
Supplementary Information

10 Relation between low-pass filter and lookahead

In general, the prospective (or lookahead) voltage ŭr that enters the activation function “looks into
the future” with a time horizon of τ r, that is in general different from τm (cf. Eqn. 1):

ŭr(t) :=

(
1 + τ r d

dt

)
u(t) . (9)

On the other hand, the exponential low-pass filter (LPF) with time constant τ x of some time-dependent
quantity u(t) is given by the average over the past, weighted with an exponential kernel

ux(t) :=
1

τ x

∫ t

−∞
u(t′)e(t

′−t)/τ x
dt′ . (10)

Usually, τ x is either the membrane or the synaptic time constant. To see what happens for a certain
neuron in the case of heterogeneous time constants, (τm 6= τ r), we can compute

d

dt
um =

d
dt

1

τm

∫ t

−∞
u(t′)e(t

′−t)/τm
dt′ (11)

=
1

τm

(
u(t′)e(t

′−t)/τm
∣∣∣
t′=t︸ ︷︷ ︸

u(t)

+

∫ t

−∞
u(t′)

∂

∂t
e(t

′−t)/τm
dt′

)
(12)

=
1

τm

(
u(t)− 1

τm

∫ t

−∞
u(t′)e(t

′−t)/τm
dt′︸ ︷︷ ︸

um(t)

)
(13)

=
1

τm

(
u(t)− um(t)

)
(14)

to obtain the general expression

ŭ
rm(t) =

(
1 + τ r d

dt

)
um(t) = um +

τ r

τm

(
u(t)− um(t)

)
(15)

=
τ r

τm u(t) +
τm − τ r

τm um(t) . (16)

As mentioned in Section 6, different prospective and membrane time constants lead to deviations that
persist on the time scale of τm since the second term in Eqn. 15 is still proportional to the low-pass
filtered voltage um, which relaxes with the specific time constant τm. On the other hand, in case of
equal time constants τm = τ r it immediately follows that lookahead and LPF are inverse operations:

ŭ(t) =

(
1 + τ

d

dt

)
u(t) = u(t) + τ u̇(t) = u(t) . (17)

11 Detailed derivation of the neuronal dynamics

Eqn. 3 represents the solution for a stationary energy with respect to the prospective voltage ŭm. In
the following, we show the detailed derivation for an arbitrary component i:

∂E

∂ŭm
i

=
∂

∂ŭm
i

1

2

∑
j,k

∥∥ŭm
j −Wjkϕ(ŭ

m
k)
∥∥2 (18)

=
∑
j,k,l

[
ŭm
j −Wjkϕ(ŭ

m
k)
] ∂

∂ŭi

[
ŭm
j −Wjlϕ(ŭ

m
l)
]

(19)

=
∑
j,k,l

[
ŭm
j −Wjkϕ(ŭ

m
k)
]
[δij − δilWjlϕ

′(ŭm
l)] (20)

= ŭm
i −

∑
k

Wikϕ(ŭ
m
k)− ϕ′(ŭm

i)
∑
j,k

W T
ij

[
ŭm
j −Wjkϕ(ŭ

m
k)
]

(21)

14

and therefore

0 =
∂E

∂ŭm
i

=⇒ τmu̇i = −ui +
∑
k

Wikϕ(ŭ
m
k) + ϕ′(ŭm

i)
∑
j,k

W T
ij

[
ŭm
j −Wjkϕ(ŭ

m
k)
]

(22)

11.1 Neuronal dynamics with synaptic filtering

To include synaptic filtering in our theory, we introduce an additional LPF as in Eqn. 10 with time
constant τ s. For this, it is sufficient to replace firing rates with filtered rates, ϕ → ϕs, in the total
energy E:

E(ŭm) :=
1

2
‖ŭm −Wϕs(ŭm)− b‖2 + βL(ŭm) . (23)

Deriving the neuronal dynamics from a vanishing gradient ∇ŭmE as before now yields

τmu̇ = −u+Wϕs(ŭm) + b+ e , (24)

where the error term now reads

e = ϕs(ŭm)W T [ŭm −Wϕs(ŭm)− b] . (25)

These are essentially the same equations as before, just with the rates replaced with their filtered
version.

