0, 1). Furthermore, we can set M ∈ (0, 1/2n) such
that 2nM < 1/2. Then, we can resort to the following inequality [Flum and Grohe, 2006, Lemma
16.19]

L∑
l=0

(
k

l

)
≤ 2H2(L/k)k, if L/k ≤ 1/2, (116)

where H2(p) := −p log(p) − (1 − p) log(1 − p). Therefore, for all k ≥ max{CM (κ/λ), n}, we
obtain

(1− p)b
k
nc−`k(λκ )

`k(λκ )∑
l=0

(⌊ k
n

⌋
l

)
≤ (1− p)b

k
nc−`k(λκ )2

H2

(
b`k(λ/κ)c
bk/nc

)
bk/nc

(117)

≤ (1− p)b
k
nc−2nMb knc2H2(2nM)b knc (118)

=
[
(1− p)1−2nM2H2(2nM)

]b knc
, (119)

since (1− p) ∈ [0, 1) and H2(p) is an increasing function for p ∈ (0, 1/2).

We define ηM := (1 − p)1−2nM2H2(2nM). Note that for M = 0, we have η0 = (1 − p)2H2(0) =
(1− p) ∈ [0, 1). By the continuity of ηM in M , there exists M ∈ (0, 1/4n) such that ηM ∈ (0, 1).
By (111), (112), (115), and (119), we obtain

P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
≤ ηb

k
nc

M , ∀k ≥ max
{
CM

(κ
λ

)
, n
}
. (120)

Its sum over k ≥ 0 (corresponding to the inner sum in (109)) is bounded from above by

∞∑
k=0

P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}
(a)

≤ CM

(κ
λ

)
+ n+

∞∑
k=0

η
b knc
M (121)

(b)

≤ CM

(κ
λ

)
+ n+

∞∑
k=0

η
k
n−1

M (122)

(c)
= CM

(κ
λ

)
+ n+

1

ηM (1− η1/n
M )

, (123)

where (a) follows since any probability is bounded from above by one and max{CM (κ/λ), n} ≤
CM (κ/λ) + n; (b) follows since bk/nc > k/n − 1 and ηM ∈ (0, 1); and (c) follows since
η

1/n
M ∈ (0, 1) when n > 0.
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Based on (123), the sum (109) is bounded from above by

∞∑
κ=1

P
{
k† − k = κ

} ∞∑
k=0

P
{

#ks
′ ≤ `k

(
λ

κ

)
| k† − k = κ

}

≤
∞∑
κ=1

P
{
k† − k = κ

}(
CM

(κ
λ

)
+ n+

1

ηM (1− η1/n
M )

)
(124)

≤
∞∑
t=1

P
{

(t− 1)n < k† − k ≤ tn
}(

CM

(
tn

λ

)
+ n+

1

ηM (1− η1/n
M )

)
, (125)

where the last inequality follows since CM (·) is non-decreasing. Either Assumption 2 or 2’ yield that

P
{

(t− 1)n < k† − k ≤ tn
}
≤ (1− p)t−1. (126)

Therefore, we can bound (125) from above by

∞∑
t=1

(1− p)t−1

(
CM

(
tn

λ

)
+ n+

1

ηM (1− η1/n
M )

)
. (127)

Since CM (·) is a polynomial function by Assumption 1-ii, the ratio test, i.e.,

lim
t→∞

(1− p)t
(
CM

(
(t+1)n
λ

)
+ n+ 1

ηM (1−η1/nM )

)
(1− p)t−1

(
CM

(
tn
λ

)
+ n+ 1

ηM (1−η1/nM )

) = 1− p < 1, (128)

yields that (126) is convergent for any λ > 0. Therefore, we obtain (104), which completes the proof.
�

Lemma 3. Consider any trajecttory of (63) and let x(t) := (q1(t), q2(t), π1(t), π2(t)). Then the
candidate function V (·), as described in (64), satisfies

• V (x(t′)) < V (x(t)) for all t′ > t if V (x(t)) > 0,

• V (x(t′)) = 0 for all t′ > t if V (x(t)) = 0.

Proof: Fix an arbitrary solution (q1(t), q2(t), π1(t), π2(t)) to the o.d.e. (63) for some arbitrary
initial point, and define the functions L : [0,∞)→ R and H : [0,∞)→ R by

L(t) :=
∑
i=1,2

max
µ∈∆(Ai)

{µ · qi(t) + τνi(µ)} − λζ (129)

H(t) := ‖q1(t)−Q1π2(t)‖2 + ‖q2(t)−Q2π1(t)‖2. (130)

Then, we obtain
V (q1(t), q2(t), π1(t), π2(t)) = [L(t)]+ +H(t). (131)

Note that H(t) is a continuous, differentiable and non-negative function. Its time derivative is given
by

dH(t)

dt
= −2H(t). (132)

If ζ = 0, then L(·) reduces to the Lyapunov function introduced by Harris [1998] for continous-time
best response dynamics in zero-sum strategic-form games, and therefore, V (·) is a Lyapunov function
function for (63).

