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S1 Organization of the supplementary

The supplementary is organized as follows. We define our notation in Section S2. In Section S3, we
prove Theorem 1 and draw links between our approach of SGM and existing works. We recall the
classical formulation of IPF, prove Proposition 2 and draw links with autoencoders in Section S4. In
Section S5 we present alternative variational formulas for Algorithm 1 and prove Proposition 3. We
gather the proofs of our theoretical study of Schrödinger bridges (Proposition 4 and Proposition 5) in
Section S6. A quantitative study of IPF with Gaussian targets and reference measure is presented
in Section S7. In particular, we show that the convergence rate of IPF is geometric in this case. In
Section S8 we study the links between continuous-time and discrete-time IPF and prove Proposition 6.
We also provide details on the likelihood computation of generative models obtained with Schrödinger
bridges. We detail training techniques to improve training times in Section S9 then present architecture
details and additional experiments in Section S10.

S2 Notation

For ease of reading in this section we recall and detail some of the notation introduced in Section 1. For
any measurable space (E, E), we denote by P(E) the space of probability measures over E. For any
` ∈ N, we also denote P` = P((Rd)`). For any π ∈P(E) and Markov kernel K : E×F → [0, 1]
where (F,F) is a measurable space, we define πK ∈ P(F) such that for any A ∈ F we have
πK(A) =

∫
E

K(x,A)dπ(x). If E = C then for any P ∈ P(E) and s, t ∈ [0, T ], we denote by Ps,t
the marginals of P at time s and t. In addition, we denote by P|s,t the disintegration Markov kernel
given by the mapping ω 7→ (ω(s), ω(t)), see Section S4.1 for a definition. In particular, we have
P = Ps,tP|s,t. All defined mappings are considered to be measurable unless stated otherwise.

For any P ∈P(C) we define PR the reverse-time measure, i.e. for any A ∈ B(C) we have PR(A) =
P(AR) where AR = {t 7→ ω(T − t) : ω ∈ A}. We say that P ∈ P(C) is associated with a
diffusion if it solves the corresponding martingale problem. More precisely, P ∈P(C) is associated
with dXt = b(t,Xt)dt+

√
2dBt for b : [0, T ]× Rd → Rd measurable if for any v ∈ C2

c(Rd,R),
(Mv

t )t∈[0,T ] is a P-local martingale, where for any t ∈ [0, T ]

Mv
t = v(Xt)−

∫ t
0
As(v)(Xs)ds (S1)

with for any v ∈ C2(Rd,R), t ∈ [0, t] and x ∈ Rd

At(v)(x) = 〈b(t, x),∇v(x)〉+ ∆v(x).
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We refer to Revuz and Yor (1999) for a rigorous treatment of local martingales. Note that (S1)
uniquely defines Pt|s for any s, t ∈ [0, T ] with t ≥ s. Hence P is uniquely defined up to P0.

In some cases, we say that P ∈ P(C) is associated with a diffusion if it solves the corresponding
martingale problem with initial condition. More precisely, P ∈ P(C) is associated with dXt =

b(t,Xt)dt+
√

2dBt and X0 ∼ µ0 ∈P(Rd) if it solves the martingale problem and P0 = µ0. Note
that in this case P is uniquely defined.

Finally, for any measurable space (E, E) and µ, ν ∈P(E) we recall that the Jeffrey’s divergence is
given by J(µ, ν) = KL(µ|ν) + KL(ν|µ).

S3 Time-reversal and existing work

Before giving the proof of Theorem 1 we start by deriving estimates on the logarithmic derivatives
of the density of the Ornstein-Ulhenbeck process given growth conditions on the initial density in
Section S3.1. Note that our estimates are uniform w.r.t. the time variable. We give the proof of
Theorem 1 in Section S3.2. Finally, we draw links with existing works in Section S3.3.

S3.1 Estimates for logarithmic derivatives

We start by recalling the following multivariate Faa di Bruno’s formula and a useful technical lemma.
Then in Section S3.1.1 we derive bounds for the logarithmic derivatives which are non-vacuous for
small times. In Section S3.1.2 we derive bounds for the logarithmic derivatives which are non-vacuous
for large times. We combine them in Section S3.1.3.

For any α ∈ Nd we denote |α| =
∑d
i=1 αi and α! =

∏d
i=1 αi!. If f : Rd → R is m-

differentiable with m ∈ N, then for any λ ∈ Nd with |λ| ≤ m we denote for any x ∈ Rd,
∂λf(x) = ∂λ1

1 . . . ∂λdd f(x). Similarly to Constantine and Savits (1996), we define ≺ the order on Nd
such that for any λ1, λ2 ∈ Nd, λ1 ≺ λ2 if |λ1| < |λ2| or |λ1| = |λ2| and there exists j ∈ {1, . . . , d}
such that λ1

j < λ2
j and for any i ∈ {1, . . . , j}, λ1

i = λ2
i .

Proposition S1. Let U ⊂ R open, N ∈ N, f ∈ CN (U,R), g ∈ CN (Rd,U) and h = f ◦ g. Then for
any λ ∈ Nd with |λ| ≤ N and x ∈ Rd we have

∂λh(x) =
∑|λ|
k,s=1

∑
ps(λ,k) f

(k)(g(x))λ!
∏s
j=1 ∂`jg(x)mj/(mj !`j !

mj ),

with

ps(λ, k) = {{`i}si=1 ∈ (Nd)s, {mi}si=1 ∈ Ns : `1 ≺ · · · ≺ `s,
∑s
i=1mi = k,

∑s
i=1mi`i = λ}.

Proof. The proposition is a direct application of Constantine and Savits (1996).

From this multivariate Faa di Bruno formula we derive the following lemma drawing links between
exponential and logarithmic derivatives.
Lemma S2. Let N ∈ N, g1 ∈ CN (Rd,R), g2 ∈ CN (Rd, (0,+∞)), h1 = exp[g1] and h2 =

log(g2). Then for any λ ∈ Nd with |λ| ≤ N let cd,λ =
∑|λ|
k=1 d

k and the following hold:

(a) There exists Pλ,exp a real polynomial with cd,λ variables such that for any x ∈ Rd

∂λh1(x) = Pλ,exp((∂`g1(x))|`|≤|λ|)h1(x).

(b) There exists Pλ,log a real polynomial with cd,λ variables such that for any x ∈ Rd

∂λh2(x) = Pλ,log((∂`g2(x)/g2(x))|`|≤|λ|).

Proof. The proof of (a) is a direct application of Proposition S1 upon noting that for any k ∈ N,
f (k) = exp if f = exp. Similarly, the proof of (b) is a direct application of Proposition S1 upon
noting that, in the case where f = log, for any k ∈ N and x > 0, f (k)(x) = (−1)k−1(k−1)!x−k and
that for any s ∈ {1, . . . , |λ|} and (`1, . . . , `s,m1, . . . ,ms) ∈ ps(λ, k) we have

∑s
i=1mi = k.
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We will also make use of the following technical lemma.
Lemma S3. Let p ∈ N. Then for any a ≥ 0, b > 0 and x ∈ Rd we have

− b‖x‖2p + a‖x‖2p−1 ≤ −(b/2)‖x‖2p + a(2a/b)2p−1, (S2)

− b‖x‖2p + a‖x‖2p−2 ≤ −(b/2)‖x‖2p + a(2a/b)p−1. (S3)

In addition for any a ≥ 0, b > 0 and x ∈ Rd we have

−b‖x‖2p + a‖x‖2p−1 ≤ (2p− 1)2p−1(2p)−2pa2pb1−2p.

Proof. For the first part of the proof, we only prove (S2). The proof of (S3) is similar. Let a ≥ 0,
b > 0. For any x ∈ Rd with ‖x‖ ≤ (b/2a)−1 we have a‖x‖2p−1 ≤ a(b/2a)−2p+1. For any x ∈ Rd
with ‖x‖ ≥ (b/2a)−1 we have a‖x‖2p−1 ≤ (b/2)‖x‖2p. Hence, we get that for any x ∈ Rd we have

a‖x‖2p−1 − b‖x‖2p ≤ a(b/2a)−2p+1 − (b/2) ‖x‖2p ,
which concludes the first part of the proof. For the second part of the proof, remark that the maximum
of h : t 7→ −bt2p + at2p−1 is attained for t? = (2p− 1)/(2p)(a/b). We conclude upon noting that
h(t?) = (2p− 1)2p−1(2p)−2pa2pb1−2p.

S3.1.1 Small times estimates

Lemma S2 is key in the following proposition which establishes upper bounds on the logarithmic
derivatives of the density of the Ornstein-Ulhenbeck process. In what follows, we define (pt)t∈[0,T ]

the density w.r.t. the Lebesgue measure of Xt satisfying

dXt = −αXtdt+
√

2dBt, X0 ∼ pdata,

with α ≥ 0. In the rest of this section, α is fixed.
Proposition S4. Let N ∈ N. Assume that pdata ∈ CN (Rd, (0,+∞)) is bounded and that for any
` ∈ {1, . . . , N} there exist A` ≥ 0 and α` ∈ N such that for any x ∈ Rd

‖∇` log pdata(x)‖ ≤ A`(1 + ‖x‖α`). (S4)

Then for any t ≥ 0, pt ∈ CN (Rd, (0,+∞)) and for any ` ∈ {1, . . . , N}, there exist B` ≥ 0 and
β` ∈ N such that for any t ≥ 0

‖∇` log pt(x)‖ ≤ c−2β`
t B`(1 +

∫
Rd ‖x0‖β` p0|t(x0|xt)dx0),

with c2t = exp[−2αt].

Proof. First note that for any t ≥ 0 and xt ∈ Rd we have

pt(xt) =
∫
Rd pdata(x0)g(xt − ctx0)dx0, (S5)

with for any x̃ ∈ Rd

ct = exp[−αt], g(x̃) = (2πσ2
t )−d/2 exp[−‖x̃‖2 /(2σ2

t )], σ2
t = (1− exp[−2αt])/α.

Let t ≥ 0. We have that pt ∈ CN (Rd, (0,+∞)) upon combining the fact that pdata is bounded, (S5)
and the dominated convergence theorem. Let ` ∈ {1, . . . , N} and λ ∈ Nd such that |λ| ≤ `. Using
Lemma S2-(b) we have for any xt ∈ Rd

∂λ log pt(xt) = Pλ,log((∂mpt(xt)/pt(xt))|m|≤|λ|). (S6)

Using (S5) and the change of variable z = xt − ctx0, we have for any xt ∈ Rd

pt(xt) = c−1
t

∫
Rd pdata((xt − z)/ct)g(z)dz.

Hence, combining this result, the dominated convergence theorem and Lemma S2-(a) we get that for
any xt ∈ Rd and m ∈ Nd with |m| ≤ `

∂mpt(xt) = c
−|m|
t

∫
Rd ∂mpdata(x0)g(xt − ctx0)dx0

= c
−|m|
t

∫
Rd Pm,exp((∂j log pdata(x0))|j|≤|m|)pdata(x0)g(xt − ctx0)dx0.

We conclude the proof upon combining this result, (S4), (S6) and the fact that ct ≤ 1.
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For any t ≥ 0 and xt ∈ Rd we introduce the infinitesimal generatorAt,xt : C2(Rd,R)→ C2(Rd,R)
given for any ϕ ∈ C2(Rd,R) and x0 ∈ Rd by

At,xt(ϕ)(x0) = 〈∇x0 log p0|t(x0|xt),∇ϕ(x0)〉+ ∆ϕ(x0) (S7)

= 〈∇ log pdata(x0),∇ϕ(x0)〉+ (ct/σ
2
t )〈xt − ctx0,∇ϕ(x0)〉+ ∆ϕ(x0).

Establishing Foster-Lyapunov drift condition for this infinitesimal generator will allow us to derive
moment bounds for x0 7→ p0|t(x0|xt). We now introduce the Lyapunov functional which will allow
us to control these moments. For any p ∈ N, t > 0 and xt ∈ Rd, let Vp,t,xt : Rd → [1,+∞) given
for any x0 ∈ Rd by

Vp,t,xt(x0) = 1 + ‖x0 − xt/ct‖2p, ct = exp[−αt].

Proposition S5. Assume pdata ∈ C1(Rd,R) and that there exist m0 > 0, d0, C0 ≥ 0 such that for
any x0 ∈ Rd we have

〈x0,∇ log pdata(x0)〉 ≤ −m0‖x0‖2 + d0 ‖x0‖ , ‖∇ log pdata(x0)‖ ≤ C0(1 + ‖x0‖). (S8)

Then for any t > 0, xt ∈ Rd and p ∈ N there exist βp ∈ N, ap > 0 and bp ≥ 0 (independent of t and
xt) such that for any x0 ∈ Rd we have

At,xt(Vp,t,xt)(x0) ≤ −apVp,t,xt(x0) + bp(1 + ‖xt/ct‖βp),

with βp = 2p.

Proof. Let t ≥ 0, x0, xt ∈ Rd and p ∈ N. First, we have for any x0 ∈ Rd

Vp,t,xt(x0) = ‖x0 − xt/ct‖2p, ∇Vp,t,xt(x0) = 2p(x0 − xt/ct)‖x0 − xt/ct‖2(p−1), (S9)

∆Vp,t,xt(x0) = 2p(2p− 1)‖x0 − xt/ct‖2(p−1).

Second, using Lemma S3, the Cauchy-Schwarz inequality and (S8), we have for any x0 ∈ Rd

〈∇ log pdata(x0), x0 − xt/ct〉 ≤ −m0‖x0‖2 + d0 ‖x0‖+ ‖∇ log pdata(x0)‖‖xt/ct‖
≤ −m0‖x0 − xt/ct‖2 + 2m0‖x0‖‖xt‖/ct + C0(1 + ‖x0‖)‖xt‖/ct

+ d0 ‖x0 − xt/ct‖+ d0 ‖xt‖ /ct + m0‖xt‖2/c2t
≤ −m0‖x0 − xt/ct‖2 + {(2m0 + C0)‖xt‖/ct + d0}‖x0 − xt/ct‖

+ (3m0 + C0)‖xt‖2/c2t + (C0 + d0)‖xt‖/ct.

Combining this result and (S9), we have for any x0 ∈ Rd

〈∇ log pdata(x0),∇Vp,t,xt(x0)〉
≤ −2pm0‖x0 − xt/ct‖2p + 2p{(2m0 + C0)‖xt‖/ct + d0}‖x0 − xt/ct‖2p−1

+ 2p((3m0 + C0)‖xt‖2/c2t + (C0 + d0)‖xt‖/ct)‖x0 − xt/ct‖2p−2.

Combining this result with (S7) and the fact that for any x0 ∈ Rd, (ct/σ
2
t )〈xt−ctx0,∇Vp,t,xt(x0)〉 ≤

0, we get that for any x0 ∈ Rd

At,xt(Vp,t,xt)(x0) ≤ −2pm0‖x0 − xt/ct‖2p + 2p{(2m0 + C0)‖xt‖/ct + d0}‖x0 − xt/ct‖2p−1

+ 2p((3m0 + C0)‖xt‖2/c2t + (C0 + d0)‖xt‖/ct)‖x0 − xt/ct‖2p−2.

Using Lemma S3 there exist βp ∈ N, ap > 0 and bp ≥ 0 (independent of xt and t) such that for any
x0 ∈ Rd we have

At,xt(Vp,t,xt)(x0) ≤ −apVp,t,xt(x0) + bp(1 + (‖xt‖/ct)βp),

which concludes the proof.

Using this Foster-Lyapunov drift we are now ready to bound the moments of x0 7→ p0|t(x0|xt).
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Proposition S6. Assume that pdata ∈ C2(Rd,R) and that there exist m0 > 0, d0, C0 ≥ 0 such that
for any x0 ∈ Rd we have

〈x0,∇ log pdata(x0)〉 ≤ −m0‖x0‖2 + d0‖x0‖, ‖∇ log pdata(x0)‖ ≤ C0(1 + ‖x0‖).

Then, for any p ∈ N there exist Cp ≥ 0 and βp ∈ N such that for any t ≥ 0 and xt ∈ Rd∫
Rd ‖x0‖p p(x0|xt)dx0 ≤ Cpc

−2βp
t (1 + ‖xt‖βp), (S10)

with c2t = exp[−2αt] and βp = p.

Proof. Let t ≥ 0 and xt ∈ Rd. Using (Ikeda and Watanabe, 1989, Theorem 2.3, Theorem 3.1),
Proposition S5 and (Meyn and Tweedie, 1993, Theorem 2.1) for any x ∈ Rd, there exists a unique
strong solution (Xx

u)u≥0 such that Xx
0 ∼ δx and

dXx
u = ∇ log p0|t(X

x
u|xt)du+

√
2dBu.

Using (Leha and Ritter, 1984, Theorem 5.19) we get that {(Xx
u)u≥0 : x ∈ Rd} is associated with a

Feller semi-group. In addition, we have that for any f ∈ C2
c(Rd),

∫
Rd At,xt(f)(x0)p0|t(x0|xt)dx0 =

0. Therefore, using (Revuz and Yor, 1999, Proposition 1.5) and (Ethier and Kurtz, 1986, Theorem
9.17) we get that the probability distribution with density x0 7→ p0|t(x0|xt) is an invariant distribution
for the semi-group associated with {(Xx

u)u≥0 : x ∈ Rd}. Therefore, using Proposition S5 and
(Meyn and Tweedie, 1993, Theorem 4.6) we get that for any p ∈ N∫

Rd(1 + ‖x0 − c−1
t xt‖2p)p0|t(x0|xt)dx0 ≤ bp(1 + ‖xt/ct‖βp)/ap

which concludes the proof upon using that ct ≤ 1 and Jensen’s inequality.

S3.1.2 Large times estimates

In Proposition S6, the bound in (S10) goes to +∞ as t → +∞ since limt→+∞ c−1
t = +∞ (if

α > 0). This does not yield any degeneracy in our setting since we consider a fixed time horizon
T > 0. However, we can improve the result by deriving another bound which is bounded at t→ +∞
but explodes as t→ 0. In this section we assume that h : u 7→ (exp[u]− 1)/u is extended to 0 by
continuity with h(0) = 1.

The following proposition is the equivalent of Proposition S4 with a bound which explodes for t→ 0
instead of t → +∞. Note that contrary to Proposition S4 we do not require any differentiability
condition the initial distribution pdata.
Proposition S7. Let N ∈ N. Assume that pdata ∈ C0(Rd, (0,+∞)) is bounded. Then for any t ≥ 0,
pt ∈ CN (Rd, (0,+∞)) and for any ` ∈ {1, . . . , N}, there exist B` ≥ 0 and β` ∈ N such that for
any t ≥ 0

‖∇` log pt(x)‖ ≤ σ−β`t B`(1 +
∫
Rd ‖xt − ctx0‖β` p0|t(x0|xt)dx0)

≤ σ−β`t B`(1 +
∫
Rd ‖xt − x0‖β` q0|t(x0|xt)dx0).

with σ2
t = (1− exp[−2αt])/α and for any x̃ ∈ Rd

q0|t(x0|xt) = pdata(x0/ct)g(xt − x0)/
∫
Rd pdata(x0/ct)g(xt − x0)dx0,

g(x̃) = (2πσ2
t ) exp[−‖x̃‖2 /(2σ2

t )].