12 General formulation for arbitrary connectivity functions

Here we consider a generalization of the energy function from the main manuscript that includes
arbitrary “connectivity functions” f with parameters θ:

E(ŭm) :=
1

2
‖ŭm − f(ϕ(ŭm),θ)‖2 + βL(ŭm) . (26)

Again, we derive neuron dynamics by requiring ∇ŭmE(ŭm) = 0. For simplicity, we compute it
element wise, shown here for a neuron that does not directly contribute to the loss L:

∂E(ŭm)

∂ŭm
i

=ŭm
i − fi(ϕ(ŭ

m),θ) +
∑
j

∂

∂ŭm
i

1

2

(
ŭm
j − fj(ϕ(ŭ

m),θ)
)2

=ŭm
i − fi(ϕ(ŭ

m),θ)−
∑
j

∂ϕi

∂ŭm
i

∂fj(ϕ(ŭ
m),θ)

∂ϕi

(
ŭm
j − fj(ϕ(ŭ

m),θ)
)

(27)

From this we can, for example, obtain the neuron dynamics described in the main manuscript by
choosing a linear connectivity function fi =

∑
j wijϕ(ŭ

m
j) + bi.

13 Simulation details

13.1 Gradient-based model

For Fig. 1c we consider the neuron dynamics from the main manuscript, but replace prospective
membrane potentials with their instantaneous version. Furthermore, we consider a squared loss with
some fixed target t∗. To avoid artificially introducing an additional mismatch problem, we add an
exponential low-pass filter to the error terms; this prevents the model to reduce weights to zero in the
absence of a teacher due to a continuous mismatch between instantaneous bottom-up predictions and
slow neuronal responses. This results in the following dynamics for the two neurons:

τmu̇1 =− u1 + w1rin + ϕ′(u1)w2(u2 − w2ϕ(u1)) (28)
τmu̇2 =− u2 + w2ϕ(u1) + β(t∗ − u2) (29)

As in the main manuscript, plasticity is defined as stochastic gradient descent on the energy; as above,
we consider low-pass filtered variants of inputs:

∆wi = η(ui −Wri−1)ri−1 (30)

Here we use linear activation functions and the following parameters: dt = 0.001, τm = 10ms, β ∈
{0, 0.9}, ηW = 0.0005.

15

13.2 Numerical implementation

In order to carry out our simulations we had to discretize the differential equations, which we state
here again for clarity:

τmu̇`(t) = −u`(t) +W`ϕ(ŭ
m
` (t)) +ϕ′(ŭm

` (t))W
T
`+1

[
ŭm
`+1(t)−W`+1ϕ(ŭ

m
` (t))

]
(31)

Ẇ`(t) = η
[
ŭm
` (t)−W`ϕ(ŭ

m
`−1(t))

]
ϕ(ŭm

`−1(t)) . (32)
First, observe that u̇ appears on both sides of the first equation: explicitly on the left hand side,
and implicitly on the right, in the definition of ŭm(t) = u(t) + τmu̇(t). To resolve this circular
dependency, we define ŭm(t+ dt) = u(t) + τmu̇(t), which works well for small enough dt.

We first consider the neuronal update and use forward Euler to rewrite the derivative as a finite
difference with time step dt

τm u`(t+ dt)− u`(t)

dt
= −u`(t) +W`ϕ(ŭ

m
` (t)) + e`(t) (33)

with
e`(t) := ϕ′(ŭm

` (t))W
T
`+1

[
ŭm
`+1(t)−W`+1ϕ(ŭ

m
` (t))

]
(34)

and solve for u`(t+ dt) to obtain
u`(t+ dt) = u`(t) + dt∆u`(t) , (35)

where

∆u`(t) =
1

τm [−u`(t) +W`ϕ(ŭ
m
` (t)) + e`(t)] . (36)

Similarly, we use forward Euler for weight dynamics:
W`(t+ dt)−W`(t)

dt
= η

[
ŭm
` (t)−W`ϕ(ŭ

m
`−1(t))

]
ϕ(ŭm

`−1(t)) (37)

and
W`(t+ dt) = W`(t) + dt∆W`(t) , (38)

with
∆W`(t) = η

[
ŭm
` (t)−W`ϕ(ŭ

m
`−1(t))

]
ϕ(ŭm

`−1(t)) (39)

For both e`(t) and ∆W`(t) it is crucial to combine the ŭm(t) with the input W`ϕ(ŭ
m
`−1(t)) that

was also used in in computing ŭm(t). Pseudo-code for our vanilla implementation can be found in
Algorithm 1.