Suppose that ζ > 0. Note that L(·) is also a continuous and differentiable function, but it can also
be negative (when ζ > 0) and the last term of (129), i.e., −λζ, is time-invariant. For notational
simplicity, let πi(t) := Br

i
(qi(t), τ). Based on the envelope theorem (which can be invoked due to
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the smoothness of the optimization argument induced by νi(·)), the time derivative of L(t) is given
by

dL(t)

dt
=
∑
i=1,2

πi(t) · dq
i(t)

dt
(133)

=
∑
i=1,2

πi(t) ·
(
Qiπ−i(t)− qi(t)

)
(134)

=−
∑
i=1,2

(
πi(t) · qi(t) + τνi(πi(t))

)
+ π1(t)T

(
Q1 + (Q2)T

)
π2(t) + τ

∑
i=1,2

νi(πi(t)). (135)

By definition, πi(t) ∈ ∆(Ai) and νi(πi(t)) ≤ log(|Ai|). Therefore, we have

π1(t)T
(
Q1 + (Q2)T

)
π2(t) + τ

∑
i=1,2

νi(πi(t)) ≤ ζ, (136)

where ζ is as described in (65). Correspondingly, the time derivative of L(t) is bounded from above
by

dL(t)

dt
< −

∑
i=1,2

(
πi(t) · qi(t) + τνi(πi(t))

)
+ λζ (137)

= −L(t), (138)

where the strict inequality follows since λ > 1 and ζ > 0. This yields that L(t) is strictly decreasing
whenever L(t) ≥ 0. Therefore, {q1(t), q2(t), π1(t), π2(t) : L(t) ≤ 0} is a positively invariant set for
any trajectory. In other words, if L(t′) ≤ 0 for some t′, then L(t′′) ≤ 0 for all t′′ > t′. Therefore, by
(131), the time-derivatives (132) and (138) yield that V (·) is a Lyapunov function, which completes
the proof. �

F Proof of Corollary 1 to Theorem 1

Corollary 1. Suppose that player −i follows an (asymptotically) stationary strategy {π̃−is ∈
int∆(Ais)}s∈S while player i adopts the learning dynamics described in Table 1, and Assumption 1
holds. Then, the asymptotic behavior of the value function estimate {v̂is,k}k≥0 is given by

lim sup
k→∞

∣∣∣∣v̂is,k −max
πi

viπi,π̃−i(s)

∣∣∣∣ ≤ εξig(γ), under Assumption 2, (139a)

lim
k→∞

∣∣∣∣v̂is,k −max
πi

viπi,π̃−i(s)

∣∣∣∣ = 0, under Assumption 2’ (139b)

for all s ∈ S, w.p. 1, where ξi := maxs′∈S
{

log(|Ais′ |)
}

and g(·) is as described in Theorem 1.

Furthermore, the asymptotic behavior of the weighted averages {π̂ik}k≥0, described in Theorem 1, is
given by

lim sup
k→∞

(
max
πi

viπi,π̃−i(s)− v
i
π̂ik,π̃

−i(s)
)
≤ εξih(γ), under Assumption 2, (140a)

lim
k→∞

(
max
πi

viπi,π̃−i(s)− v
i
π̂ik,π̃

−i(s)
)

= 0, under Assumption 2’, (140b)

for all s ∈ S, w.p. 1, where h(γ) is as described in Theorem 1, i.e., these weighted-average strategies
converge to near or exact best-response strategy, depending on whether Assumption 2 or 2’ hold.

Proof: The proof follows from the observation that Theorem 1 can be generalized to the scenarios
where nature draws ris(a

1, a2) ∈ [−D,D] and p(s′|s, a1, a2) depending on a random event in a
rather straightforward way since it only introduces a stochastic approximation error that is a square
integrable Martingale difference sequence. For example, player i receives ris(ωk, a

1, a2) with random
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event ωk ∈ Ω and ris(ωk, a
1, a2) ∈ [−D,D] for all ω ∈ Ω and state transitions are governed by the

kernel p(s′|s, ωk, a1, a2) while ωk → ωo as k →∞ with probability 1.

Since player −i follows an asymptotically stationary strategy {π̃−is }s∈S almost surely, we can view
player −i as nature and its action at stage k, a−ik , as the random event ωk. Then, it reduces into a
single-player game. We can still invoke Theorem 1 if we introduce an auxiliary player i′ that has a
single action at every state without loss of generality. This completes the proof. �

G Additional Simulation Setup

We consider a larger-scale case with |S| = 20 states and |Ais| = 10 actions per state. The discount
factor γ = 0.5. The reward functions are chosen randomly in a way that r1

s(a
1, a2) ∝ r̄s,a1,a2

for s ∈ S, where r̄s,a1,a2 is uniformly drawn from [−1, 1]. Then, r1
s(a

1, a2) is normalized by
maxs,a1,a2{r1

s(a
1, a2)}/2 so that |ris(a1, a2)| ≤ R = 2 for all (i, s, a1, a2). For the state transition

dynamics p, we construct two cases, Case 3 and Case 4 by randomly generating transition prob-
abilities, in a way that they satisfy Assumptions 2-i and 2’-i, respectively. For Case 3 and Case
4, we choose the temperature parameter as τc = max{ε, τ ′c} and as τ ′c in (12), respectively, with
ε = 2 × 10−2, τ̄ = 0.1. For both cases, we choose the stepsizes αc = 1/c0.9 and βc = 1/c with
ρα = 0.9, ρβ = 1, and ρ = 0.85 for the τ ′c in (12). The simulation results are illustrated in Figure 3.
Note that as the number of states is large, the plot becomes very dense and cluttered if both players’
curves are plotted, together with the standard-deviation bar-area, as in Figure 3. We thus only plot
an example trial, with only Player 2’s curves, and the summation of the value function estimates.
The convergence of Player 1’s value function estimates can be deduced accordingly. It is seen from
Figure 3 that our theory can be corroborated by simulations even for this larger-scale case.
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