Proof. First note that for any t ≥ 0 and xt ∈ Rd we have

pt(xt) =
∫
Rd pdata(x0)g(xt − ctx0)dx0, (S11)

with

ct = exp[−αt], g(x̃) = (2πσ2
t )−d/2 exp[−‖x̃‖2 /(2σ2

t )], σ2
t = (1− exp[−2αt])/α.

Let t ≥ 0. We have pt ∈ CN (Rd, (0,+∞)) upon combining the fact that pdata is bounded, (S11)
and the dominated convergence theorem. Let ` ∈ {0, . . . , N} and λ ∈ Nd such that |λ| ≤ `. Using
Lemma S2-(b) we have for any xt ∈ Rd

∂λ log pt(xt) = Pλ,log((∂mpt(xt)/pt(xt))|m|≤|λ|).
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For any m ∈ Nd with |m| ≤ |λ|, using the dominated convergence theorem, there exist Cm ≥ 0 and
βm ∈ N such that for any xt ∈ Rd we have

|∂mpt(xt)| ≤ Cmσ−2βm
t

∫
Rd(1 + ‖xt − ctx0‖βm)pdata(x0)g(xt − ctx0)dx0,

which concludes the proof.

For any t ≥ 0 and xt ∈ Rd we introduce the infinitesimal generator Ãt,xt : C2(Rd,R)→ C2(Rd,R)
given for any ϕ ∈ C2(Rd,R) and x0 ∈ Rd by

Ãt,xt(f)(x0) = 〈∇ log q0|t(x0|xt),∇ϕ(x0)〉+ ∆ϕ(x0)

= c−1
t 〈∇ log pdata(x0/ct),∇ϕ(x0)〉+ σ−2

t 〈xt − x0,∇ϕ(x0)〉+ ∆ϕ(x0).

For any p ∈ N, let Vp : Rd → [1,+∞) given for any x0 ∈ Rd by

Vp(x0) = 1 + ‖x0‖2p.

The following proposition is the counterpart to Proposition S5.
Proposition S8. Assume that pdata ∈ C1(Rd,R) and that there exist m0 > 0, d0 ≥ 0 such that for
any x0 ∈ Rd we have

〈x0,∇ log pdata(x0)〉 ≤ −m0‖x0‖2 + d0 ‖x0‖ . (S12)

Then for any t > 0, xt ∈ Rd and p ∈ N there exist βp ∈ N, ap > 0 and bp ≥ 0 (independent of t and
xt) such that for any x0 ∈ Rd we have

Ãt,xt(Vp)(x0) ≤ −apσ−2
t Vp(x0) + bp(1 + ‖xt/σ2

t ‖βp),

with βp = 2p.

Proof. Let t ≥ 0, x0, xt ∈ Rd and p ∈ N. First, we have for any x0 ∈ Rd

Vp(x0) = 1+‖x0‖2p , ∇Vp(x0) = 2p ‖x0‖2(p−1)
x0, ∆Vp(x0) = 2p(2p−1) ‖x0‖2(p−1)

.

Using this result, (S12) and Lemma S3, we get that for any x0 ∈ Rd

2p〈∇ log pdata(x0/ct), x0/ct〉 ‖x0‖2(p−1) ≤ 2pc−1
t (−m0 ‖x0‖2p /ct + d0 ‖x0‖2p−1

)

≤ c−1
t (2p− 1)2p−1(2p)1−2p(m0/ct)

1−2pd2p
0 .

Combining this result and the fact that ct ≤ 1, there exists dp ≥ 0 (independent from t and xt) such
that for any x0 ∈ Rd

2p〈∇ log pdata(x0/ct), x0/ct〉 ‖x0‖2(p−1) ≤ dp. (S13)

In addition, we have for any x0 ∈ Rd

(2p/σ2
t )〈x0, xt − x0〉 ‖x0‖2(p−1)

+ 2p(2p− 1) ‖x0‖2(p−1)

≤ −(2p/σ2
t ) ‖x0‖2p + (2p/σ2

t ) ‖x0‖2p−1 ‖xt‖+ 2p(2p− 1) ‖x0‖2p−1
+ 2p(2p− 1).

Combining this result and (S13) we have for any x0 ∈ Rd

Ãt,xt(Vp)(x0)

≤ −(2p/σ2
t ) ‖x0‖2p + (2p/σ2

t ) ‖x0‖2p−1 ‖xt‖+ 2p(2p− 1) ‖x0‖2p−1
+ 2p(2p− 1) + dp.

We conclude upon using Lemma S3.

The next proposition is the counterpart of Proposition S6.
Proposition S9. Assume that pdata ∈ C2(Rd,R) and that there exist m0 > 0, d0 ≥ 0 such that for
any x0 ∈ Rd we have

〈x0,∇ log pdata(x0)〉 ≤ −m0‖x0‖2 + d0‖x0‖.
Then, for any p ∈ N there exist Cp ≥ 0 and βp ∈ N such that for any t ∈≥ 0 and xt ∈ Rd∫

Rd ‖xt − x0‖p q0|t(x0|xt)dx0 ≤ Cpσ
−2βp
t (1 + ‖xt‖βp),

with σ2
t = (1− exp[−2αt])/α and βp = p.

Proof. The proof is similar to the one of Proposition S6.
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S3.1.3 Uniform in time logarithmic derivatives estimates

In this section we combine the results of Section S3.1.2 and Section S3.1.1 to establish uniform in
time estimates for the logarithmic derivatives of the density of the Ornstein-Ulhenbeck diffusion.
Theorem S10. Let N ∈ N with N ≥ 2. Assume that pdata ∈ CN (Rd,R) and that there exist m0 > 0,
d0, C0 ≥ 0 such that for any x0 ∈ Rd we have

〈x0,∇ log pdata(x0)〉 ≤ −m0‖x0‖2 + d0‖x0‖, ‖∇ log pdata(x0)‖ ≤ C0(1 + ‖x0‖).
In addition, assume that pdata is bounded and that for any ` ∈ {1, . . . , N} there exist A` ≥ 0 and
α` ∈ N such that for any x0 ∈ Rd

‖∇` log pdata(x0)‖ ≤ A`(1 + ‖x0‖α`). (S14)

Then for any t ≥ 0, pt ∈ CN (Rd, (0,+∞)) and for any ` ∈ {1, . . . , N}, there exist D` ≥ 0 and
β` ∈ N such that for any t ≥ 0

‖∇` log pt(xt)‖ ≤ D`(1 + ‖xt‖β`).
In particular if α1 = 1 then β1 = 1.

Proof. Let t ≥ 0 and ` ∈ {1, . . . , N}. Using Proposition S4 and Proposition S6 there exist D1
` ≥ 0

and β1
` ∈ N such that for any xt ∈ Rd we have

‖∇` log pt(xt)‖ ≤ D1
` c
−2β1

`
t (1 + ‖xt‖β

1
` ).

Similarly, using Proposition S7 and Proposition S9 there exist D2
` ≥ 0 and β2

` ∈ N such that for any
xt ∈ Rd we have

‖∇` log pt(xt)‖ ≤ D2
` (α

1/2σt)
−2β2

` (1 + ‖xt‖β
2
` ).

Therefore, there exist D̃` ≥ 0 and β` ∈ N such that for any xt ∈ Rd we have

‖∇` log pt(xt)‖ ≤ D̃` min(α−1σ−2
t , c−2

t )β`(1 + ‖xt‖β`).
Since for any c−2

t = exp[2αt] and α−1σ−2
t = (1− exp[−2αt])−1. Hence we have

min(α−1σ−2
t , c−2

t )β` ≤ max{min(1/u, 1/(1− u)) : u ∈ [0, 1]} ≤ 2β` ,

which concludes the first part proof. We now show that if α1 = 1 then β1 = 1. Recall that for any
t ≥ 0 and xt ∈ Rd we have

pt(xt) =
∫
Rd pdata(x0)g(xt − ctx0)dx0,

with for any x̃ ∈ Rd

ct = exp[−αt], g(x̃) = (2πσ2
t )−d/2 exp[−‖x̃‖2 /(2σ2

t )], σ2
t = (1− exp[−2αt])/α.

Therefore, using the dominated convergence theorem we get that for any xt ∈ Rd

∇ log pt(xt) = σ−2
t

∫
Rd(xt − ctx0)p0|t(x0|xt)dx0 = σ−2

t

∫
Rd(xt − ctx0)q0|t(x0|xt)dx0. (S15)

Similarly, using the dominate convergence theorem and change of variable z = xt − ctx0, we have
for any xt ∈ Rd

∇ log pt(xt) = c−1
t

∫
Rd ∇ log pdata(x0)p0|t(x0|xt)dx0.

We conclude the proof upon combining this result, (S15), (S14) with α1 = 1, Proposition S9 and
Proposition S6. In particular, we use that β1 = 1.

S3.2 Proof of Theorem 1

We start by recalling the following basic lemma.
Lemma S11. Let (E, E) and (F,F) be two measurable spaces and K : E×F → [0, 1] be a Markov
kernel. Then for any µ0, µ1 ∈P(E) we have

‖µ0K− µ1K‖TV ≤ ‖µ0 − µ1‖TV.

In addition, for any ϕ : E→ F measurable we get that

‖ϕ#µ0 − ϕ#µ1‖TV ≤ ‖µ0 − µ1‖TV,

with equality if ϕ is injective.
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Proof. We divide the proof into two parts.

(a) Note that for any f : F→ R such that ‖f‖∞ ≤ 1 we have ‖Kf‖∞ ≤ 1. Using this result we get

‖µ0K− µ1K‖TV = sup{
∫
F
f(y)d(µ0K)(y)−

∫
F
f(y)d(µ1K)(y) : ‖f‖∞ ≤ 1}

= sup{
∫
E

Kf(x)dµ0(x)−
∫
E

Kf(x)dµ0(x) : ‖f‖∞ ≤ 1} ≤ ‖µ0 − µ1‖TV.

(b) We have

‖ϕ#µ0 − ϕ#µ1‖TV = sup{
∫
E
f(ϕ(x))dµ0(x)−

∫
E
f(ϕ(x))dµ1(x) : ‖f‖∞ ≤ 1}

≤ sup{
∫
E
f(x)dµ0(x)−

∫
E
f(x)dµ1(x) : ‖f‖∞ ≤ 1} ≤ ‖µ0 − µ1‖TV.

If ϕ is injective then there exists ϕ−1 : F→ F (measurable) such that ϕ−1 ◦ ϕ = Id. Therefore, for
any f : E→ R with ‖f‖∞ ≤ 1 we have f = (f ◦ ϕ−1) ◦ ϕ and ‖f ◦ ϕ−1‖∞ ≤ 1. Hence we have

‖µ0 − µ1‖TV = sup{
∫
E
f(x)dµ0(x)−

∫
E
f(x)dµ1(x) : ‖f‖∞ ≤ 1}

≤ sup{
∫
E
f(ϕ(x))dµ0(x)−

∫
E
f(ϕ(x))dµ1(x) : ‖f‖∞ ≤ 1} ≤ ‖ϕ#µ0 − ϕ#µ1‖TV,

which concludes the proof.

We will also make use of the following inequality.

Lemma S12. Let ε > 0, x, y ∈ Rd, t > 2/ε and ϕ : [0, 1] → R such that for any s ∈ [0, 1],
ϕ(s) = exp[−‖x− sy‖2 /(4t)]. Then ϕ ∈ C1([0, 1] ,R) and we have for any s ∈ [0, 1]

|ϕ′(s)| ≤ 2(1 + ε−1)(1 + ‖x‖) exp[−‖x‖2 /(8t)] exp[ε ‖y‖2]/t.

Proof. Let s ∈ [0, 1], we have

ϕ′(s) = (〈x, y〉 − s ‖y‖2) exp[−‖x− sy‖2 /(4t)]/(2t).

Using the Cauchy-Schwarz inequality and that for any a, b ∈ Rd, −‖a+ b‖2 ≤ −‖a‖2 /2 + ‖b‖2
we get

|ϕ′(s)| ≤ (‖x‖ ‖y‖+ ‖y‖2) exp[−‖x‖2 /(8t) + ‖y‖2 /(4t)]/(2t). (S16)

In addition, we have

‖y‖ exp[‖y‖2/(4t)] ≤ ‖y‖ exp[ε‖y‖2/2] ≤ (1 + ‖y‖2) exp[ε ‖y‖2 /2] ≤ 2(1 + ε−1) exp[ε ‖y‖2].
(S17)

Finally we also have ‖y‖2 exp[‖y‖2/(4t)] ≤ (1 + ε−1) exp[ε ‖y‖2]. Combining this result, (S16)
and (S17) concludes the proof.

Finally we show the following lemma which is a straightforward consequence of Girsanov’s theorem
(Liptser and Shiryaev, 2001, Theorem 7.7). A similar version of this lemma can be found in the proof
of (Durmus and Moulines, 2017, Proposition 2) and in (Laumont et al., 2021, Lemma 26) (version
where the dependence of the drift in w ∈ C([0, T ] ,Rd) is replaced by a (simpler) dependence in
x ∈ Rd). We refer to (Liptser and Shiryaev, 2001, Section 4) for the definitions of semi-group,
non-anticipative processes and diffusion type processes.

Lemma S13. Let T > 0, b1, b2 : [0,+∞) × C([0, T ] ,Rd) → Rd measurable such that for
any i ∈ {1, 2} and x ∈ Rd, dX

(i)
t = bi(t, (X

(i)
s )s∈[0,T ])dt +

√
2dBt admits a unique strong

solution with X
(i)
0 = x and (bi(t, (X

(i)
s ))t∈[0,T ] is non-anticipative, with Markov semi-group

(P
(i)
t )t≥0. In addition, assume that for any x ∈ Rd and i ∈ {1, 2}, P(

∫ T
0
{‖bi(t, (X(i)

s )s∈[0,T ])‖2 +

‖bi(t, (Bs)s∈[0,T ])‖2}dt < +∞) = 1. Then for any x ∈ Rd we have

‖δxP
(1)
T − δxP

(2)
T ‖2TV ≤ (1/2)

∫ T
0
E[‖b1(t, (X

(1)
s )s∈[0,T ])− b2(t, (X

(1)
s )s∈[0,T ])‖2]dt.
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Proof. Let T > 0 and x ∈ Rd. For any i ∈ {1, 2}, denote µx(i) the distribution of (X
(i)
t )t∈[0,T ] on

the Wiener space (C,B(C)) with X
(i)
0 = x. Similarly denote µxB the distribution of (Bt)t∈[0,T ] with

B0 = x, where we recall that (Bt)t∈[0,T ] is a d-dimensional Brownian motion. Using Pinsker’s
inequality (Bakry et al., 2014, Equation 5.2.2) and the transfer theorem (Kullback, 1997, Theorem
4.1) we get that

‖δxP
(1)
T − δxP

(2)
T ‖

2
TV ≤ 2 KL(µ(1)|µ(2)).

Since for any i ∈ {1, 2}, P(
∫ T

0
{‖bi(t, (X(i)

s )s∈[0,T ])‖2 + ‖bi(t, (Bs)s∈[0,T ])‖2}dt < +∞) = 1 and
the processes (X

(i)
t )t∈[0,T ] are of diffusion type for i ∈ {1, 2} we can apply Girsanov’s theorem

(Liptser and Shiryaev, 2001, Theorem 7.7) and µB-almost surely for any w ∈ C([0, T ] ,R) we get

(dµx(1)/dµ
x
B)((wt)t∈[0,T ])

= exp[(1/2)
∫ T

0
〈b1(t, (ws)s∈[0,T ]),dwt〉 − (1/4)

∫ T
0
‖b1(t, (ws)s∈[0,T ])‖2dt]

(dµxB/dµ
x
(2))((wt)t∈[0,T ])

= exp[−(1/2)
∫ T

0
〈b2(t, (ws)s∈[0,T ])),dwt〉+ (1/4)

∫ T
0
‖b2(t, (ws)s∈[0,T ]))‖2dt].

Hence, we obtain that

KL(µx(1)|µ
x
(2)) = E[log((dµx(1)/dµ

x
(2))((X

(1)
t )t∈[0,T ]))]

= (1/4)
∫ T

0
E[‖b1(t, (X

(1)
s )s∈[0,T ])− b2(t, (X

(1)
s )s∈[0,T ])‖2]dt

which concludes the proof.

We study distributions satisfying some curvature assumption and show that they are sub-Gaussian.
More precisely, we show the following proposition.
Lemma S14. Let q ∈ C1(Rd, (0,+∞)) and m > 0 and c ≥ 0 such that for any x ∈ Rd we have
〈∇ log q(x), x〉 ≤ −m ‖x‖2 + c ‖x‖. Then for any ε ∈ [0, m/2) we have∫

Rd exp[ε ‖x‖2]q(x)dx < +∞.

Proof. For any x ∈ Rd we have

log q(x) = log q(0) +
∫ 1

0
〈∇ log q(tx), x〉dt

≤ log q(0)− m
∫ 1

0
t ‖x‖2 dt+ c‖x‖ ≤ log q(0) + c‖x‖ − m ‖x‖2.

which concludes the proof.

Finally, we will use the following basic lemma.
Lemma S15. Let µ ∈P(Rd), α1 ∈ R, β1 > 0 and (Xt)t≥0 such that X0 has distribution µ and

dXt = α1Xtdt+ β
1/2
1 dBt,

where (Bt)t≥0 is a Brownian motion. Then for any α2 ∈ R and β2 > 0 we have that (Yt)t≥0 given
for any t ≥ 0 by Yt = α2Xβ2t satisfies

dYt = β2α1Ytdt+ α2(β2β1)1/2dB̃t,

where (B̃t)t≥0 is a Brownian motion, and Y0 has distribution (τα2
)#µ, where for any x ∈ Rd,

τα2
(x) = α2x.