Algorithm 1 Pseudo-code for the multi-layer implementation of Latent Equilibrium (LE)

1: for all layers ` from 1 (input) to N (output) do
2: e`(t)← (1− δ`N)ϕ′(ŭm

` (t))W
T
`+1(t)

[
ŭm
`+1(t)−W`+1(t)ϕ(ŭ

m
` (t))

]
+ δ`Netrg(t)

3: ∆u`(t)← τ−1 [−u`(t) +W`(t)r`−1(t) + e`(t)]
4: u`(t+ dt)← u`(t) + dt∆u`(t)
5: ŭ`(t+ dt)← u`(t) + τ∆u`(t)
6: if synaptic plasticity then
7: ∆W`(t)← η e`(t) ·ϕ(ŭm

`−1(t))
T

8: W`(t+ dt)←W`(t) + dt∆W`(t)
9: end if

10: end for

14 Microcircuit details

The somatic membrane potential of hidden layer pyramidal cells, interneurons, and top-layer pyrami-
dal cells is described by the following differential equations:

Cmu̇
P
` = gl

(
El − uP

`

)
+ gbas (vbas

` − uP
`

)
+ gapi

(
vapi
` − uP

`

)
, (40)

Cmu̇
I
` = gl

(
El − uI

`

)
+ gden (vden

` − uI
`

)
+ inudge, I , (41)

Cmu̇
P
N = gl

(
El − uP

N

)
+ gbas (vbas

N − uP
N

)
+ inudge, tgt . (42)

16

a

0 5 10

time [ms]

−0.5

0.0

w
ei

gh
t

WPP
2,1

W IP
1,1

BPP
1,2

−1 ·WPI
1,1

b

0 5 10

time [ms]

−0.2

0.0
p

ro
sp

.
vo

lt
ag

e

ŭP
2

ŭI
1

c

0 5

time [ms]

−0.4

−0.2

0.0

p
ro

s.
vo

lt
ag

e

ŭP
2

utgt

d

0 5

time [ms]

ŭP
2

utgt

e

0 2000 4000

time [ms]

0

1

w
ei

gh
t

WPP
2,1

W IP
1,1

W tgt
2,1

WPP
1,0

W tgt
2,1

f

𝜑𝜑 �𝑢𝑢

𝑾𝑾𝑾𝑾

𝑒𝑒

𝜏𝜏�̇�𝑢 = −𝑢𝑢
+𝑾𝑾𝑾𝑾 + 𝑒𝑒

𝑟𝑟in

𝑟𝑟1

𝑟𝑟2

𝑒𝑒1

𝑤𝑤1

𝑤𝑤2

𝑢𝑢2

𝑢𝑢1

𝑊𝑊1,1
IP

𝑊𝑊1,1
PI

𝑊𝑊2,1
PP

𝑊𝑊1,0
PP

𝐵𝐵1,2
PP

𝑢𝑢1P

𝑢𝑢2P

𝑢𝑢1I

𝑢𝑢tgt

Figure 5: Learning to mimic a teacher microcircuit with LE. (a) Microcircuit architecture following [1]. (b)
Learning of the lateral weights W IP

1,1 and W PI
1,1 to implement the self-predicting state. (c) Prospective membrane

voltages during learning of the self-predicting state where (in absence of a target) the top-down activity is
matched by the activity of the interneuron. (d, e) Comparison between the prospective membrane voltage ŭP

2 of
the output pyramidal neuron and the target voltage utgt before (d) and after (e) training. (f) Weight evolution
during learning.

Target signals to interneurons and top-layer pyramidal neurons are modeled as a conductance-based
input to the respective somatic compartments:

inudge, I = gnudge, I (uP
`+1 − uI

`

)
, (43)

inudge, tgt = gnudge, tgt (utgt − uP
N

)
. (44)

The target signal for the top-layer pyramidal is determined by the training set. For the interneurons,
the somatic membrane potentials of the pyramidal neurons in the layer above serve as targets. The
membrane potentials of the dendritic compartments instantaneously follow their inputs:

vbas
` = W PP

`,`−1ϕ
(
uP
`−1

)
, (45)

vapi
` = BPP

`,`+1ϕ
(
uP
`+1

)
+W PI

`,`ϕ
(
uI
`

)
, (46)

vden
` = W IP

`,`ϕ
(
uP
`

)
. (47)

All synapses except the top-down connections are plastic. The learning rules are described by

Ẇ PP
`,`−1 = ηPP

`

[
ϕ
(
uP
`

)
− ϕ

(
gbas

gl + gbas + gapi v
bas
`

)]
ϕ
(
uP
`−1

)
, (48)

Ẇ IP
`,` = ηIP

`

[
ϕ
(
uI
`

)
− ϕ

(
gden

gl + gden v
den
`

)]
ϕ
(
uP
`

)
, (49)

Ẇ PI
`,` = ηPI

`

[
−vapi

`

]
ϕ
(
uI
`

)
. (50)

Here, the weights of the top-down connections BPP are static and random.

The differential equations for the somatic membrane potentials of all neuron types can be rewritten in
a simpler form which also increases their numerical stability:

Cmu̇ =
1

τeff

(
ueff − u

)
, (51)

τeff =
Cm

gl + gbas/den + gapi/nudge . (52)

17

Here, ueff is the effective reversal potential defined as:

ueff,P
` =

glEl + gbasvbas
` + gapivapi

`

gl + gbas + gapi , (53)

ueff,I
` =

glEl + gdenvden
` + gnudge, IuP

`+1

gl + gden + gnudge, I , (54)

ueff,P
N =

glEl + gbasvbas
N + gnudge, tgtutgt

gl + gbas + gnudge, tgt (55)

if a target is provided. If no target is provided to the top-layer pyramidal neurons we assume
utgt = ueff,P

N and the above equation simplifies to

ueff,P
N =

glEl + gbasvbas
N

gl + gbas . (56)

We include LE in the dendritic microcircuit by two simple modifications. First, the output rate of the
neurons must depend on the prospective voltage: ϕ (u) → ϕ (ŭ). Note that this includes also the
rates in the calculation of dendritic membrane potentials (Eqns. 45 to 47) as well as the plasticity
rules (Eqns. 48 to 50). Secondly, the nudging for the interneurons must depend on the prospective
voltage of the pyramidal neurons above:

ueff,I
` =

glEl + gdenvden
` + gnudgeŭP

`+1

gl + gden + gnudge, I . (57)

For the simulation of the cortical networks shown in Fig. 3 and Fig. 5, we use the Euler integration
method. Similarly to the LE networks without microcircuit connectivity, we break the circular
dependency of ŭm in an Euler integration step by defining ŭm as a function of previous time steps
(see Section 13.2).

Learning is split into two stages: first, the learning of the so-called self-predicting state and afterwards
the learning of the actual task. The self-predicting state describes a configuration of weights in which,
in the absence of target signals provided to the last layer, apical dendrites are always at rest and the
somatic membrane potentials of the interneurons match the membrane potentials of the pyramidal
neurons in the layer above. In this state, the network is able to correctly transport errors induced by
the target signal to the apical compartments of the lower layer neurons.

Here we demonstrate, for a single microcircuit, the learning of the self-predicting state from a random
initialization of weights, by presenting the network with random inputs, no targets to the output
layer and using the learning rules given above with ηPP = 0 and ηPI/IP 6= 0 (Fig. 5 b, c). After
the self-predicting state is learned, the network is taught to reproduce the input-output relationship
produced by a teacher network (Fig. 5 d-f). For the learning of the task we set the learning rates to
ηPI = 0 and ηPP/IP 6= 0. In the main manuscript (Fig. 3) we initialize the weights with

W IP
1,1 =

gbas
(
gl + gden

)
gden (gl + gbas)

W PP
2,1 and (58)

W PI
1,1 = −BPP

1,2 , (59)

thereby skipping the first learning stage and initializing the network directly in the self-predicting
state. The full set of parameters used in Fig. 3 and Fig. 5 can be found in Section 15.2.

15 Parameters

15.1 Parameters used for classification experiments shown in Fig. 2

Table 1 lists all the parameters we used for the experiments shown in Fig. 2. This includes HIGGS
and MNIST experiments with fully connected (FC) architectures in Fig. 2b and c as well as MNIST
and CIFAR-10 experiments employing convolutional networks (ConvNets).