Proof. Let t ≥ 0. Using the change of variable u 7→ β2u the following equalities hold in distribution

Yt = α2α1

∫ β2t

0
Xsds+ α2β

1/2
1 Bβ2t

= β2α2α1

∫ t
0

Xβ2sds+ α2(β1β2)1/2Bt = β2α1

∫ t
0

Ysds+ α2(β1β2)1/2Bt,

which concludes the proof.
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We now turn to the proof of Theorem 1

Proof. Let α ≥ 0. For any k ∈ {1, . . . , N}, denote Rk the Markov kernel such that for any x ∈ Rd,
A ∈ B(Rd) and k ∈ {0, . . . , N − 1} we have

Rk+1(x,A) = (4πγk+1)−1/2
∫
A

exp[−‖x̃− Tk+1(x)‖2 /(4γk+1)]dx̃,

where for any x ∈ Rd, Tk+1(x) = x + γk+1 {αx+ 2sθ(tk, x)}, where tk =
∑k−1
`=0 γ`. Define for

any k0, k1 ∈ {1, . . . , N} with k1 ≥ k0 Qk0,k1 =
∏k1
`=k0

R`. Finally, for ease of notation, we also
define for any k ∈ {1, . . . , N}, Qk = Q1,k. Note that for any k ∈ {1, . . . , N}, Yk has distribution
π∞Qk, where π∞ ∈P(Rd) with density w.r.t. the Lebesgue measure pdata. Let P ∈P(C) be the
probability measure associated with the diffusion

dXt = −αXtdt+
√

2dBt, X0 ∼ π0,

where π0 ∈P(Rd) admits a density w.r.t. the Lebesgue measure given by pdata. First note that using
that P0 = π0 we have for any A ∈ B(Rd)

π0PT |0(PR)T |0(A) = PT (PR)T |0(A) = (PR)0(PR)T |0(A) = (PR)T (A) = π0(A).

Hence π0 = π0PT |0(PR)T |0. Using this result and Lemma S11, we have

‖π0 − π∞QN‖TV = ‖π0PT |0(PR)T |0 − π∞QN‖TV

≤ ‖π0PT |0(PR)T |0 − π∞(PR)T |0‖TV + ‖π∞(PR)T |0 − π∞QN‖TV

≤ ‖π0PT |0 − π∞‖TV + ‖π∞(PR)T |0 − π∞QN‖TV.

Note that L(X0) = L(YN ) = π∞QN and therefore

‖L(X0)− π0‖TV ≤ ‖π0PT |0 − π∞‖TV + ‖π∞(PR)T |0 − π∞QN‖TV.

We now bound each one of these terms.

(a) First, assume that α > 0. Let Tα = αT and P̃ ∈ P(C([0, Tα] ,Rd)) be associated with
(Zt)t∈[0,Tα] the classical Ornstein-Ulhenbeck process with Z0 ∼ (τα)#π0, where for any x ∈ Rd

we have τα(x) = α1/2x, satisfying the following SDE: dZt = −Ztdt +
√

2dBt. We denote
πα0 = (τα)#π0, µ = (τα)#π∞. Note that since pprior is the Gaussian density with zero mean and
covariance matrix (1/α) Id, µ is the Gaussian distribution with zero mean and identity covariance
matrix.

First, using (Bakry et al., 2014, Proposition 4.1.1, Proposition 4.3.1, Theorem 4.2.5), we get that for
any t ∈ [0, Tα], f ∈ L1(µ) and x ∈ Rd∫

Rd(P̃t|0g(x))2dµ(x) ≤ exp[−2t]
∫
Rd g

2(x)dµ(x), with g(x) = f(x)−
∫
Rd f(x̃)dµ(x̃). (S18)

Recall that (Xt)t≥0 satisfies dXt = −αXt+dBt. Using Lemma S15 we have that for any t ∈ [0, T ],
Zt and α1/2Xα−1t have the same distribution. Hence for any t ∈ [0, T ] we have Pt = (τ−1

α )#P̃αt.
Therefore, using that (τα)#π∞ = µ, that P̃ is Markov and Lemma S11, we get that

‖π0Pt|0 − π∞‖TV = ‖Pt − π∞‖TV = ‖(τα)#Pt − (τα)#π∞‖TV

= ‖P̃αt − µ‖TV = ‖P̃αt0 P̃α(t−t0)|0 − µ‖TV.

Finally, note that we have for any t ≥ t0 ∈ [0, T ] and x ∈ Rd

(d(P̃αt0 P̃α(t−t0)|0)/dµ)(x) = P̃α(t−t0)|0f(x), with f(x) = (dP̃αt0/dµ)(x). (S19)

Let g = f − 1. Using (S19), (S18) and that (τα)#π∞ = µ, we get that for any t ≥ t0 with t ∈ [0, T ]

‖π0Pt|0 − π∞‖TV ≤ ‖P̃αt0 P̃α(t−t0)|0 − µ‖TV (S20)

≤
∫
Rd |P̃α(t−t0)|0f(x)− 1|dµ(x)

≤ (
∫
Rd(P̃α(t−t0)|0g(x))2dµ(x))1/2
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≤ exp[−α(t− t0)](
∫
Rd g

2(x)dµ(x))1/2

≤ exp[−α(t− t0)](
∫
Rd g

2(α1/2x)dπ∞(x))1/2.

In addition, we have for any ϕ ∈ Cc(Rd,R)∫
Rd ϕ(x)f(α1/2x)dπ∞(x) =

∫
Rd ϕ(α−1/2x)f(x)dµ(x)

=
∫
Rd ϕ(α−1/2x)dP̃αt0(x) =

∫
Rd ϕ(x)dPt0(x).

Hence, for any x ∈ Rd, g(α1/2x) = (dPt0/dπ∞)(x)− 1. Combining this result and (S20) we get
that for any t ≥ t0 with t ∈ [0, T ]

‖π0Pt|0 − π∞‖TV ≤
√

2 exp[−α(t− t0)]
(
1 +

∫
Rd(dPt0/dπ∞)(x)2dπ∞(x)

)1/2
. (S21)

Let t0 ∈ [0, T ]. We now derive an upper bound for
∫
Rd(dPt0/dπ∞)(x)2dπ∞(x). We recall that Pt0

and π∞ admit density w.r.t. the Lebesgue measure denoted pt0 and p∞ such that for any x ∈ Rd

pt0(x) =
∫
Rd Gt0(x, x̃)dπ0(x̃), p∞(x) = (2π/α)−d/2 exp[−α ‖x‖2 /2],

where for any x, x̃ ∈ Rd

Gt0(x, x̃) = (2πσ2
t0)−d/2 exp[−‖x−mt0(x̃)‖2 /(2σ2

t0)],

σ2
t0 = (1− exp[−2αt0])/α, mt0(x̃) = exp[−αt0]x̃.

Combining this result and Jensen’s inequality we get∫
Rd p

2
t0(x)p−1

∞ (x)dx ≤ α−d/2(2π)−d/2σ−2d
t0

∫
Rd exp[−‖x−mt0(x̃)‖2 /σ2

t0 + α ‖x‖2 /2]dxdπ0(x̃).
(S22)

For any x, x̃ ∈ Rd we have

‖x−mt0(x̃)‖2 /σ2
t0 − α ‖x‖

2
/2 =

∥∥x−mt0(x̃)(2σ̃2
t0/σ

2
t0)
∥∥2
/(2σ̃2

t0)− ‖x̃‖2 φ(α, t0)/σ2
t0 ,

with σ̃2
t0 = (σ2

t0/2)(1− ασ2
t0/2)−1 and φ(α, t0) = ασ2

t0(1− σ2
t0α)/(2− σ2

t0α). Using this result,
we get that∫
Rd exp[−‖x−mt0(x̃)‖2/σ2

t0 + α‖x‖2/2]dxdπ0(x̃) ≤ (2πσ̃2
t0)d/2

∫
Rd exp[φ(α, t0)‖x̃‖2]dπ0(x̃),

Let ε = m/4 and t0 ≥ 0 such that φ(α, t0) ≤ ε. Using Lemma S14, we get that∫
Rd exp[−‖x−mt0(x̃)‖2 /σ2

t0 + α ‖x‖2 /2]dxdπ0(x̃) ≤ (2πσ̃2
t0)d/2

∫
Rd exp[ε ‖x̃‖2]dπ0(x̃).

Combining this result, the fact that σ2
t0 ≤ α

−1, (S22) and that for any t ≥ 0, (1− e−t)−1 ≤ 1 + 1/t,
we obtain ∫

Rd p
2
t0(x)p−1

∞ (x)dx≤ (α−1σ̃2
t0σ
−4
t0 )d/2

∫
Rd exp[ε ‖x̃‖2]dπ0(x̃)

≤ (1− exp[−2αt0])−d/2
∫
Rd exp[ε ‖x̃‖2]dπ0(x̃)

≤ (1 + 1/(2αt0))d/2
∫
Rd exp[ε ‖x̃‖2]dπ0(x̃).

Combining this result and (S21), we get that for any t > t0

‖π0Pt|0 − π∞‖TV ≤ Ca1 exp[−αt],

with
Ca1 =

√
2(1 + 1/(2αt0))d/2(1 + (

∫
Rd exp[ε‖x̃‖2]dπ0(x̃))1/2) exp[αt0].

For t ≤ t0, using that ‖π0Pt|0 − π∞‖TV ≤ 1 we have

‖π0Pt|0 − π∞‖TV ≤ Cb1 exp[−αt], with Cb1 = exp[αt0].

Let C1 = Ca1 + Cb1 and we have that for any t ∈ [0, T ]

‖π0Pt|0 − π∞‖TV ≤ C1 exp[−αt]. (S23)
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(b) Second assume that α = 0.

‖π0PT |0 − π∞‖TV ≤
∫
Rd
∫
Rd(4πT )−d/2| exp[−‖x− x̃‖2 /(4T )]− exp[−‖x‖2 /(4T )]|dxdπ0(x̃).

For any x, x̃ ∈ Rd, let ϕ ∈ C1([0, 1],R) with for any s ∈ [0, 1], ϕ(s) = exp[−‖x− sx̃‖2 /(4T )].
First, assume that T ≥ 2/ε. Using Lemma S12, we get that for any s ∈ [0, 1]

|ϕ′(s)| ≤ (1 + ε−1)(1 + ‖x‖) exp[−‖x‖2 /(8T )] exp[ε ‖y‖2]/T.

Using this result we get that

‖π0PT |0 − π∞‖TV ≤
∫
Rd
∫
Rd(4πT )−d/2| exp[−‖x− x̃‖2 /(4T )]− exp[−‖x‖2 /(4T )]|dxdπ0(x̃)

≤
∫
Rd
∫
Rd(4πT )−d/2(1 + ε−1)(1 + ‖x‖) exp[−‖x‖2 /(8T )] exp[ε ‖x̃‖2]/Tdxdπ0(x̃)

≤ 2d/2(1 + ε−1)
∫
Rd(8πT )−d/2(1 + ‖x‖) exp[−‖x‖2 /(8T )]dx

∫
Rd exp[ε ‖x̃‖2]/Tdπ0(x̃)

≤ 2d/2(1 + ε−1)(1 + 2
√

2d1/2T 1/2)
∫
Rd exp[ε ‖x̃‖2]/Tdπ0(x̃).

In addition, if T ≤ 2/ε then

‖π0PT |0 − π∞‖TV ≤ (ε/2 + (ε/2)1/2)−1(T−1 + T−1/2).

Hence, we get that there exists C2 ≥ 0 such that

‖π0PT |0 − π∞‖TV ≤ C2(T−1 + T−1/2), (S24)

with

C2 = (ε/2 + (ε/2)1/2)−1 + 2d/2(1 + ε−1)(1 + 2
√

2d1/2)
∫
Rd exp[ε ‖x̃‖2]dπ0(x̃).

(c) Recall that PR is associated with the diffusion (Yt)t≥0 such that for any t ∈ [0, T ] and x ∈ Rd

dYt = b1(t,Yt)dt+
√

2Bt, b1(t, x) = αx+ 2∇ log pT−t(x).

Similarly, for any k ∈ {1, . . . , N} we have Qk = Qtk where Q is associated with the diffusion
(Ȳt)t∈[0,T ] such that for any (wt)t∈[0,T ] ∈ C([0, T ],Rd) we have

dȲt = b2(t, (Ȳs)s∈[0,T ])dt+
√

2Bt,

b2(t, (wt)t∈[0,T ]) =
∑N−1
k=0 1[tk,tk+1)(t) {2αwtk + sθ(tk, wtk)}

where for any k ∈ {0, . . . , N}, tk =
∑k−1
`=0 γ`+1. Recall that for any i ∈ {1, 2, 3} there exist Ai ≥ 0

and αi ∈ N such that for any x0 ∈ Rd

‖∇i log p0(x)‖ ≤ Ai(1 + ‖x0‖αi),
with α1 = 1. Using this result and Theorem S10 we get that for any i ∈ {1, 2, 3} there exist Bi ≥ 0
and βi ∈ N with β1 = 1 such that for any xt ∈ Rd and t ∈ [0, T ]

‖∇i log pt(xt)‖ ≤ Bi(1 + ‖xt‖βi). (S25)

In addition, for any t ∈ [0, T ] and x ∈ Rd we have

∂tpt(x) = −div(bpt)(x) + ∆pt(x),

with b(x) = −αx. Therefore, since log p ∈ C∞((0, T ] × Rd,R) we obtain that for any t ∈ (0, T ]
and xt ∈ Rd

∂t log pt(xt) = −div(b log pt)(xt) + ∆ log pt(xt) + ‖∇ log pt(xt)‖2 .

Finally, we get that for any t ∈ (0, T ] and xt ∈ Rd

∂t∇ log pt(xt) = −∇div(b log pt)(xt) +∇∆ log pt(xt) +∇‖∇ log pt‖2 (xt).

Therefore combining this result and (S25) there exist Ã ≥ 0 and β ∈ N such that for any xt ∈ Rd
and t ∈ (0, T ], ‖∂t∇ log pt(xt)‖ ≤ Ã(1 + ‖xt‖β). Hence, for any t1, t2 ∈ [0, T ] and x ∈ Rd

‖∇ log pt2(x)−∇ log pt1(x)‖ ≤ Ã |t2 − t1| (1 + ‖x‖β). (S26)
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In addition, using (S25), we have for any t ∈ [0, T ] and x1, x2 ∈ Rd

‖∇ log pt(x1)−∇ log pt(x2)‖ ≤
∫ 1

0
‖∇2 log pt((1− s)x1 + sx2)‖ds‖x1 − x2‖ (S27)

≤ B2(1 +
∫ 1

0
‖(1− s)x1 + sx2‖β2 ds)‖x1 − x2‖

≤ B2(1 + ‖x1‖β2 + ‖x2‖β2)‖x1 − x2‖.

Since sθ ∈ C([0, T ]×Rd,Rd) and∇ log p ∈ C([0, T ]×Rd,Rd) we have using Lemma S13, (S26),
(S27) and the Cauchy-Schwarz inequality

‖π∞(PR)T |0 − π∞QN‖2TV ≤ (1/2)
∫ T

0
E[‖b1(t,Yt)− b2(t, (Yt)t∈[0,T ])‖2]dt (S28)

≤ 2
∑N−1
k=0

∫ tk+1

tk
E[‖∇ log pT−t(Yt)− sθ(Ytk)‖2]dt

+
∑N−1
k=0

∫ tk+1

tk
α2E[‖Yt −Ytk‖2]dt

≤ 6
∑N−1
k=0

∫ tk+1

tk
E[‖∇ log pT−t(Yt)−∇ log pT−t(Ytk)‖2]dt

+ 6
∑N−1
k=0

∫ tk+1

tk
E[‖∇ log pT−t(Ytk)−∇ log pT−tk(Ytk)‖2]dt

+ 6
∑N−1
k=0

∫ tk+1

tk
E[‖∇ log pT−tk(Ytk)− sθ(tk,Ytk)‖2]dt

+
∑N−1
k=0

∫ tk+1

tk
α2E[‖Yt −Ytk‖2]dt

≤ 18
√

2B2
2(1 + 2NT (4β2))1/2

∑N−1
k=0

∫ tk+1

tk
E[‖Yt −Ytk‖4]1/2dt

+ 12Ã2(1 +NT (2β))
∑N−1
k=0

∫ tk+1

tk
(t− tk)2dt+ 6TM2

+
∑N−1
k=0

∫ tk+1

tk
α2E[‖Yt −Ytk‖2]dt

≤ {18
√

2B2
2(1 + 2NT (4β2))1/2 + α2}

∑N−1
k=0

∫ tk+1

tk
E[‖Yt −Ytk‖4]1/2dt

+ 4Ã2(1 +NT (2β))
∑N−1
k=0 (tk+1 − tk)3 + 6TM2

≤ {18
√

2B2
2(1 + 2NT (4β2))1/2 + α2}

∑N−1
k=0

∫ tk+1

tk
E[‖Yt −Ytk‖4]1/2dt

+ 4Ã2(1 +NT (2β))T γ̄2 + 6TM2,

where for any ` ∈ N, NT (`) = supt∈[0,T ] E[‖Yt‖`]. For any t ∈ [0, T ], let At : C2(Rd) →
C2(Rd,R) the generator given for any t ≥ 0, ϕ ∈ C2(Rd,R) and x ∈ Rd by

At(ϕ)(x) = 〈αx+ 2∇ log pT−t(x),∇ϕ(x)〉+ ∆ϕ(x).

For any ` ∈ N, let V`(x) = ‖x‖2`. Hence, for any ` ∈ N, x ∈ Rd and t ∈ [0, T ] we have using (S25)

At(V`)(x) = 2`α ‖x‖2` + 2`B1 ‖x‖2`−1
+ 2`B1 ‖x‖2` + 2`(2`− 1) ‖x‖2(`−1)

.

Hence, for any ` ∈ N there exist B̃` such that x ∈ Rd and t ∈ [0, T ]

|At(V`)(x)| ≤ B̃`(1 + V`(x)). (S29)

For any ` ∈ N, (M`,t)t∈[0,T ] = (V`(Yt)− V`(Y0)−
∫ t

0
At(V`)(Ys)ds)t∈[0,T ] is a local martingale.

For any ` ∈ N, there exists (τ`,k)k∈N a sequence of stopping times such that limk→+∞ τ`,k = T and
(M`,t∧τ`,k)t∈[0,T ] is a martingale. Using (S29), we have for any t ∈ [0, T ], ` ∈ N and k ∈ N

E[V`(Yt∧τ`,k)] ≤ E[V`(Y0)] + B̃`
∫ t

0
(1 + E[V`(Ys∧τ`,k)])ds.

Hence, using Grönwall’s lemma we get that for any ` ∈ N, supk∈N E[V`(Yt∧τ`,k)] < +∞. Therefore
for any ` ∈ N, ((M`,t∧τk)t∈[0,T ])k∈N is uniformly integrable and we have that for any ` ∈ N,
(M`,t)t∈[0,T ] is a martingale. Therefore we get that for any t ∈ [0, T ], ` ∈ N

E[V`(Yt)] ≤ E[V`(Y0)] + B̃`
∫ t

0
(1 + E[V`(Ys)]ds).

Using Grönwall’s lemma we get that for any ` ∈ N there exist C̃` ≥ 0 such that

NT (`) = sup
t∈[0,T ]

E[‖Yt‖2`] ≤ C̃` exp[B̃`T ]. (S30)
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We have that for any s, t ∈ [0, T ]

Yt = Ys +
∫ t
s
{αYu + 2∇ log pT−t(Yu)}du+

√
2
∫ t
s

dBu.

Using (S26) and Cauchy-Schwarz inequality we have for any s, t ∈ [0, T ]

E[‖Yt −Ys‖4] ≤ 64(t− s)3
∫ t
s
{α4E[‖Yu‖4] + 16E[‖∇ log pT−t(Yu)‖4]}du+ 48

√
2(t− s)2

≤ 64(t− s)3
∫ t
s
{α4E[‖Yu‖4] + 128B4

1(1 + E[‖Yu‖4])}du+ 48
√

2(t− s)2

≤ 64(α4 + 128B4
1)(1 +NT (4))(t− s)4 + 48

√
2(t− s)2. (S31)

Combining (S30) and (S31) in (S28) we get that there exist C3 ≥ 0 such that

‖π∞(PR)T |0 − π∞QN‖2TV ≤ C3 exp[C3T ](γ̄ + M2), (S32)

We conclude the proof upon combining (S23) and (S32) if α > 0 and (S24) and (S32) if α = 0.

S3.3 General SGM and links with existing works

In this section we describe a general algorithm for SGM in Section S3.3.1 and show that the
formulation (6) encompasses the ones of (Song et al., 2021; Ho et al., 2020) in Section S3.3.2.

S3.3.1 General SGM algorithm

We first present a general algorithm to compute approximate reverse dynamics, i.e. to compute the
reverse-time Markov chain associated with the forward process

dXt = ft(Xt)dt+
√

2dBt, X0 ∼ pdata. (S33)

We use the Euler-Maruyama discretization of (S33), i.e. letX0 ∼ pdata and for any k ∈ {0, . . . , N−1}

Xk+1 = Xk + γk+1fk(Xk) +
√

2γk+1Zk+1.

In general, we do not have that p(xk|x0) is a Gaussian density contrary to Song and Ermon (2019);
Ho et al. (2020). However, in this case, we obtain that for any x ∈ Rd,

pk+1(x) = (4πγk+1)−d/2
∫
Rd pk(x̃) exp[−‖Tk+1(x̃)− x‖2 /(4γk+1)]dx̃,

with Tk+1(x) = x̃+ γk+1fk(x̃). Therefore, we get that for any x ∈ Rd

(2γk+1pk+1(x))∇ log pk+1(x) =
∫
Rd(Tk+1(x̃)− x)pk(x̃) exp[−‖Tk+1(x̃)− x‖2 /(4γk+1)]dx̃.

Hence, we get that for any x ∈ Rd

∇ log pk+1(x) = E[Tk+1(Xk)−Xk+1|Xk+1 = x]/(2γk+1) = −(2γk+1)1/2E[Zk+1|Xk+1 = x].
(S34)

From this formula we derive a regression problem similar to the one of Section 2.1. We obtain
Algorithm 1. We highlight a few differences between our approach and the ones of Song and Ermon
(2019); Ho et al. (2020):

(a) As emphasized in (S34), the regression problem in Algorithm 1 is different from the one usually
considered in SGM which restrict themselves to the setting fk(x) = αx with α = 0 (Song and
Ermon, 2019) or α > 0 (Ho et al., 2020).
(b) In the present algorithm we do not use any corrector step (Song et al., 2021) at sampling time.
Note that the use of a corrector step is only justified in the context of classical SGM algorithms and
not the DSB method introduced in Section 3.3. This is because, we do not have access to the marginal
of the time-reverse density during the IPF iterations contrary to classical SGMs.
(c) Finally, we do not present the Exponential Moving Average (EMA) procedure Song and Ermon
(2020) which is key to prevent the network from oscillating. Contrary to the corrector step, this
technique can easily be incorporated in Algorithm 1.

Further comments and additional techniques are presented in Section S9.
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Algorithm 1 Generalized score-matching

1: Inputs: (bk)k∈{0,...,N−1} , N ∈ N (nb. of iterations), M ∈ N (batch size), Nepochs (nb. of
epochs), (γk)k∈{0,...,N−1} (stepsizes), {sθ : θ ∈ Θ} (neural network), opt (optimizer), pprior

(prior distribution), λ(k) (weights)
2: for nepoch = 0, . . . , Nepoch − 1 do
3: for j ∈ {1, . . . ,M} do
4: Xj

0 ∼ pdata
5: for k ∈ {0, . . . , N − 1} do
6: Xj

k+1 = Xj
k + γk+1fk(Xj

k) +
√

2γk+1Z
j
k+1

7: end for
8: end for
9: ̂̀(θ) = M−1

∑M
j=1

∑N−1
k=0 λ(k)/(2γk+1)

∑M
j=1 ‖

√
2γk+1sθ(k + 1, Xj

k+1) + Zjk+1‖2
10: θnepoch+1 = opt(`, θnepoch)
11: end for
12: XN ∼ pprior
13: for k ∈ {N − 1, . . . , 0} do
14: Xk = Xk+1 + γk+1{−fk(Xk+1) + 2sθNepoch

(k + 1, Xk+1)}+
√

2γk+1Zk+1

15: end for
16: Output: X0

S3.3.2 Links with existing work

In this section, we show that we can recover the training and sampling algorithm of Song and
Ermon (2019) and Ho et al. (2020) by reversing homogeneous diffusions. Note that Song et al.
(2021) identified links with non-homogeneous SDEs. We explicitly characterize the fundamental
difference between the approaches of Song and Ermon (2019); Ho et al. (2020) by identifying the
two corresponding forward homogeneous processes (Brownian motion or Ornstein-Ulhenbeck).

Brownian motion First, we show that we can recover the sampling procedure and the loss function
of Song and Ermon (2019) by reversing a Brownian motion. Assume that we have

dXt =
√

2dBt, X0 ∼ pdata. (S35)

In what follows we define {Yk}N−1
k=0 such that {Yk}N−1

k=0 approximates {XT−tk}
N−1
k=0 for a specific

sequence of times {tk}N−1
k=0 ∈ [0, T ]

N . We recall that the time-reversal of (S35) is associated with
the following SDE

dYt = 2∇ log pT−t(Yt) +
√

2dBt. (S36)
The Euler-Maruyama discretization of (S36) yields for any k ∈ {0, . . . , N − 1}

Ỹk+1 = Ỹk + 2γk+1∇ log pT−tk(Ỹk) +
√

2γk+1Zk+1.

where {γk+1}N−1
k=0 is a sequence of stepsizes and for any k ∈ {0, . . . , N}, tk =

∑k−1
j=0 γj+1. A close

form for {∇ log pT−tk}
N−1
k=0 is not available and in practice we consider

Yk+1 = Yk + 2γk+1sθ?(T − tk, Yk) +
√

2γk+1Zk+1, (S37)

where for any k ∈ {0, . . . , N − 1}, sθ?(T − tk, ·) is an approximation of∇ log pT−tk . The sampling
procedure (S37) is similar to the one of Song and Ermon (2019) upon setting (with the notations
of Song and Ermon (2019)) T ← 1 in (Song and Ermon, 2019, Algorithm 1) (no corrector step),
αk/2 ← γk and sθθθ(·, σk+1) ← 2sθ?(T − tk, ·). It remains to show that 2sθ? is the solution to the
same regression problem as sθθθ in (Song and Ermon, 2019, Equation 6). First, note that for any t > 0
and xt ∈ Rd we have

pt(xt) = (4πt)−d/2
∫
Rd pdata(x0) exp[−‖xt − x0‖2 /(4t)]dx0.

Therefore, we get that for any t > 0 and xt ∈ Rd

∇ log pt(xt)=
∫
Rd(x0 − xt)/(2t)p0|t(x0|xt)dx0 = E[X0 −Xt|Xt = xt]/(2t).
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Hence, we have that θ? satisfies the following regression problem

θ? = arg minθ
∑N−1
k=0 λ(k)E[‖(X0 −XT−tk)/(T − tk)− 2sθ(T − tk,XT−tk)‖].

Note that this loss function is similar to the one of (Song and Ermon, 2019, Equation 6) upon letting
σ2
k+1 ← 2(T − tk) and L← N . Hence, the two recursions approximately define the same scheme if

for any k ∈ {0, . . . , N − 1}, σ2
1 − σ2

k+1 ≈ (1/2)
∑k−1
j=0 αj+1 since t0 = 0 implies T = (1/2)σ2

1 . In
Song and Ermon (2019) we have for any k ∈ {0, . . . , N − 1}, σ2

k = κN−kσ2
N (recall that N = L)

with κ > 1. In addition, we have for any k ∈ {0, . . . , N − 1}, αk = εσ2
k/σ

2
N for some ε > 0. We

get that

(1/2)
∑k−1
j=0 αj+1 = (ε/2)κN−1

∑k−1
j=0 κ

−j

= (ε/2)(κN−1 − κN−k−1)/(1− κ−1)

= ε/(2(1− κ−1)σ2
N )(σ2

1 − σ2
k+1).

Hence, the two schemes are identical if ε = 2(1− κ−1)σ2
N . In practice in Song and Ermon (2019)

the authors choose N = 10, σN = 10−2, σ1 = 1 (hence κ = 104/9) and ε = 2 × 10−5. We have
2(1− κ−1)σ2

N ≈ 1.3× 10−4 which has one order of difference with ε.

Ornstein-Ulhenbeck Second, we show that we can recover the sampling procedure and the loss
function of Ho et al. (2020) by reversing an Ornstein-Ulhenbeck process. Contrary to the previous
analysis we do not show a strict equivalence between the two recursions but instead that our algorithm
can be seen as a first order approximation of the one of Ho et al. (2020).

In this section, we consider the following diffusion

dXt = −αXtdt+
√

2dBt, X0 ∼ pdata. (S38)

In what follows we define {Yk}N−1
k=0 such that {Yk}N−1

k=0 approximates {XT−tk}
N−1
k=0 for a specific

sequence of times {tk}N−1
k=0 ∈ [0, T ]

N . We recall that the time-reversal of (S38) is associated with
the following SDE

dYt = {αYt + 2∇ log pT−t(Yt)}dt+
√

2dBt. (S39)
In what follows, we fix α = 1. The Euler-Maruyama discretization of (S39) yields for any k ∈
{0, . . . , N − 1}

Ỹk+1 = (1 + γk+1)Ỹk + 2γk+1∇ log pT−tk(Ỹk) +
√

2γk+1Zk+1.

where {γk+1}N−1
k=0 is a sequence of stepsizes and for any k ∈ {0, . . . , N − 1}, tk =

∑k−1
j=0 γj+1. A

close form for {∇ log pT−tk}
N−1
k=0 is not available and in practice we consider

Yk+1 = (1 + γk+1)Yk + 2γk+1sθ?(T − tk, Yk)dt+
√

2γk+1Zk+1. (S40)

In (Ho et al., 2020, Equation 11) the backward recursion is given for any k ∈ {0, . . . , N − 1}

Yk+1 = α
−1/2
N−k (Yk − βN−k/(1− ᾱN−k)1/2εεεθ(Yk, T − tk)) + σN−kZk+1. (S41)

In (S41) we set σ2
k = βk as suggested in Ho et al. (2020) where for any k ∈ {0, . . . , N − 1}

σ2
k+1 = βk+1, αk+1 = 1− βk+1, ᾱk+1 =

∏k+1
i=1 αi.

We consider a first-order expansion of (S41) with respect to {βk+1}N−1
k=0 . We obtain the following

recursion for any k ∈ {0, . . . , N − 1}

Yk+1 = (1 + βN−k/2)Yk − βN−k/(1− ᾱN−k)1/2εεεθ(Yk, T − tk) +
√
βN−kZk+1.

This last recursion is equivalent to (S40) upon setting βN−k ← 2γk+1 and −εεεθ(·, T − tk)/(1 −
ᾱN−k)1/2 ← −sθ?(T − tk, ·). It remains to show that sθ? is the solution to the same regression
problem as εεεθ/(1 − ᾱN−·) in (Ho et al., 2020, Equation 12). First, note that for any t > 0 and
xt ∈ Rd we have

pt(xt) = (2πσ̄2
t )−d/2

∫
Rd pdata(x0) exp[−‖xt − ctx0‖2 /(2σ̄2

t )]dx0,
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with
c2t = exp[−2t], σ̄2

t = 1− exp[−2t].

Therefore we get that for any t ∈ [0, T ] and xt ∈ Rd

∇ log pt(xt) =
∫
Rd(ctx0 − xt)pdata(x0) exp[−‖xt − ctx0‖2 /(2σ̄2

t )]dx0

= E [ctX0 −Xt|Xt = xt] /σ̄
2
t = −E [Z|Xt = xt] /σ̄t,

where we recall that Xt has the same distribution as ctX0 + σ̄tZ, with Z a d-dimensional Gaussian
random variable with zero mean and identity covariance matrix. Hence, we have that θ? satisfies the
following regression problem

θ? = arg minθ
∑N−1
k=0 λ(k)E[‖Z/σT−tk + sθ(T − tk,XT−tk)‖].

Note that we have ∑N−k
i=1 βi =

∑N−1
i=k βN−i = 2

∑N−1
i=k γi+1 = 2(T − tk).

Using this result we have for any k ∈ {0, . . . , N − 1}

1− ᾱN−k = 1− exp[−
∑N−k
i=1 log(1− βi)] ≈ 1− exp[−

∑N−k
i=1 βi] ≈ σ̄2

T−tk .

Let θ̃? the minimizer of (Ho et al., 2020, Equation 12) we have

θ̃? ≈ arg minθ
∑N−1
k=0 (2αN−k(1− αN−k))−1E[‖Z− εεεθ(XT−tk , T − tk)‖2]

≈ arg minθ
∑N−1
k=0 (2αN−k)−1E[‖Z/(1− αN−k)1/2 − εεεθ(XT−tk , T − tk)/(1− αN−k)1/2‖2]

≈ arg minθ
∑N−1
k=0 (2αN−k)−1E[‖Z/σ̄T−tk + sθ(T − tk,XT−tk)‖2].

Hence the two regression problems are approximately the same (for small values of {βk+1}N−1
k=0 ) if

we set λ(k) = (2αN−k)−1.

S4 Schrödinger bridges with potentials and DSB recursion

In this section, we start by proving an additive formula for the Kullback–Leibler divergence in
Section S4.1 following Léonard (2014a). We recall the classical IPF formulation using potentials in
Section S4.2. Then, Proposition 2 is proved in Section S4.3. Finally, we highlight a link between our
formulation and autoencoders in Section S4.4.

S4.1 Additive formula for the Kullback–Leibler divergence

In this section, we prove a formula for the Kullback–Leibler divergence following the proof of
Léonard (2014a) which extends the result to unbounded measures defined on the space of right-
continuous left-limited functions from [0, T ]. We recall that a Polish space is a complete metric
separable space.

We start with the following disintegration theorem for probability measures.
Theorem S16. Let (X,X ) and (Y,Y) be two Polish spaces. Let π ∈ P(X) and ϕ : X → Y
measurable. Then there exists a Markov kernel Kπ

ϕ : Y ×X → [0, 1] such that the following hold:

(a) For any y ∈ Y, Kπ
ϕ(y, ϕ−1({y})) = 1.

(b) For any f : X→ [0,+∞) measurable we have
∫
X
f(x)dπ(x) =

∫
Y

Kπ
ϕ(y, f)dπϕ(y),

where πϕ = ϕ#π.

Proof. See (Dellacherie and Meyer, 1988, III-70) for instance.

Kπ
ϕ is called the disintegration of π w.r.t. ϕ and is unique, see (Dellacherie and Meyer, 1988, III-70).

In particular, for any X-valued random variable X with distribution π we have E[f(X)|ϕ(X)] =
Kπ
ϕ(ϕ(X), f). Next we prove the following proposition, see (Léonard, 2014a, Proposition A.13) for

an extension to unbounded measures. In what follows, for any ϕ : XtoR measurable we denote
πϕ = ϕ#π.
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Proposition S17. Let (X,X ) and (Y,Y) be two Polish spaces. Let π, µ ∈ P(X) and ϕ : X → Y
measurable. Assume that π � µ. Then the following holds:

(a) πϕ � µϕ

(b) There exists A ∈ Y with πϕ(A) = 1 such that for any y ∈ A, Kπ
ϕ(y, ·)� Kµ

ϕ(y, ·).

In addition, we have for any y ∈ Y, y′ ∈ A and x ∈ X

(dπϕ/dµϕ)(y) = Kµ
ϕ(y, (dπ/dµ)), (dKπ

ϕ(y′, ·)/dKµ
ϕ(y′, ·))(x) = (dπ/dµ)(x)/(dπϕ/dµϕ)(y′).

Finally, there exists C ∈ X with π(C) = 1 such that for any x ∈ C we have

(dπ/dµ)(x) = (dπϕ/dµϕ)(ϕ(x))(dKπ
ϕ(ϕ(x), ·)/dKµ

ϕ(ϕ(x), ·))(x).

Proof. Let f : X→ [0,+∞) measurable. Using Theorem S16 we have

πϕ[f ] =
∫
X
f(ϕ(x))dπ(x) =

∫
X
f(ϕ(x))(dπ/dµ)(x)dµ(x) =

∫
X
f(y)Kµ

ϕ(y, (dπ/dµ))dµϕ(y),

which concludes the first part of the proof. For the second part of the proof, let B = {y ∈ Y :
(dπϕ/dµϕ)(y) = 0}. We have

0 =
∫
Y
1B(y)(dπϕ/dµϕ)(y)dµϕ(y) = πϕ(B).

Therefore, there exists A1 ∈ Y such that πϕ(A1) = 1 and for any y ∈ A1, (dπϕ/dµϕ)(y) > 0. Let
g : Y → [0,+∞). Using Theorem S16 we have∫
X
g(ϕ(x))f(x)dπ(x) =

∫
X
g(ϕ(x))f(x)(dπ/dµ)(x)dµ(x) =

∫
Y
g(y)Kµ

ϕ(y, f × (dπ/dµ))dµϕ(y).

Similarly, using Theorem S16 we have∫
X
g(ϕ(x))f(x)dπ(x) =

∫
Y
g(y)Kπ

ϕ(y, f)dπϕ(y) =
∫
Y
g(y)Kπ

ϕ(y, f)(dπϕ/dµϕ)(y)dπϕ(y).

Hence, we get that there exists A2 ∈ Y with µϕ(A2) = 1 (hence πϕ(A2) = 1) such that for any
y ∈ A2 we have

Kπ
ϕ(y, f)(dπϕ/dµϕ)(y) = Kµ

ϕ(y, f × (dπ/dµ)).

We conclude upon letting A = A1 ∩ A2 and using the fact that for any y ∈ A, (dπϕ/dµϕ)(y) > 0.
Finally, since πϕ(A) = 1 if and only if π(ϕ−1(A)) = 1, we have for any x ∈ ϕ−1(A)

(dπ/dµ)(x) = (dπϕ/dµϕ)(ϕ(x))(dKπ
ϕ(ϕ(x), ·)/dKµ

ϕ(ϕ(x), ·))(x),

which concludes the proof.