Standard artificial neural networks (ANNs) were trained with classical backpropagation (BP) using
the same network topologies but with cross-entropy (CE) loss instead of the mean squared error
(MSE) loss used for the LE experiments.

18

Table 1: Neuron, network and training parameters used to produce the results shown in Fig. 2.

Symbol Parameter name Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 2e

Neuron parameters
τm [ms] membrane time constant 10 20 10 10 10
τ r [ms] prospective time constant 10 20 10 10 10
τ s [ms] synaptic time constant 0 0 0 0 0

ϕ` activation tanh hard sigmoid1

ϕN output activation linear

Network parameters
architecture FC FC FC LeNet-5 LeNet-5
input size 50 784 28 28× 28× 1 32× 32× 3
hidden layer size 30 300 300 C (5× 5)× 20−MP 24

100 300 C (5× 5)× 50−MP 24

300 500
output layer size 1 10 1 10

β nudging strength 0.1
L loss MSE

initial weights & biases uniform2 ∼ N (µ = 0, σ = 0.05)
ηw,b [ms−1] learning rate 0.25 128× 0.125 64× 0.125 128× 0.125 64× 0.125

layerwise η factors3 – 1, .2, .1 1, .2, .1, .1 1, .2, .1 1, .2, .2, .2, .2, .1

Training parameters
dt [ms] temporal resolution 0.001 0.01 0.1 0.1 0.1
Tpres presentation time 1 dt 100 dt 20 dt 100 dt 50 dt

= 0.001ms = 1ms = 2ms = 10ms = 5ms
batch size 1 512 128 512 128
training epochs – 100
train samples – 50000 40000 50000 342000
validation samples – 10000 10000 10000 18000
test samples – 10000 10000 10000 40000
seeds – 10 9 9 9

1 By “hard sigmoid” we mean the piecewise linear function ϕ(x) that is obtained clipping a rectified linear unit (ReLU) to [0, 1]

ϕ(x) = xθ(x)− (x− 1)θ(x− 1) =

0 if x ≤ 0

1 if x ≥ 1

x else
, ϕ′(x) =

{
1 if x ∈ [0, 1]

0 else

where θ(x) denotes the Heaviside step function.
2 PyTorch defaults
3 These factors scale the learning rate η for each layer independently.
4 C and MP indicate convolutional and max pooling layers, respectively.

19

Also, we used a ReLU function for the hidden layer activation of the ANNs instead of the hard
sigmoid activation that was used for the LE simulations. Furthermore, the BP results for the HIGGS
dataset were produced using different activation functions for both hidden and output layers, namely
tanh and sigmoidal, respectively.

To perform the simulations without prospective coding shown in Fig. 2b we set τ r = 0ms, τm =
10ms and used a temporal resolution of dt = 1ms to obtain reasonable presentation times of multiple
τm that allow for relaxation. That is to say Tpres = 200 dt = 20ms = 20 τm for the purple curve in
Fig. 2 compared to presentation times of Tpres = 1ms = 0.05 τm used for the LE simulations that
employ the prospective coding allowing for much smaller presentation times.

20

15.2 Parameters used for the experiments shown in Fig. 3 and Fig. 5

Table 2: Neuron, network and training parameters used to produce the results using the microcircuit architecture.

Parameter name Fig. 3 Fig. 5

Neuron parameters
Cm 1 1
El 0 0
gl [ms−1]1 0.03 0.03
gbas [ms−1] 0.1 0.1
gapi [ms−1] 0.06 0.06
gden [ms−1] 0.1 0.1
gnudge, I [ms−1] 0.06 0.06
gnudge, tgt [ms−1] 0.06 0.06
τeff [ms] 5.262 5.262

ϕ (x) log [1 + exp (x)] log [1 + exp (x)]

Network parameters
size input 9 1
size hidden layer 30 1
size output layer 3 1
selfpred. ηPP

1 [ms−1] − 0
selfpred. ηPP

2 [ms−1] − 0
selfpred. ηIP

1 [ms−1] − 40
selfpred. ηPI

1 [ms−1] − 50
training ηPP

1 [ms−1] 5dt/Tpres
3 50

training ηPP
2 [ms−1] 1dt/Tpres

3 10
training ηIP

1 [ms−1] 2dt/Tpres
3 20

training ηPI
1 [ms−1] 04 04

weight init (uniform) [−1, 1] [−1, 1]

Training parameters
start in selfpred. state yes no
train biases no no
delay on target signal 1dt5 1dt5

selfpred. epochs − 3
training epochs 1000 500
dt [ms] 0.1 0.01
Tpres 3 dt− 5000 dt 100 dt

1 To keep the other variables unitless, except for dynamical time scales, conduc-
tances and learning rates need to have the unit 1 / ms.