We are now ready to state the additive formula.
Proposition S18. Let (X,X ) and (Y,Y) be two Polish spaces and π, µ ∈P(X) with π � µ. Then
for any ϕ : X→ Y we have

KL(π|µ) = KL(πϕ|µϕ) +
∫
Y

KL(Kπ
ϕ(y, ·)|Kµ

ϕ(y, ·))dπϕ(y).

Proof. First assume that
∫
X
|log((dπ/dµ)(x))|dπ(x) = +∞. Then, using Proposition S17 we have∫

X
|log((dπϕ/dµϕ)(ϕ(x)))|dπ(x) = +∞ or

∫
X

∣∣log((dKπ
ϕ(ϕ(x), ·)/dKµ

ϕ(ϕ(x), ·))(x))
∣∣dπ(x) =

+∞, i.e. either KL(πϕ|µϕ) = +∞ or
∫
X

KL(Kπ
ϕ(ϕ(x), ·)|Kµ

ϕ(ϕ(x), ·))dπ(x) = +∞ us-
ing Theorem S16, which concludes the first part of the proof. Second, assume that∫
X
|log((dπ/dµ)(x))|dπ(x) < +∞. Using Pinsker’s inequality (Bakry et al., 2014, Equation

5.2.2) we get that KL(πϕ|µϕ) < +∞, i.e.
∫
X
|log((dπϕ/dµϕ)(ϕ(x)))|dπ(x) < +∞. Hence, we

get that
∫
X

∣∣log((dKπ
ϕ(ϕ(x), ·)/dKµ

ϕ(ϕ(x), ·))(x))
∣∣ dπ(x) < +∞. Therefore we have

KL(π|µ) = KL(πϕ|µϕ) +
∫
Y

KL(Kπ
ϕ(y, ·)|Kµ

ϕ(y, ·))dπϕ(y)

which concludes the proof

We emphasize that in the case where X = Rd × Rd, ϕ = proj0 the projection on the first variable
and π, µ admit densities w.r.t. the Lebesgue measure denoted p and q such that for any x, y ∈ Rd,
p(x, y) = p0(x)p1|0(y|x) and q(x, y) = q0(x)q1|0(y|x) then one can avoid using disintegration
theory and Proposition S18 can be proved directly.
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S4.2 Iterative Proportional Fitting via potentials

In this section, before recalling the usual definition of the IPF via potentials we provide a condition
under which the IPF sequence is well-defined which is used throughout Section 3.2.

Proposition S19. Assume that there exists π̃ ∈ PN+1 such that π̃0 = pdata, π̃N = pprior and
KL(π̃|π0) < +∞. Then the IPF sequence is well-defined.

Proof. We prove the existence of the IPF sequence by recursion. First, note that π1 is well-defined
since π̃ ∈ PN+1 with π̃N = pprior and KL(π̃|π0) < +∞. Second, assume that the sequence is
well-defined up to n with n ∈ N. Using (Csiszár, 1975, Theorem 2.2) we have

KL(π̃|π0) = KL(π̃|πn) +
∑n−1
j=0 KL(πj+1|πj).

Hence KL(π̃|πn) < +∞. Using that π̃0 = pdata if n is odd and that π̃N = pprior if n is even, we get
that πn+1 is well-defined, which concludes the proof.

We now introduce the IPF using potentials. This construction is not new and can be found in Bernton
et al. (2019); Chen et al. (2016, 2021); Pavon et al. (2021); Peyré and Cuturi (2019) for instance (in
continuous state spaces). In discrete settings the recursion can be found in the following earlier works
Kruithof (1937); Deming and Stephan (1940); Fortet (1940); Sinkhorn and Knopp (1967); Kullback
(1968); Ruschendorf et al. (1995). The IPF is defined by the following recursion π0 = p given in (1)
and for n ≥ 0

π2n+1 = arg min
{

KL(π|π2n) : π ∈PN+1, πN = pprior
}
,

π2n+2 = arg min
{

KL(π|π2n+1) : π ∈PN+1, π0 = pdata
}
.

In the classical IPF presentation we obtain under mild assumptions that π2n+1 admits a density qn
w.r.t the Lebesgue measure and that π2n admits a density pn w.r.t the Lebesgue measure, given by
the following expressions

qn(x0:N ) = pndata(x0)
∏N−1
k=0 pn+1

k+1|k(xk+1|xk), (S42)

pn+1(x0:N ) = pdata(x0)
∏N−1
k=0 pn+1

k+1|k(xk+1|xk),

where (pndata(x0))n∈N and (pnk+1|k(xk+1|xk))n∈N are densities which are iteratively computed, with
p0
k+1|k = pk+1|k.

In the context of generative modelling the derivation (S42) is not useful because it does not provide a
generative model, i.e. a probabilistic transition from pprior to pdata but instead defines a transition from
pdata to pprior. Therefore, in this section only, we reverse the roles of pprior and pdata and consider a
reference density p̄ such that for any x0:N ∈ X we have

p̄(x0:N ) = pprior(x0)
∏N−1
k=0 p̄k+1|k(xk+1|xk). (S43)

Then, we consider the following recursion π0 = p̄ given in (S43) and for n ∈ N

π2n+1 = arg min
{

KL(π|π2n) : π ∈PN+1, πN = pdata
}
, (S44)

π2n+2 = arg min
{

KL(π|π2n+1) : π ∈PN+1, π0 = pprior
}
.

Again, we emphasize that the roles of pprior and pdata are exchanged in this formulation. Using the
classical IPF presentation we obtain the following expressions under mild assumptions

q̄n(x0:N ) = pnprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk), (S45)

p̄n+1(x0:N ) = pprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk).

In this case, we get that π2n+1 (approximately) defines a generative model for large values of n ∈ N
since it provides a transition from to pprior to (approximately) pdata. In the following proposition we
give the precise statement corresponding to (S45). We assume that p̄0 = p̄.
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Proposition S20. Assume that KL(pprior ⊗ pdata|p̄0,N ) < +∞. Then (πn)n∈N given by (S44) is
well-defined and for any n ∈ N we have that π2n+1 and π2n+2 admit a density w.r.t. the Lebesgue
measures denoted q̄n and p̄n+1. In addition, we have for any n ∈ N and x0:N ∈ X

q̄n(x0:N ) = pnprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk),

p̄n+1(x0:N ) = pprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk),

where for any n ∈ N we have for any x0:N ∈ X and k ∈ {0, . . . , N − 1}

pnprior(x0) = ψn0 (x0)pprior(x0), p̄n+1(xk+1|xk) = p̄n(xk+1|xk)ψnk+1(xk+1)/ψnk (xk),

with

ψnN (xN ) = pdata(xN )/p̄nN (xN ), ψnk (xk) =
∫
Rd ψ

n
k+1(xk+1)p̄n(xk+1|xk)dxk+1.

Proof. Let π̃ = (pprior ⊗ pdata)p̄|0,N . Using Proposition S18 we get that KL(π̃|p̄) = KL(pprior ⊗
pdata|p̄0,N ) < +∞. Using Proposition S19 the IPF sequence is well-defined. In addition, using
(Csiszár, 1975, Theorem 3.1) for any n ∈ N there exists ψnN : Rd → [0,+∞) such that for any
x0:N ∈ A with π̃(A) = 1 we have

q̄n(x0:N ) = p̄n(x0:N )ψnN (xN ).

Since π̃ is equivalent to the Lebesgue measure we get that for any x0:N ∈ Rd

q̄n(x0:N ) = p̄n(x0:N )ψnN (xN ).

Let n ∈ N. We have for any xN ∈ Rd, pdata(xN ) = q̄n(xN ) = p̄nN (xN )ψnN (xN ). Hence, we get that
for any N ∈ N, ψnN (xN ) = pdata(xN )/p̄nN (xN ). For any x0:N ∈ X and k ∈ {0, . . . , N − 1} let

ψnk (xk) =
∫
Rd ψ

n
k+1(xk+1)p̄n(xk+1|xk)dxk+1.

We obtain that for any x0:N ∈ X

q̄n(x0:N ) = pprior(x0)ψ0(x0)
∏N−1
k=0 (p̄n(xk+1|xk)ψk+1(xk+1)/ψk(xk)).

Hence, we get that for any x0:N ∈ X , q̄n(x0) = pnprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk). Using Propo-

sition S18 we get that for any x0:N ∈ X , p̄n+1(x0) = pprior(x0)
∏N−1
k=0 p̄n+1(xk+1|xk), which

concludes the proof.

The previous expression is not symmetric and the IPF iterations appear as a policy refinement of the
original forward dynamic p̄. In the next proposition we present another potential formulation of the
IPF iterations which is symmetric.
Proposition S21. Assume that KL(pprior ⊗ pdata|q0,N ) < +∞. Then (πn)n∈N given by (S44) is
well-defined and for any n ∈ N we have that π2n+1 and π2n+2 admit a density w.r.t. the Lebesgue
measures denoted q̄n and p̄n+1. In addition, we have for any n ∈ N and x0:N ∈ X

q̄n(x0:N ) = ϕn0 (x0)
∏N−1
k=0 p̄(xk+1|xk)ψnN (xN ),

p̄n+1(x0:N ) = ϕn+1
0 (x0)

∏N−1
k=0 p̄(xk+1|xk)ψnN (xN ),

where for any n ∈ N we have for any x0:N ∈ X and k ∈ {0, . . . , N − 1}

ψnN (xN ) = pdata(xN )/ϕnN (xN ), ψnk (xk) =
∫
Rd ψ

n
k+1(xk+1)p̄(xk+1|xk)dxk+1,

ϕn+1
0 (x0) = pprior(x0)/ψn0 (x0), ϕn+1

k+1(xk+1) =
∫
Rd ϕ

n+1
k (xk)p̄(xk+1|xk)dxk,

and ϕ0
0 = pprior and ψ−1

N = 1.

Proof. Let π̃ = (pprior ⊗ pdata)q|0,N . Using Proposition S18 we get that KL(π̃|q) = KL(pprior ⊗
pdata|p0,N ) < +∞. Using Proposition S19 the IPF sequence is well-defined. In addition, using
(Csiszár, 1975, Theorem 3.1) for any n ∈ N there exists ψnN : Rd → [0,+∞) such that for any
x0:N ∈ A with π̃(A) = 1 we have

q̄n(x0:N ) = p̄n(x0:N )ψ̃nN (xN ), p̄n+1(x0:N ) = q̄n(x0:N )ϕ̃n0 (x0).
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Since π̃ is equivalent to the Lebesgue measure we get that for any x0:N ∈ Rd

q̄n(x0:N ) = p̄n(x0:N )ψ̃nN (xN ), p̄n+1(x0:N ) = q̄n(x0:N )ϕ̃n0 (x0).

For any n ∈ N, let ψnN = ψn−1
N ψ̃nN and ϕn+1

0 = ϕn0 ϕ̃
n
0 . By recursion, we get that for any n ∈ N and

x0:N ∈ X
q̄n(x0:N ) = ϕn0 (x0)

∏N−1
k=0 p̄(xk+1|xk)ψnN (xN ),

p̄n+1(x0:N ) = ϕn+1
0 (x0)

∏N−1
k=0 p̄(xk+1|xk)ψnN (xN ).

Let n ∈ N. For any xN ∈ Rd we have
q̄nN (xN ) = pdata(xN ) = p̄nN (xN )ψ̃nN (xn). (S46)

In addition, for any k ∈ {0, . . . , N − 1} and x0:N ∈ X we define ϕn+1
k+1(xk+1) =∫

Rd ϕ
n+1
k (xk)p̄(xk+1|xk)dxk. We have for any xN ∈ Rd, p̄nN (xN ) = ϕnN (xN )ψn−1

N (xn). Combin-
ing this result with (S46) we get that for any xN ∈ Rd

ψnN (xN ) = pdata(xN )/ϕnN (xN ).

Similarly, we get that for any x0 ∈ Rd, ϕn+1
0 (x0) = pprior(x0)/ψn0 (x0), which concludes the

proof.

S4.3 Proof of Proposition 2

Let π̃ = (pprior⊗pdata)p|0,N . Using Proposition S18 we get that KL(π̃|p) = KL(pprior⊗pdata|p0,N ) <

+∞. Using Proposition S19 the IPF sequence is well-defined. Note that π0 admits a density w.r.t. the
Lebesgue measure given by p > 0. Let n ∈ N and assume that pn > 0 is given for any x0:N ∈ X by

pn(x0:N ) = pdata(x0)
∏N−1
k=0 qn−1(xk+1|xk). (S47)

Using Proposition S18 we get that for any π ∈PN+1 such that πN = pprior we have
KL(π|π2n) = KL(pprior|π2n

0 ) +
∫
Rd KL(π|N |π2n

|N )pprior(xN )dxN .

Hence, we have that π2n+1 = ppriorπ
2n
|N . Since pn > 0 we get that for any π2n

|N satisfies for any
A ∈ B(X ) and xN ∈ Rd

π2n
|N (A|xN ) =

∫
A
pn(x0:N )/pn(xN )dx0:NδxN (AN ).

Therefore, π2n+1 admits a density w.r.t. the Lebesgue measure denoted qn and given for any
x0:N ∈ X by
qn(x0:N ) = pn(x0:N )pprior(xN )/pn(xN )

= pprior(xN )
∏N−1
k=0 pn(xk+1|xk)pn(xk)/pn(xk+1) = pprior(xN )

∏N−1
k=0 pn(xk|xk+1),

where we have used (S47). Note that qn > 0. Similarly, we get that for any x0:N ∈ X
pn+1(x0:N ) = pdata(x0)

∏N−1
k=0 qn(xk+1|xk).

Note that again that pn+1 > 0. We conclude by recursion.

S4.4 Link with autoencoders

Consider the maximum likelihood problem
q? = arg max{Epdata [log q0(X0)] : q ∈Pd(X ), qN = pprior},

where Pd(X ) is the subset of the probability distribution over X which admit a density w.r.t. the
Lebesgue measure. Using Jensen’s inequality we have for any q ∈Pd(X )

Epdata [log q0(X0)] =
∫
Rd log(

∫
(Rd)N−1 q(x0:N )p(x1:N |x0)/p(x1:N |x0)dx1:N )p0(x0)dx0

≥
∫
X log(q(x0:N )/p(x1:N |x0))p(x0:N )dx0:N ≥ −KL(p|q)−H(p0).

This Evidence Lower Bound (ELBO) is similar to the one identified in Ho et al. (2020). Maximizing
this ELBO is equivalent to solving the following problem

q0 = arg min{KL(q|p) : q ∈Pd(X ), qN = pprior},
which is the first step of IPF. Hence subsequent steps can be obtained by maximizing ELBOs
associated with the following maximum likelihood problems for any n ∈ N

q? = arg max{Epdata [log q0(X0)] : q ∈Pd(X ), qN = pprior},
p? = arg max{Epprior [log pN (XN )] : p ∈Pd(X ), p0 = pdata}.
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S5 Alternative variational formulations

In this section, we draw links between IPF and score-matching techniques. We start by proving
Proposition 3 in Section S5.1. We then present alternative variational formulations in Section S5.2.

S5.1 Proof of Proposition 3

We only prove (12) since the proof (13) is similar. Let n ∈ N and k ∈ {0, . . . , N − 1}. For any
xk+1 ∈ Rd we have

pnk+1(xk+1) = (4πγk+1)−d/2
∫
Rd p

n(xk) exp[−‖Fnk (xk)− xk+1‖2/(4γk+1)]dxk,

with Fnk (xk) = xk + γk+1f
n
k (xk). Since pnk > 0 is bounded using the dominated convergence

theorem we have for any xk+1 ∈ Rd

∇ log pnk+1(xk+1) =
∫
Rd(Fnk (xk)− xk+1)/(2γk+1)pk|k+1(xk|xk+1)dxk.

Therefore we get that for any xk+1 ∈ Rd

bnk+1(xk+1) =
∫
Rd(Fnk (xk)− Fnk (xk+1))/γk+1pk|k+1(xk|xk+1)dxk.

This is equivalent to

Bnk+1(xk+1) = E[Xk+1 + Fnk (Xk)− Fnk (Xk+1)|Xk+1 = xk+1],

with (Xk, Xk+1) ∼ pk,k+1(xk, xk+1). Hence, we get that

Bnk+1 = arg minB∈L2(Rd,Rd) Epnk,k+1
[‖B(Xk+1)− (Xk+1 + Fnk (Xk)− Fnk (Xk+1))‖2],

which concludes the proof.

S5.2 Variational formulas

In Proposition 3 and Section 3.3 we present a variational formula for Bnk+1 and Fn+1
k for any n ∈ N

and k ∈ {0, . . . , N − 1}, where we recall that for any x ∈ Rd we have

Bnk+1(x) = x+ γk+1b
n
k+1(x), Fn+1

k = x+ γk+1f
n+1
k (x),

where we have

bnk+1(x) = −fnk (x) + 2∇ log pnk+1(x), fn+1
k (x) = −bnk+1(x) + 2∇ log qnk (x). (S48)

In the rest of this section we assume that for any n ∈ N, k ∈ {0, . . . , N − 1} and x ∈ Rd we have

qnk|k+1(xk|xk+1) = (4πγk+1)−d/2 exp[−‖xk −Bnk+1(xk+1)‖2/(4γk+1)],

pn+1
k+1|k(xk+1|xk) = (4πγk+1)−d/2 exp[−‖xk+1 − Fn+1

k (xk)‖2/(4γk+1)].

We recall that in this case Proposition 3 ensures that for any n ∈ N and k ∈ {0, . . . , N − 1}
Bnk+1 = arg minB∈L2(Rd,Rd) Epnk,k+1

[‖B(Xk+1)− (Xk+1 + Fnk (Xk)− Fnk (Xk+1))‖2],

Fn+1
k = arg minF∈L2(Rd,Rd) Eqnk,k+1

[‖F(Xk)− (Xk +Bnk+1(Xk+1)−Bnk+1(Xk))‖2].

In the rest of this section we derive other variational formulas and discuss their practical limita-
tions/advantages.

S5.2.1 Score-matching formula and sum of networks

First, using (S48) we have for any n ∈ N, k ∈ {0, . . . , N − 1} and x ∈ Rd

bnk+1(x) = αx+ 2
∑n
j=0∇ log pjk+1(x)− 2

∑n−1
j=0 ∇ log qjk(x), (S49)

fnk (x) = −αx+ 2
∑n−1
j=0 ∇ log qjk(x)− 2

∑n−1
j=0 ∇ log pjk+1(x). (S50)

In the following proposition we derive a variational formula for ∇ log pnk+1 and ∇ log qnk (x) for any
n ∈ N and k ∈ {0, . . . , N − 1}.
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Proposition S22. For any n ∈ N and k ∈ {0, . . . , N − 1} we have

∇ log pnk+1 = arg minu∈L2(Rd,Rd) Epnk,k+1
[‖u(Xk+1)− (Fnk (Xk)−Xk+1)/(2γk+1)‖2], (S51)

∇ log qnk = arg minv∈L2(Rd,Rd) Eqnk,k+1
[‖v(Xk)− (Bnk+1(Xk+1)−Xk)/(2γk+1)‖2]. (S52)

Proof. The proof is similar to the one of Proposition 3 but is provided for completeness. We only
prove (S53) since the proof (S54) is similar. Let n ∈ N and k ∈ {0, . . . , N − 1}. For any xk+1 ∈ Rd
we have

pnk+1(xk+1) = (4πγk+1)−d/2
∫
Rd p

n(xk) exp[−‖Fnk (xk)− xk+1‖2/(4γk+1)]dxk,

with Fnk (xk) = xk + γk+1f
n
k (xk). Since pnk > 0 is bounded using the dominated convergence

theorem we have for any xk+1 ∈ Rd

∇ log pnk+1(xk+1) =
∫
Rd(Fnk (xk)− xk+1)/(2γk+1)pk|k+1(xk|xk+1)dxk.

This is equivalent to

∇ log pnk+1(xk+1) = E[(Fnk (Xk)−Xk+1)/(2γk+1)|Xk+1 = xk+1],

with (Xk, Xk+1) ∼ pk,k+1(xk, xk+1). Hence, we get that

∇ log pnk+1 = arg minu∈L2(Rd,Rd) Epnk,k+1
[‖u(Xk+1)− (Fnk (Xk)−Xk+1)/(2γk+1)‖2],

which concludes the proof.

Note that (S53) and (S54) can be simplified upon remarking that for any n ∈ N and k ∈ {0, . . . , N −
1}

Xn
k+1 = Fnk (Xn

k ) +
√

2γk+1Z
n
k+1, X̃n

k = Fnk (X̃n
k+1) +

√
2γk+1Z̃

n
k+1,

with {Xn
k }Nk=0 ∼ pn, {X̃n

k }Nk=0 ∼ qn and {(Znk+1, Z̃
n
k+1) : n ∈ N, k ∈ {0, . . . , N − 1}} a family

of independent Gaussian random variables with zero mean an identity covariance matrix. Using this
result we get that for any n ∈ N and k ∈ {0, . . . , N − 1}

∇ log pnk+1 = arg minu∈L2(Rd,Rd) Epnk,k+1
[‖u(Xk+1)− Znk+1/

√
2γk+1‖2], (S53)

∇ log qnk = arg minv∈L2(Rd,Rd) Eqnk,k+1
[‖v(Xk)− Z̃nk+1/

√
2γk+1‖2]. (S54)

In practice, neural networks uαn(k, x) ≈ ∇ log pnk (x), and vβn(k, x) ≈ ∇ log qnk (x) are used.
Hence, we sample approximately from qn and pn for any n ∈ N using the following recursion:

X̃n
k = τ̃k+1X̃

n
k+1 + 2γk+1{

∑n
j=0 uαj (k + 1, X̃n

k+1)−
∑n−1
j=0 vβj (k, X̃

n
k+1)}+

√
2γk+1Z̃

n
k+1,

Xn
k+1 = τk+1X

n
k + 2γk+1{

∑n
j=0 uαj (k + 1, Xn

k )−
∑n
j=0 vβj (k,X

n
k )}+

√
2γk+1Z

n
k+1, (S55)

where τ̃k+1 = 1 + αγk+1, τk+1 = 1− αγk+1 and Xn
0 ∼ pdata, X̃n

N ∼ pprior.

S5.2.2 Drift-matching formula

In Proposition 3 we have given a variational formula for Bnk+1 and Fn+1
k for any n ∈ N and

k ∈ {0, . . . , N − 1}. In Proposition S22 we have given a variational formula for ∇ log pnk+1 and
∇ log qnk for any n ∈ N and k ∈ {0, . . . , N − 1}. In the following proposition we give a variational
formula for the drifts bnk+1 and fn+1

k .

Proposition S23. For any n ∈ N and k ∈ {0, . . . , N − 1} we have

bnk+1 = arg minb∈L2(Rd,Rd) Epnk,k+1
[‖b(Xk+1)− (Fnk (Xk)− Fnk (Xk+1))/γk+1‖2] (S56)

fn+1
k = arg minf∈L2(Rd,Rd) Eqnk,k+1

[‖f(Xk)− (Bnk+1(Xk+1)−Bnk+1(Xk))/γk+1‖2] (S57)

Proof. The proof is similar to the one of Proposition 3 but is provided for completeness. We only
prove (S56) since the proof (S57) is similar. Let n ∈ N and k ∈ {0, . . . , N − 1}. For any xk+1 ∈ Rd
we have

pnk+1(xk+1) = (4πγk+1)−d/2
∫
Rd p

n(xk) exp[−‖Fnk (xk)− xk+1‖2/(4γk+1)]dxk,
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with Fnk (xk) = xk + γk+1f
n
k (xk). Since pnk > 0 is bounded using the dominated convergence

theorem we have for any xk+1 ∈ Rd

∇ log pnk+1(xk+1) =
∫
Rd(Fnk (xk)− xk+1)/(2γk+1)pk|k+1(xk|xk+1)dxk.

Therefore we get that for any xk+1 ∈ Rd

bnk+1(xk+1) =
∫
Rd(Fnk (xk)− Fnk (xk+1))/γk+1pk|k+1(xk|xk+1)dxk.

This is equivalent to

bnk+1(xk+1) = E[(Fnk (Xk)− Fnk (Xk+1))/γk+1|Xk+1 = xk+1],

with (Xk, Xk+1) ∼ p(xk, xk+1). Hence, we get that

bnk+1 = arg minb∈L2(Rd,Rd) Epnk,k+1
[‖b(Xk+1)− (Fnk (Xk)− Fnk (Xk+1))/γk+1‖2],

which concludes the proof.

In practice, neural networks bβn(k, x) ≈ bnk (x), and fαn(k, x) ≈ fnk (x) are used. Hence, we sample
approximately from qn and pn for any n ∈ N using the following recursion:

X̃n
k = X̃n

k+1 + γk+1bβn(k + 1, X̃n
k+1) +

√
2γk+1Z̃

n
k+1,

Xn
k+1 = Xn

k + γk+1fαn(k,Xn
k ) +

√
2γk+1Z

n
k+1,

with Xn
0 ∼ pdata, X̃n

N ∼ pprior.

S5.2.3 Discussion

We identify three variational formulas associated with Proposition 3, Proposition S22 and Proposi-
tion S23. In practice we discard the approach of Section S5.2.1 because it requires storing 2n neural
networks to sample from pn, see (S55). Hence the algorithm requires more memory as n increases
and the sampling procedure requires O(nN) passes through a neural network. The approaches
described in Proposition 3 and Proposition S23 yield sampling procedures which only require O(N)
passes through a neural network and have fixed memory cost for any n ∈ N. In practice we observed
that the approach of Proposition 3 yields better results. We conjecture that this favorable behavior is
mainly due to the architecture of the neural networks used to approximateBnk+1 and Fn+1

k which have
residual connections and therefore are better suited at representing functions of the x 7→ x+ Φ(x)
where Φ is a perturbation.

S6 Theoretical study of Schrödinger bridges and the IPF

In this section, we explore some of the theoretical properties of Schrödinger bridges and the IPF
procedure. Proposition 4 and Proposition 5 are proved in Section S6.1 and Section S6.2 respectively.

S6.1 Proof of Proposition 4

In this section, we prove Proposition 4. First we gather novel monotonicity results for the IPF
in Proposition S25, see Section S6.1.1. Then we prove our quantitative convergence bounds in
Theorem S30, see Section S6.1.2.

S6.1.1 Monotonicity results

We consider the static IPF recursion: π0 = µ ∈P2 and

π2n+1 = arg min
{

KL(π|π2n) : π ∈P2, π1 = ν1

}
,

π2n+2 = arg min
{

KL(π|π2n+1) : π ∈P2, π0 = ν0

}
,

where ν0, ν1 ∈P(Rd). We also consider the following assumption.
B1. µ is absolutely continuous w.r.t. µ0 ⊗ µ1 and KL(ν0 ⊗ ν1|µ) < +∞. In addition, νi and µi are
equivalent for i ∈ {0, 1}.
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First we draw links between A1 and B1.
Proposition S24. A1 implies B1 with µ = p0,N .

Proof. Since pN > 0 we get that pN and pprior are equivalent. Hence µ1 and ν1 are equivalent and
µ0 = ν0. Let us show that µ is absolutely continuous w.r.t. µ0 ⊗ µ1, i.e. that p0,N is absolutely
continuous w.r.t. pdata⊗ pN . Since pN > 0 we get that p0,N is absolutely continuous w.r.t. pdata⊗ pN
with density pN |0/pN . Finally we have∫

(Rd)2
log(pdata(x0)pprior(xN )/(pdata(x0)pN |0(xN |x0)))pdata(x0)pprior(xN )dx0dxN

=
∫

(Rd)2
log(pprior(xN )/pN |0(xN |x0))pdata(x0)pprior(xN )dx0dxN

≤ |H(pprior)|+
∫
Rd | log pN |0(xN |x0)|pdata(x0)pprior(xN )dx0dxN < +∞

which concludes the proof.

In this section we prove the following proposition.
Proposition S25. Assume B1. Then, the IPF sequence is well-defined and for any n ∈ N with n ≥ 1
we have

KL(πn+1|πn) ≤ KL(πn−1|πn), KL(πn|πn+1) ≤ KL(πn|πn−1). (S58)
In addition, the following results hold:

(a) (‖πn+1 − πn‖TV)n∈N and (J(πn+1, πn))n∈N are non-increasing.

(b) (KL(π2n+1|π2n))n∈N and (KL(π2n+2|π2n+1))n∈N are non-increasing.

(c) (KL(π2n+1
1 |ν1))n∈N and (KL(π2n

0 |ν0))n∈N are non-increasing.

(d) (‖π2n+1
1 − ν1‖TV)n∈N and (‖π2n

0 − ν0‖TV)n∈N are non-increasing.

First, we show that under B1, the IPF sequence is well-defined and is associated with a sequence of
potentials.
Proposition S26. Assume B1. Then, the IPF sequence is well-defined and there exist (an)n∈N and
(bn)n∈N such that for any n ∈ N, an, bn : Rd → (0,+∞) and for any x, y ∈ Rd

(dπ2n+1/d(µ0 ⊗ µ1))(x, y) = an(x)h(x, y)bn(y) (S59)

(dπ2n+2/d(µ0 ⊗ µ1))(x, y) = an+1(x)h(x, y)bn(y),

and

v0(x) = an+1(x)
∫
Rd h(x, y)bn(y)dµ1(y), v1(y) = bn(y)

∫
Rd h(x, y)an(x)dµ0(x), (S60)

where vi = dνi/dµi for i ∈ {0, 1}.

Proof. First, we show that the IPF sequence is well-defined. Note that π1 is well-defined since
KL(ν0 ⊗ ν1|µ) < +∞. Assume that {π`}n`=1 is well-defined. Using (Csiszár, 1975, Theorem 2.2)
we have

KL(ν0 ⊗ ν1|µ) = KL(ν0 ⊗ ν1|πn) +
∑n−1
`=0 KL(π`+1|π`).

In particular, KL(ν0 ⊗ ν1|πn) < +∞ and πn+1 is well-defined. We conclude by recursion.

Using (Csiszár, 1975, Theorem 3.1) and B1, there exists (b̃n)n∈N such that for any n ∈ N, b̃n : Rd →
[0,+∞) and for any x, y ∈ An, (dπ2n+1/dπ2n)(x, y) = b̃n(y) with An ∈ B(Rd), π̃(An) = 0 for
any π̃ such that π̃1 = ν1 and KL(π̃|π2n) < +∞. In particular we have (ν0⊗ν1)(An) = 0. Since νi is
equivalent to µi for any i ∈ {0, 1} we have (µ0⊗ µ1)(An) = 0. Similarly, there exists (ãn)n∈N such
that for any n ∈ N, ãn : Rd → [0,+∞) and for any x, y ∈ Bn, (dπ2n+2/dπ2n+1)(x, y) = ãn+1(x)
with Bn ∈ B(Rd) and (µ0 ⊗ µ1)(Bn) = 0. As a result, there exist (an)n∈N and (bn)n∈N with
an : Rd → [0,+∞) and bn : Rd → [0,+∞) such that for any n ∈ N and x, y ∈ Rd

(dπ2n+1/d(µ0 ⊗ µ1))(x, y) = an(x)h(x, y)bn(y)

(dπ2n+2/d(µ0 ⊗ µ1))(x, y) = an+1(x)h(x, y)bn(y),
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where h = dµ/d(µ0 ⊗ µ1) and a0 = 1. In addition, setting b−1 = 1, we have for any x, y ∈ Rd,

(dπ0/d(µ0 ⊗ µ1))(x, y) = a0(x)h(x, y)b−1(y).

Using that νi is absolutely continuous w.r.t. µi for i ∈ {0, 1} with density vi : Rd → (0,+∞) we
get that for any x, y ∈ Rd and n ∈ N

v0(x) = an+1(x)
∫
Rd h(x, y)bn(y)dµ1(y), v1(y) = bn(y)

∫
Rd h(x, y)an(x)dµ0(x).

Since v0, v1 > 0 for any n ∈ N, an, bn > 0.

Note that the system of equations (S60) corresponds to iteratively solving the Schrödinger system,
see Léonard (2014b) for a survey. In addition, (S60) has connections with Fortet’s mapping (Léonard,
2019; Fortet, 1940).

In the rest of the section we detail the proof of Proposition 4. We start by deriving identities between
the marginals of the IPF and its joint distribution both w.r.t. the Kullback-Leibler divergence and
the total variation norm in Lemma S27. Second, we establish that (‖πn+1 − πn‖TV)n∈N is non-
increasing in Lemma S28. Then, we prove (S58) in Lemma S29. We conclude with the proof of
Proposition S25.
Lemma S27. Assume B1. Then, for any n ∈ N we have

‖π2n+1 − π2n‖TV = ‖π2n
1 − ν1‖TV, ‖π2n+2 − π2n+1‖TV = ‖π2n+1

0 − ν0‖TV. (S61)

In addition, we have

KL(π2n|π2n+1) = KL(π2n
1 |ν1), KL(π2n+1|π2n+2) = KL(π2n+1

0 |ν0). (S62)

Proof. We divide the proof into two parts. First, we prove (S61). Second, we show that (S62) holds.

(a) We only show that for any n ∈ N we have ‖π2n+1 − π2n‖TV = ‖π2n
1 − ν1‖TV. The proof that

for any n ∈ N, ‖π2n+2 − π2n+1‖TV = ‖π2n+1
0 − ν0‖TV is similar. Let n ∈ N. Using (S59) and

(S60) we have

‖π2n+1 − π2n‖TV =
∫

(Rd)2
|bn(y)− bn−1(y)| an(x)h(x, y)dµ0(x)dµ1(y) (S63)

=
∫
Rd |1− bn−1(x)/bn(x)|dν1(y).

In addition, we have that for any A ∈ B(Rd)

π2n
1 (A) =

∫
Rd×A an(x)bn−1(y)h(x, y)dµ0(x)dµ1(y) =

∫
A
(bn−1/bn)(y)dν1(y).

We get that for any y ∈ Rd, (dπ2n
1 /dν1)(y) = (bn−1/bn)(y). Hence, using (S63) we get that

‖π2n
1 − ν1‖TV =

∫
Rd |1− an(x)/an+1(x)|dν0(x) = ‖π2n+1 − π2n‖TV.

(b) We only show that for any n ∈ N we have KL(π2n|π2n+1) = KL(π2n
1 |ν1). The proof that for

any n ∈ N, KL(π2n+1|π2n+2) = KL(π2n+1
0 |ν0) is similar. Let n ∈ N. Using that for any x, y ∈ Rd,

(dπ2n
1 /dν1)(y) = bn−1(y)/bn(y) and that (dπ2n+1/dπ2n)(x, y) = bn(y)/bn−1(y) we have

KL(π2n|π2n+1) = −
∫
Rd log(bn(y)/bn−1(y))dπ2n

1 (y) = KL(π2n
1 |ν1).

This concludes the proof.

Lemma S28. Assume B1. Then (‖πn+1 − πn‖TV)n∈N is non-increasing.

Proof. We only prove that for any n ∈ N with n ≥ 1, ‖π2n+1 − π2n‖TV ≤ ‖π2n − π2n−1‖TV. The
proof that for any n ∈ N, ‖π2n+2 − π2n+1‖TV ≤ ‖π2n+1 − π2n‖TV is similar. Let n ∈ N with
n ≥ 1. Similarly to the proof of Lemma S27 we have that

‖π2n+1 − π2n‖TV =
∫
Rd |1− bn−1(y)/bn(y)|dν1(y) =

∫
Rd
∣∣b−1
n (y)− b−1

n−1(y)
∣∣ bn−1(y)dν1(y).

(S64)
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In addition, we have that for any y ∈ Rd∣∣b−1
n−1(y)− b−1

n (y)
∣∣ ≤ v−1

1 (y)
∫
Rd h(x, y) |an−1(x)− an(x)|dµ0(x).

Combining this result and (S64) we get that

‖π2n+1 − π2n‖TV ≤
∫
Rd
∣∣b−1
n−1(y)− b−1

n (y)
∣∣ bn−1(y)dν1(y)

≤
∫

(Rd)2
|an(x)− an−1(x)|h(x, y)bn−1(y)dµ0(x)dµ1(y)

≤
∫
Rd |1− an−1(x)/an(x)|dν0(x) ≤ ‖π2n − π2n−1‖TV,

which concludes the proof.

Lemma S29. Assume B1. Then for any n ∈ N with n ≥ 1 we have

KL(πn+1|πn) ≤ KL(πn−1|πn), KL(πn|πn+1) ≤ KL(πn|πn−1).

Proof. Using Lemma S27 and the data processing theorem (Ambrosio et al., 2008, Lemma 9.4.5) we
get that for any n ∈ N

KL(π2n|π2n+1) = KL(π2n
1 |ν1) ≤ KL(π2n|π2n+1).

Similarly, we get that for any n ∈ N, KL(π2n+1|π2n+2) ≤ KL(π2n+1|π2n). Hence, we get that for
any n ∈ N, KL(πn|πn+1) ≤ KL(πn|πn−1).

In addition, using that for any n ∈ N with n ≥ 1 and x, y ∈ Rd, we have that π2n+1
1 = ν1 and

(dπ2n+1/dπ2n)(x, y) = bn(y)/bn−1(y) we get for any n ∈ N with n ≥ 1

KL(π2n+1|π2n) = −
∫
Rd log(bn−1(y)/bn(y))dν1(y). (S65)

Using Jensen’s inequality we have for any n ∈ N

− log(bn−1(y)/bn(y)) ≤ − log
(∫

Rd h(x, y)an(x)dµ0(x)
/∫

Rd h(x, y)an−1(x)dµ0(x)
)

≤ − log
(∫

Rd(an(x)/an−1(x))h(x, y)an−1(x)dµ0(y)
/∫

Rd h(x, y)an−1(x)dµ0(x)
)

≤ −
∫
Rd log(an(x)/an−1(x))bn−1(y)h(x, y)an−1(x)/v1(y)dµ0(x).