2 The effective time constant is calculated from the neurons conductances: τeff =
Cm

gl+gbas+gapi .
3 Learning rates are scaled with varying Tpres.
4 If the network is starting in or has previously learned the self-predicting state

the weights W PI do not need to be adapted.
5 As the effect of a change in the input signal needs as many timesteps as there

are hidden layers to reach the top layer of the network, the target signal needs
to be delayed relative to the input by this amount of time steps.

15.3 Parameters used for the experiments shown in Fig. 4

Parameters not mentioned here explicitly (batch size, number of training, validation and test samples,
learning rates, mean and variance for initial weights and biases) were the same as for the LE
experiments shown in Fig. 2b (cf. Table 1).

21

Table 3: Additional parameters needed to reproduce the experiments shown in Fig. 4

Symbol Parameter name Fig. 4a Fig. 4c

Training parameters
dt temporal resolution 0.002ms− 2.0ms 0.01ms, 0.05ms1

Tpres presentation time 100 dt 20 dt− 1000 dt
τ s synaptic time constant − 0ms− 2.0ms

seeds 4 3

Noise parameters
στm/r time constant width2 0 τm/r, 0.01 τm/r, 0.2 τm/r −
σξ noise width − 0.2 rmax

target LPF − yes3

1 The smaller value was used for the simulations of the green datapoints while the bigger
value was used to obtain the blue and yellow curves.

2 Time constants were clipped, i.e., τm/r + ξ ∈ [1, 1000], to exclude the unphysical case of
them to become negative.

3 In case of Fig. 4c, an additional LPF with time constant τ trg = N×τ s where N = # layers
was applied to the target signal. However, this is just an approximation for the N LPFs
that are being applied to the input signal during a forward pass. Yet it helps to reduce
“wrong learning” during the short relaxation phases introduced by the synaptic filtering
and can be neglected in the limit τ s → 0.

16 Broader impact

The physical interpretation of our model not only offers a biologically plausible implementation
of continuous-time, continuously active neuro-synaptic dynamics, but also outlines a specific path
towards mixed-signal (analog/digital) in-silico implementation. Even with existing technologies,
such neuromorphic systems harbor the potential of surpassing their biological archetypes with respect
to both energy efficiency and speed [2]. In conjunction with the inherent ability of our framework to
support the processing of continuous data streams, the reduced power consumption of such devices
makes them a prime candidate for the construction of autonomous, embodied learning machines.

While obviously beneficial for research and commercial deployment, one should be aware that
improved training efficiency carries the risk of deploying ever more intransparent models [3]. Further-
more, along with its obvious benefits, improved, and in particular autonomous AI entails a plethora
of far-reaching societal consequences that are the subject of ongoing academic and public debate [4].
Future progress hence needs to be considered carefully and responsibly, and, in particular, properly
reflected in public policy.

On the path towards understanding and replicating biological intelligence, a corollary benefit for the
scientific community may emerge. Modern machine learning requires enormous amounts of compute,
thus largely limiting cutting-edge developments to institutions with the corresponding resources. The
envisioned bio-inspired yet also bio-transcendent hardware systems have the potential to drastically
increase the overall efficiency of custom-designed computational platforms. The resulting decrease
in operating costs could thus significantly expedite the democratization of AI research.

References

1. Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic Cortical Microcircuits
Approximate the Backpropagation Algorithm. Advances in Neural Information Processing
Systems 31, 8721–8732 (2018).

2. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for Neuromorphic Computing.
Nature Reviews Physics 2, 499–510 (2020).

3. Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big? Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, 610–623 (2021).

22

4. Futurium (European Commission). Ethics Guidelines for Trustworthy AI https://ec.europa.
eu/futurium/en/ai-alliance-consultation.

23

https://ec.europa.eu/futurium/en/ai-alliance-consultation
https://ec.europa.eu/futurium/en/ai-alliance-consultation