Combining this result, (S65), Fubini’s theorem and that for any n ∈ N with n ≥ 1 and x ∈ Rd,
(dπ2n−1

0 /dν0)(x) = an−1(x)/an(x) we get that for any n ∈ N with n ≥ 1

KL(π2n+1|π2n)≤
∫

(Rd)2
log(an−1(x)/an(x))an−1(x)h(x, y)bn−1(y)dµ1(y)dµ0(x)

≤
∫

(Rd)2
log(an−1(x)/an(x))(an−1(x)/an(x))dν0(x) ≤ KL(π2n−1

0 |ν0).

Using Lemma S27 (or the data processing theorem) we get that for any n ∈ N with n ≥ 1,
KL(π2n+1|π2n) ≤ KL(π2n−1|π2n). Similarly, we get that for any n ∈ N, KL(π2n+2|π2n+1) ≤
KL(π2n|π2n+1), which concludes the proof.

We now turn to the proof of Proposition S25

Proof. First, (S58) is a direct consequence of Lemma S29. Using Lemma S28 we get that
(‖πn+1 − πn‖TV)n∈N is non-increasing. Since for any η0, η1 ∈ P(Rd) we have J(η0, η1) =
(1/2){KL(η0|η1) + KL(η0|η1)} and using (S58), we get that (J(πn+1, πn))n∈N is non-increasing
which proves Proposition S25-(a). Proposition S25-(b) is a straightforward consequence of (S58).
Proposition S25-(c) is a consequence of Lemma S27 and Proposition S25-(a). Finally, Proposi-
tion S25-(c) is a consequence of Lemma S27 and (S58).

Note that we also have that for any n ∈ N, (KL(π2n|π2n+1))n∈N and (KL(π2n+1|π2n+2))n∈N are
non-increasing.
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S6.1.2 Quantitative convergence bounds

In this section we prove the following theorem.
Theorem S30. Assume B1. Then, the IPF sequence (πn)n∈N is well-defined. Then, the following
hold:

(a) limn→+∞ n1/2 {‖πn0 − ν0‖TV + ‖πn1 − ν1‖TV} = 0.

(b) limn→+∞ n {KL(πn0 |ν0) + KL(πn1 |ν1)} = 0.

We begin with Lemma S31 which is an adaption of (Ruschendorf et al., 1995, Proposition 2.1). Then
we state and prove Lemma S32 which is a classical lemma from real analysis. Combining these two
lemmas and the monotonicity results from Proposition S25 conclude the proof.
Lemma S31. Assume B1. Then, (πn)n∈N is well-defined and we have

∑
n∈N KL(πn+1|πn) < +∞.

Proof. The sequence is well-defined using Proposition S26. In addition, using (Csiszár, 1975,
Theorem 2.2) we have for any n ∈ N

KL(π?|π0) = KL(π?|πn) +
∑n−1
k=0 KL(πk+1|πk),

which concludes the proof.

Lemma S32. Let (cn)n∈N ∈ [0,+∞)
N a non-increasing sequence such that

∑
n∈N cn < +∞. Then

limn→+∞ cnn = 0.

Proof. Let ε > 0 and n0 ∈ N such that for any n ≥ n0,
∑+∞
k=n ck ≤ ε. Let n ∈ N with n ≥ 2n0.

Note that n − n0 ≥ n/2 ≥ n0. Therefore we have ε ≥ (n − n0)cn ≥ (n/2)cn. Hence, for any
n ∈ N with n ≥ 2n0, cnn ≤ 2ε, which concludes the proof.

We now conclude with the proof of Theorem S30.

Proof. Since (KL(π2n+1|π2n))n∈N and (KL(π2n+2|π2n+1))n∈N are non-increasing by Proposi-
tion S25, using Lemma S32, we get that

lim
n→+∞

n {KL(πn0 |ν0) + KL(πn1 |ν1)} = 0.

We conclude upon using Pinsker’s inequality (Bakry et al., 2014, Equation 5.2.2).

S6.2 Proof of Proposition 5

Similarly to Section S6.1, we consider the static IPF recursion: π0 = µ ∈P2 and

π2n+1 = arg min
{

KL(π|π2n) : π ∈P2, π1 = ν1

}
,

π2n+2 = arg min
{

KL(π|π2n+1) : π ∈P2, π0 = ν0

}
,

where ν0, ν1 ∈P(Rd). We recall that in this context if the Schrödinger bridge π? exists it is given
by

π? = arg min{KL(π|µ) : π ∈P2, π0 = ν0, π1 = ν1}.
In this section, we prove the following proposition which directly implies Proposition 5.
Proposition S33. Assume B1 and denote h = dµ/(dµ0⊗µ1). Assume that h ∈ C(Rd×Rd, (0,+∞])
and that there exist Φ0,Φ1 ∈ C(Rd, (0,+∞)) such that for any x, y ∈ Rd

h(x, y) ≤ Φ0(x)Φ1(y), and∫
Rd×Rd(|log h(x0, x1)|+ |log Φ0(x0)|+ |log Φ1(x1)|)dµ0(x0)dµ1(x1) < +∞. (S66)

Then there exists a solution π? to the Schrödinger bridge. Assume that the IPF sequence satisfies
limn→+∞ ‖πn−π∞‖TV = 0 with π∞ ∈P2. If µ is absolutely continuous w.r.t. π∞ then π∞ = π?.

We begin with an adaptation of (Rüschendorf and Thomsen, 1993, Proposition 2).
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Proposition S34. Let µ ∈ P2 and assume that µ is absolutely continuous w.r.t. µ0 ⊗ µ1. Let
(an)n∈N and (bn)n∈N such that for any n ∈ N, an : Rd → (0,+∞) and bn : Rd → (0,+∞).
Assume that there exists Φ : (Rd)2 → [0,+∞) and A ∈ B(Rd)⊗ B(Rd) with µ(A) = 1 such that
for any (x, y) ∈ A

lim
n→+∞

an(x)bn(y) = Φ(x, y).

Then, there exist a : Rd → [0,+∞), b : Rd → [0,+∞) and B ∈ B(Rd)⊗ B(Rd) with µ(B) = 1
such that for any x, y ∈ B

Φ(x, y) = a(x)b(y), or Φ(x, y) = 0.

Proof. Let Ã = {(x, y) ∈ (Rd)2 : Φ(x, y) = 0} and Aa = Ã ∩ A and Ab = Ãc ∩ A. If Ab = ∅, we
conclude the proof. Otherwise, let (x0, y0) ∈ Ab. Let C0,C1 ∈ B(Rd)⊗ B(Rd) be given by

C0
0 = {x ∈ Rd : lim

n→+∞
a0
n(x) = a0(x) exists and a0(x) > 0}, (S67)

C0
1 = {y ∈ Rd : lim

n→+∞
b0n(y) = b0(y) exists and b0(y) > 0},

where for any n ∈ N and x, y ∈ Rd, a0
n(x) = an(x)/an(x0) and b0n(y) = bn(y)an(x0), which is

well-defined since for any n ∈ N, an(x0) > 0. Note that x0 ∈ C0
0 and that y0 ∈ C0

1. If Ab ⊂ C0
0×C0

1,
we conclude the proof. Otherwise, let (x1, y1) ∈ Ab ∩ (C0

0 × C0
1)c and define

C1
0 = {x ∈ Rd : lim

n→+∞
a1
n(x) = a1(x) exists and a1(x) > 0},

C1
1 = {y ∈ Rd : lim

n→+∞
b1n(y) = b1(y) exists and b1(y) > 0},

where for any n ∈ N and x, y ∈ Rd, a1
n(x) = an(x)/an(x1) and b1n(y) = bn(y)an(x1),

which is well-defined since for any n ∈ N, an(x1) > 0. Note that C0
0 ∩ C1

0 = ∅ and
C0

1 ∩ C1
1 = ∅. Indeed, if there exists x ∈ C0

0 ∩ C1
0, then a0(x) = limn→+∞ an(x)/an(x0) > 0 and

a1(x) = limn→+∞ an(x)/an(x1) > 0 exists. Therefore limn→+∞ an(x1)/an(x0) > 0 exists and
limn→+∞ bn(y1)an(x0) > 0 exists. Hence (x1, y1) ∈ C0

0 × C0
1 which is absurd. Similarly, if there

exists y ∈ C0
1 ∩ C1

1 then (x1, y1) ∈ C0
0 × C0

1 which is absurd. Hence, we consider T : Ab → 2(Rd)2

such that for any (x, y) ∈ Ab, T (x, y) = C
(x,y)
0 × C

(x,y)
1 , where C

(x,y)
0 × C

(x,y)
1 is constructed as in

(S67) replacing (x0, y0) by (x, y).

Consider a well order on (Ab,≤), which is possible by the well-ordering principle (Enderton, 1977,
p. 196). For any (x, y) ∈ Rd, let A(x,y)

b = {(x′, y′) ∈ (Rd)2 : (x′, y′) < (x, y)}. Using the
transfinite recursion theorem (Enderton, 1977, p. 175) there exists f : Ab → {0, 1} such that
for any (x, y) ∈ Ab if there exists (x′, y′) ∈ (Rd)2 such that (x′, y′) < (x, y), f(x′, y′) = 1
and (x, y) ∈ T (x′, y′) then f(x, y) = 0 and f(x, y) = 1 otherwise. Let I = f−1({1}). Let
(x, y), (x′, y) ∈ I with (x, y) 6= (x′, y′) then for (x, y) < (x′, y′) for instance. Since f(x, y) =

f(x′, y′) = 1 we have that (C
(x,y)
0 × C

(x,y)
1 ) ∩ (C

(x′,y′)
0 × C

(x′,y′)
1 ) = ∅. Let (x, y) ∈ Ab. If

f(x, y) = 1 then (x, y) ∈ C
(x,y)
0 ×C

(x,y)
1 . If f(x, y) = 0 then there exists (x′, y′) < (x, y) such that

(x, y) ∈ C
(x′,y′)
0 × C

(x′,y′)
1 . Therefore, we get that {C(x,y) = (C

(x,y)
0 × C

(x,y)
1 ) ∩ Ab : (x, y) ∈ I}

is a partition of Ab.

Since µ(Ab) ≤ 1, and {C(x,y) = (C
(x,y)
0 ×C

(x,y)
1 )∩Ab : (x, y) ∈ I} is a partition of Ab, we get that

J = {C(x,y) : (x, y) ∈ I, µ0(C
(x,y)
0 )µ1(C

(x,y)
1 ) > 0} is countable. Denote Ac = ∪(x,y)∈JC

(x,y).
Let us show that µ(Ac

c ∩ Ab) = µ(∪(x,y)∈I∩JcC(x,y)) = 0. Let x ∈ Rd and define Dx = {y ∈ Rd :

(x, y) ∈ Ab ∩ Ac
c}. If Dx is not empty, then there exists (x′, y′) ∈ I such that x ∈ C

(x′,y′)
0 . Then, for

any y ∈ Dx, y ∈ C
(x′,y′)
1 . Hence, (x′, y′) ∈ I ∩ Jc by definition of Dx and µ1(Dx) = 0. We get that

µ(Ab ∩ Ac
c) =

∫
Rd(
∫
Dx
h(x, y)dµ1(y))dµ0(x) = 0,

where h is the density of µ w.r.t. µ0 ⊗ µ1. Note that this is the only instance in the proof, where we
use that µ is absolutely continuous w.r.t. µ0 ⊗ µ1. For any (x, y) ∈ Ac define for any n ∈ N

ân(x) =
∑

(x′,y′)∈J 1C
(x′,y′)
0

(x)a
(x′,y′)
n (x), b̂n(y) =

∑
(x′,y′)∈J 1C

(x′,y′)
1

(x)b
(x′,y′)
n (y).
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There exist â, b̂ : Rd → (0,+∞) such that for any (x, y) ∈ Ac, limn→+∞ ân(x) = â(x) and
limn→+∞ b̂n(y) = b̂(y). In addition, for any (x, y) ∈ Ac, an(x)bn(y) = ân(x)b̂n(y). Hence, for
any (x, y) ∈ Ac, Φ(x, y) = â(x)b̂(y). Since Aa ∩ Ac = ∅ and µ(Ac) = µ(Ab), we have

µ(Aa) + µ(Ac) = µ(Aa) + µ(Ab) = µ(A) = 1.

We conclude the proof upon remarking that for any (x, y) ∈ Aa, Φ(x, y) = 0 and for any (x, y) ∈ Ac,
Φ(x) = â(x)b̂(y).

In what follows we prove Proposition S33.

Proof. Since limn→+∞ ‖πn−π∞‖TV = 0, there exist A with µ(A) = 1 and Φ : (Rd)2 → [0,+∞)
such that, up to extraction, for any x, y ∈ A

lim
n→+∞

an(x)bn(y) = Φ(x, y),

and (dπ∞/dµ) = Φ. Using Proposition S34, there exist a, b : Rd → [0,+∞) and B with
π∞(B) = 1 such that for any x, y ∈ B, (dπ∞/dµ)(x, y) = a(x)b(y). Since µ is absolutely
continuous w.r.t. π∞, we get that for any x, y ∈ Rd, (dπ∞/d(µ0 ⊗ µ1))(x, y) = a(x)b(y)h(x, y).
In addition, the Schrödinger bridge π? ∈P((Rd)2) exists, see (Rüschendorf and Thomsen, 1993,
Theorem 3), and there exist a′, b′ : Rd → [0,+∞) and B′ with µ(B′) = 1 such that for any x, y ∈ B′

(dπ?/d(µ0 ⊗ µ1))(x, y) = a′(x)b′(y)h(x, y).

Let M+,× be the space of non-negative product measures over B(Rd)⊗B(Rd). Let Ψh̄ : M+,× →
M+,× be given for any λ = λ0 ⊗ λ1 ∈M+,× by Ψh̄(λ) = Ψλ

h where for any A,B ∈ B(Rd)

Ψλ
h(A× B) = (

∫
A×Rd h̄(x, y)dλ0(x)dλ1(x))(

∫
Rd×B h̄(x, y)dλ0(x)dλ1(y))

where for any x, y ∈ Rd, h̄(x, y) = h(x, y)Φ−1
0 (x)Φ−1

1 (y). Note that h̄ ∈ C(Rd × Rd, [0,+∞))
and is bounded. Hence, using (Beurling, 1960, Theorem 2) and (S66) we get that Ψh̄ is a bijection.
Let λ = (aΦ0µ0, bΦ1µ1) and λ′ = (a′Φ0µ0, b

′Φ1µ1). Then, since π?i = π∞i = νi for i ∈ {0, 1} we
get that Ψh(λ) = Ψh(λ′). Hence λ = λ′ and π∞ = π? which concludes the proof.

In Proposition S36 we derive an alternative proposition to Proposition S33. We start with the following
lemma.

Lemma S35. Let π? ∈ P2 with π?i = νi for i ∈ {0, 1}. Assume that KL(π?|µ) < +∞ and that
L1(ν0)⊕ L1(ν1) is closed in L1(π?). In addition, assume that there exist a, b : Rd → [0,+∞) and
A with π?(A) = 1 such that for any (x, y) ∈ A,

(dπ?/dµ)(x, y) = a(x)b(y).

Then π? is the Schrödinger bridge.

Proof. Since KL(π?|µ) < +∞ we have that∫
(Rd)2

|log(a(x)b(y))|dπ?(x, y) < +∞.

Using (Kober, 1939, Theorem 1) and that π?i = νi for i ∈ {0, 1}, we get that∫
Rd |log a(x)|dν0(x) +

∫
Rd |log b(y)|dν1(y) < +∞. (S68)

Let π ∈ P2 such that πi = νi for i ∈ {1, 2} and KL(π|µ) < +∞. Using (S68), we have that∫
(Rd)2

|log((dπ?/dµ)(x, y))|dπ(x, y) < +∞. Hence, (dπ?/dµ) > 0, π-almost surely. Using this
result we have for any A ∈ B(Rd)

π(A) =
∫
Rd 1A(x)(dπ?/dµ)(x)(dπ?/dµ)(x)−1dπ(x)

=
∫
Rd 1A(x)(dπ?/dµ)(x)(dπ?/dµ)(x)−1(dπ/dµ)(x)dµ(x)

=
∫
Rd 1A(x)(dπ?/dµ)(x)−1(dπ/dµ)(x)dπ?(x).
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Hence we get that dπ/dπ? = (dπ/dµ)(dπ?/dµ)−1. In addition, we have that

KL(π?|µ) =
∫
Rd log(a(x))dν0(x) +

∫
Rd log(b(y))dν1(y) =

∫
(Rd)2

log((dπ?/dµ)(x, y))dπ(x, y).

We get that

KL(π|π?) =
∫
Rd log((dπ/dµ)(dπ?/dµ)(x, y)−1)dπ(x, y) = KL(π|µ)−KL(π?|µ).

Hence, KL(π|µ) ≥ KL(π?|µ) with equality if and only if π? = π. Therefore, π? is the Schrödinger
bridge.

The following proposition is an alternative to Proposition S33.

Proposition S36. Assume B1. Then there exists a solution π? to the Schrödinger bridge. Assume that
the IPF sequence (πn)n∈N satisfies limn→+∞ ‖πn−π∞‖TV = 0 with π∞ ∈P2. If L1(ν0)⊕L1(ν1)
is closed in L1(π∞) then π∞ = π?.

Proof. Since limn→+∞ ‖πn − π∞‖TV = 0 there exist A with µ(A) = 1 and Φ : (Rd)2 → [0,+∞)
such that, up to extraction, for any x, y ∈ A

lim
n→+∞

an(x)bn(y) = Φ(x, y),

and (dπ∞/dµ) = Φ. Using Proposition S34, there exist a, b : Rd → [0,+∞) and B with
π∞(B) = 1 such that for any x, y ∈ B, (dπ∞/dµ)(x, y) = a(x)b(y). We conclude upon using
Lemma S35.

S7 Geometric convergence rates and convergence to ground-truth

In this section, we derive geometric convergence rates in Section S7.1 in a Gaussian setting. In
particular, we provide an explicit upper-bound on the convergence rate that depends only on the
covariance of the reference measure and the target. In Section S7.2, we show that DSB (with
Brownian reference measure) converges towards the Schrödinger bridge in a Gaussian setting where
the ground-truth is available. In Section 4 we show that our implementation actually recovers the
Schrödinger bridge in this setting.

S7.1 Geometric convergence rates

In the following proposition we show that we recover a geometric convergence rate in a Gaussian
setting and derive intuition from this case study. We set N = 1 and assume that for any x0, xN ∈ Rd
we have

p(x0, xN ) ∝ exp[−‖x0‖2 + 2α〈x0, xN 〉 − ‖xN‖2],

with α ∈ [0, 1). In this case assume that there exists β > 0 such that the target marginals are given
for any x0, xN ∈ Rd by

pdata(x0) ∝ exp[−β ‖x0‖2], pprior(xN ) ∝ exp[−β ‖xN‖2].

Proposition S37. Let α ∈ (0, 1) and β > 0. Then the Schrödinger bridge π? exists and there exists
C ≥ 0 (explicit in the proof) such that for any n ∈ N, KL(π?|πn) ≤ Cκ2n, with κ < 1 given by
κ = ρ/(1 + ρ) and ρ = 2α/β2. In addition, π? admits a density w.r.t. the Lebesgue measure denoted
p? and given for any x, y ∈ Rd by

p?(x, y) = exp[−γ?‖x‖2 + 2α〈x, y〉 − γ?‖y‖2]/
∫
Rd exp[−γ?‖x‖2 + 2α〈x, y〉 − γ?‖y‖2]dxdy,

with γ? = (β2/2)(1 + (1 + 4α2/β2)1/2).

Remark that if β2 = 1 − α2 then γ? and p? = p, i.e. the IPF leaves µ invariant. Note that the
performance of the IPF improves if κ is close to 0, i.e. if ρ = 2α/β2 is close to 0. This is the case if
α ≈ 0 (the marginals are almost independent) or if β ≈ +∞ (the target distribution is close to δ0),
see Figure S1. This behavior is in accordance with the limit case where the marginals are independent
or one of the target distribution is a Dirac mass in which case the IPF converges in two iterations.
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Figure S1: Evolution of κ2 depending on α and β.

Also, note that the convergence rate does not depend on the dimension but only on the constants of
the problem. In what follows we first derive the IPF sequence for this Gaussian problem and establish
that α controls the amount of information shared by the marginals. Then we prove Proposition S37.
In the rest of this section, we let µ ∈P2 with density p w.r.t. the Lebesgue measure such that for any
x0, x1 ∈ Rd

p(x0, x1) = exp[−‖x0‖2 + 2α〈x0, x1〉 − ‖x1‖2]/
∫
Rd exp[−‖x0‖2 + 2α〈x0, x1〉 − ‖x1‖2]dx0dx1.

We have that µ is the Gaussian distribution with zero mean and covariance matrix Σ such that

Σ = (2(1− α2))−1

(
Id α Id
α Id Id

)
.

We have that det(Σ) = 22d(1−α2)−d using Schur complement (Petersen et al., 2008, Section 9.1.2).
Hence we get that for any x0, x1 ∈ Rd

p(x0, x1) = π−d(1− α2)d/2 exp[−‖x0‖2 + 2α〈x0, x1〉 − ‖x1‖2].

In what follows, we denote C = πd(1−α2)−d/2. Similarly, we get that µ0 = µ1 and that they admit
the density p0 w.r.t. the Lebesgue measure given for any x ∈ Rd by

p0(x) = π−d/2(1− α2)d/2 exp[−‖x‖2 (1− α2)].

In what follows, we denote C0 = πd/2(1− α2)−d/2. In this case note that µ admits a density w.r.t.
µ0 ⊗ µ1 given for any x0, x1 ∈ Rd by

h(x0, x1) = (dµ/d(µ0 ⊗ µ1))(x0, x1) = (1− α2)−d/2 exp[−α2 ‖x0‖2 − 2α〈x0, x1〉 − α2 ‖x1‖2].

Remark that pprior = pdata = q with for any x ∈ Rd, q(x) = π−d/2βd/2 exp[−β ‖x‖2]. We have for
any x1, x0 ∈ Rd

p1|0(x1|x0) = p(x0, x1)/p0(x0) = π−d/2(1− α2)d/2 exp[−α2 ‖x0‖2 + 2α〈x0, x1〉 − ‖x1‖2].

Hence, we have that A1 holds and the IPF sequence is well-defined and converges using Proposition 5.
In what follows we start to show that α controls the amount of information shared by the two
marginals µ0 and µ1, i.e. the mutual information. More precisely we have the following result.
Proposition S38. For any α ∈ (0, 1) we have KL(µ|µ0 ⊗ µ1) = −(d/2) log(1− α2).

Proof. For any x, y ∈ Rd we have

(dµ/(dµ0 ⊗ dµ1))(x, y) = exp[−α2‖x‖2 + 2α〈x, y〉 − α2‖y‖2](1− α2)−d/2.

We have that ∫
Rd×Rd(−α2 ‖x‖2 − α2 ‖y‖2 + 2α〈x, y〉)dµ(x, y) = 0.

Hence, KL(µ|µ0 ⊗ µ1) = −(d/2) log(1− α2), which concludes the proof.
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In what follows, we denote by (πn)n∈N the IPFP sequence, defined for any n ∈ N we have for any
x, y ∈ Rd

(dπ2n/dµ)(x, y) = an(x)bn(y)h(x, y), (dπ2n+1/dµ)(x, y) = an+1(x)bn(y)h(x, y),

where for any x, y ∈ Rd

an+1(x) = (dν0/dµ0)(x)
(∫

Rd h(x, y)bn(y)dµ1(y)
)−1

,

bn+1(x) = (dν1/dµ1)(y)
(∫

Rd h(x, y)an+1(x)dµ0(x)
)−1

.

We now turn to the proof of the Proposition S37.

Proof. Let α ∈ (0, 1) and β > 1. We have for any x, y ∈ Rd

(dν0/dµ0)(x) = exp[(1− β2 −α2)‖x‖2]/C2, (dν1/dµ1)(y) = exp[(1− β2 −α2)‖y‖2]/C2,

with C2 = C1/C0 with C1 = πd/2βd/2. For any x ∈ Rd and γ ≥ 0 we have

(dν0/dµ0)(x)
(∫

Rd exp[−γ ‖y‖2]h(x, y)dµ1(y)
)−1

= (C0C2)−1C exp[(1− β2 − α2) ‖x‖2]
(∫

Rd exp[−γ ‖y‖2 − ‖y − αx‖2]dy
)−1

= (C0C2)−1C exp[(1− β2 − α2) ‖x‖2]

×
(∫

Rd exp[−(γ + 1) ‖y − α/(γ + 1)x‖2 − α2(1− 1/(γ + 1)) ‖x‖2]dy
)−1

= (C0C2)−1C exp[(1− β2 − α2 + α2γ/(γ + 1)) ‖x‖2]

×
(∫

Rd exp[−(γ + 1) ‖y − α/(γ + 1)x‖2]dy
)−1

= (C0C2C̃γ)−1C exp[(1− β2 − α2/(γ + 1)) ‖x‖2],

with C̃γ = πd/2(1 + γ)−d/2. Note that a0 = b0 = 1. Let n ∈ N and assume that for any y ∈ Rd

bn(y) = exp[−γ2n ‖y‖2]/C2n with γ2n ≥ 0 and C2n > 0 then we have for any x ∈ Rd

an+1(x) = (C0C2C̃γ2n)−1CC2n exp[−(1−β2−α2/(γ2n+1)) ‖x‖2] = exp[−γ2n+1 ‖x‖2]/C2n+1,

with
γ2n+1 = β2 − 1 + α2/(γ2n + 1), (C0C2C̃γ2n)/(CC2n) = C2n+1. (S69)

Similarly, if we assume that for any x ∈ Rd an+1(x) = exp[−γ2n+1 ‖x‖2]/C2n+1 with γ2n+1 ≥ 0
and C2n+1 > 0 then we have for any y ∈ Rd

bn+1(y) = (C0C2C̃γ2n+1
)−1(CC2n+1) exp[−(1− β2 − α2/(γ2n+1 + 1)) ‖y‖2]

= exp[−γ2n+2 ‖y‖2]/C2n+2,

with

γ2n+2 = β2 − 1 + α2/(γ2n+1 + 1), (C0C2C̃γ2n+1
)/(CC2n+1) = C2n+2.

Combining this result, (S69) and using the recursion principle we get that for any n ∈ N

an+1(x) = exp[−γ2n+1 ‖x‖2]/C2n+1, bn+1(y) = exp[−γ2n+2 ‖y‖2]/C2n+2.

The recursion can be extended to a0 and b0 by setting γ−1 = γ0 = 0 and C−1 = C0 = 1. Therefore,
for any n ∈ N we have

γn+1 = β2 − 1 + α2/(γn + 1). (S70)
We now study the convergence of the sequence (γn)n∈N. By recursion, we have that for any k, ` ∈ N,
if γk ≥ γ` then for any m ∈ N with m even we have γm+k ≥ γm+` and for any m ∈ N with m odd
we have γm+k ≤ γm+`. We have γ0 = 0 and

γ1 = β2 + α2 − 1, γ2 = β2 − 1 + α2/(β2 + α2). (S71)

We divide the rest of the proof into three parts.
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(a) First assume that β2 > 1− α2. Using (S71) we have that γ1 > γ0 and γ2 > γ0. Therefore, we
obtain that (γ2n)n∈N is non-decreasing, that (γ2n+1)n∈N is non-increasing and that for any n ∈ N,
0 ≤ γ2n ≤ γ2n+1 ≤ γ1. Therefore, (γn)n∈N converges and we denote γ? its limit. We have
γ? = β2 − 1 + α2/(γ? + 1). Hence, γ? is a root of X2 + (2− β2)X + 1− α2 − β2. We get that
γ? = γ?0 or γ? = γ?1 with

γ?0 = β2/2− 1− (1/2)(β4 + 4α2)1/2, γ?1 = β2/2− 1 + (1/2)(β4 + 4α2)1/2,

γ?0 , γ
?
1 are non-decreasing function of β. We get that for any β ≥ 0 such that β2 ≥ 1− α2, γ?0 ≤ 0.

In addition, we have γ?1 = 0 for β2 = 1− α2, hence for any β ≥ 0 such that β2 ≥ 1− α2, γ?1 ≥ 0.
Since γ? ≥ 0 we have

γ? = −1 + β2/2 + (1/2)(β4 + 4α2)1/2. (S72)

For any n ∈ N, denote ξn = γn − γ? and τ = γ? + 1. Let ε > 0. Since limn→+∞ ξn = 0, there
exists n0 ∈ N such that |ξn| /τ ≤ ε. Using (S70), we obtain that for any n ∈ N

|ξn+1| = α2|1/(γn + 1)− τ−1| = (α2/τ)|1− (ξn/τ + 1)−1| ≤ (α/τ)2|ξn|/(1− ε).

Hence, we get that for any ε ∈ (0, 1), there exists Cε > 0 such that for any n ∈ N

|ξn| ≤ Cεκn, κ = (α/(τ(1− ε)1/2))2.

Note that τ > α using (S72) and κ ∈ (0, 1) if ε < 1− α/τ .

For any n ∈ N and x, y ∈ Rd we have

Φn(x, y) = an+1(x)bn+1(y) = exp[−γ2n+1 ‖x‖2 − γ2n+2 ‖y‖2]/(C2n+1C2n+2)

= exp[−γ2n+1 ‖x‖2 − γ2n+2 ‖y‖2]/(C̃C̃γ2n+1
),

with C̃ = C0C2/C. Therefore we obtain that for any x, y ∈ Rd, Φ?(x, y) = limn→+∞ Φn(x, y)
exists and we have

Φ?(x, y) = exp[−γ? ‖x‖2 − γ? ‖y‖2]/(C̃C̃γ?).

Using this result we get that for any x, y ∈ Rd

(dπ2n/dπ?)(x, y) = exp[−ξ2n+1 ‖x‖2 − ξ2n+2 ‖y‖2]Cγ?/Cγ2n+1

= exp[−ξ2n+1 ‖x‖2 − ξ2n+2 ‖y‖2] {(1 + γ2n+1)/(1 + γ?)}−d/2

= exp[−ξ2n+1 ‖x‖2 − ξ2n+2 ‖y‖2] {1 + ξ2n+1/(1 + γ?)}−d/2 .

Therefore we have for any x, y ∈ Rd

log
(
(dπ2n/dπ?)(x, y)

)
≤ |ξ2n+1| ‖x‖2 + |ξ2n+2| ‖y‖2 + (d/2) |log (1 + ξ2n+1/(1 + γ?))|
≤ |ξ2n+1| ‖x‖2 + |ξ2n+2| ‖y‖2 + (d/2) |ξ2n+1| .

Therefore we obtain that for any n ∈ N

KL(π?|πn) ≤ (d/2)(β−2 |ξ2n+1|+ β−2 |ξ2n+2|+ |ξ2n+1|).

A similar inequality holds for KL(π?|πn). Therefore we get that for any ε ∈ (0, 1− α/τ) there
exists Cε ≥ 0 such that for any n ∈ N we have

KL(π?|πn) ≤ Cεκ2n
ε ,

with

κε = α/(τ(1− ε)1/2) = (2α)/((β2 + (β4 + 4α2)1/2)(1− ε)1/2)

≤ ρ/((1 + (1 + ρ2)1/2)(1− ε)1/2).

Let ε < 1− (1 + ρ)/(1 + (1 + ρ2)1/2). Then we get that κε ≤ κ which concludes the first part of
the proof.

(b) If β2 = 1− α2 then the IPF is stationary since the IPF leaves µ invariant.
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(c) Finally we assume that β2 < 1−α2. Using (S71) we have that γ1 < γ0 and γ2 < γ0 since β2 <
1 − α2. Therefore, we obtain that (γ2n)n∈N is non-increasing, that (γ2n+1)n∈N is non-decreasing
and that for any n ∈ N, 0 ≥ γ2n ≥ γ2n+1 ≥ γ1. Therefore, (γn)n∈N converges and we denote γ? its
limit. We have γ? = β2 − 1 + α2/(γ? + 1). Hence, γ? is a root of X2 + (2− β2)X + 1− α2 − β2.
We recall that the two roots of this polynomial are given by

γ?0 = β2/2− 1− (1/2)(β4 + 4α2)1/2, γ?1 = β2/2− 1 + (1/2)(β4 + 4α2)1/2.

We have

γ1 − γ?0 = β2 + α2 − 1− β2/2 + 1− (1/2)(β4 + 4α2)1/2

= (1/2)(β2 + 2α2 − (β4 + 4α2)1/2) ≥ 0.

Since γ3 > γ1 we get that for any n ∈ N with n ≥ 3, γn ≥ γ3 > γ?0 . Therefore γ? > γ?0 and then
γ? = γ?1 . The rest of the proof is similar to the case where β2 > 1− α2.

S7.2 Convergence to ground-truth

In this section, we provide an analytic form for the Schrödinger bridge in a Gaussian context. Let
ν0 be the d dimensional Gaussian distribution with mean −a (with a ∈ Rd) and covariance matrix
I ∈ Rd×d. Similarly, let ν1 be the one-dimensional Gaussian distribution with mean a and covariance
matrix I. We consider the reference distribution π0 such that π0

0 = ν0 and for any x, y ∈ Rd

(dπ0
1|0/dλ)(x, y) = (2π)−d/2 exp[−‖x− y‖2/2],

where λ denotes the Lebesgue measure on R. Note that π0
1|0 can be obtained by running a d-

dimensional Brownian motion up to time 1. We consider the following Schrödinger bridge problem

π? = arg min{KL(π|π0) : π ∈P(R2d), π0 = ν0, π1 = ν1}. (S73)
Before giving the analytic solution of the SB problem we consider the following algebraic lemma.
Lemma S39. Let A ∈ Rd×d and

M =

(
I A
A> I

)
, MS =

(
I (A+A>)/2

(A+A>)/2 I

)
,

such that M is symmetric and positive semi-definite. Then det(M) ≤ det(MS).

Proof. Let Mup = M and Mdown =

(
I A>

A I

)
. Since Mup is symmetric and real-valued, Mup is

diagonalizable. Let x, y ∈ Rd and θ ≥ 0 such that MupX = θX with X = (x, y). Let Y = (y, x).
We have MdownY = θY . Hence Mdown is symmetric, positive semi-definite and det(Mup) =
det(Mdown). Hence using that M 7→ log(det(M)) is concave on the space of symmetric positive
semi-definite matrices we get that det(Mup) ≤ det((Mup + Mdown)/2) = det(MS), which
concludes the proof.

Proposition S40. The solution to (S73) exists and π? is a Gaussian distribution with mean m ∈ R2d

and covariance matrix Σ ∈ R2d×2d where

m = (−a, a), Σ =

(
I βI
βI I

)
,

where β = (−1 +
√

5)/2 and I is the d-dimensional identity matrix.

Proof. The fact that π? exists and is Gaussian is similar to Proposition S37. π? has mean m since
π?i = νi for i ∈ {0, 1}. Similarly, we have that Σ00 = Σ11 = I since π?i = νi for i ∈ {0, 1}. We
have that π0 admits a density p0 with respect to the Lebesgue measure such that for any x, y ∈ R we
have

p0(x, y) ∝ exp[−(1/2){2 ‖x‖2 + ‖y‖2 + 2〈a, x〉 − 2〈x, y〉+ ‖a‖2}].
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Hence π0 is a Gaussian distribution with mean m0 and covariance matrix Σ0 where

m0 = (−a,−a), Σ0 =

(
I I
I 2I

)
.

The Kullback–Leibler divergence between a Gaussian distribution π, with mean m̃ and covariance
matrix Σ̃, and π0, with mean m0 and covariance Σ0 is given by

KL(π|π0) = (1/2){log(det(Σ0)/det(Σ̃))− d+ Tr(
(
Σ0
)−1

Σ̃) + (m̃−m0)>
(
Σ0
)−1

(m̃−m0)}.

Assume that m̃ = (−a, a) and Σ̃ =

(
I S
S> I

)
with S ∈ Rd×d such that Σ̃ is positive semi-definite .

Then we have
KL(π|π0) = (1/2){− log(det(Σ̃))− 2 Tr(S) + C},

where C ≥ 0 is a constant which does not depend on Σ. In what follows, let Σ̃′ =(
I (S + S>)/2

(S + S>)/2 I

)
and denote π the distribution with mean m̃ and covariance matrix Σ̃′.

Using Lemma S39 we have

KL(π′|π0) = (1/2){− log(det(Σ̃′))− 2 Tr(S) + C}
≤ (1/2){− log(det(Σ̃))− 2 Tr(S) + C} = KL(π|π0).

Hence, we can assume that S = S> and therefore (since S is real-valued), S is diagonalizable. Let
{λi}di=1 the eigenvalues of S. Using Schur complements (Petersen et al., 2008, Section 9.1.2) we
have

det(Σ̃) = det(I− S2) = det(I− S) det(I + S) =
∏d
i=1(1− λ2

i ).

Therefore we have that for any λ ∈ (0, 1)

KL(π|π0) = (1/2)
∑d
i=1 f(βi) + C, f(λ) = − log(1− λ2)− 2λ.

Hence we get that Σ0,1 = βI with β = arg minI f , where I = (−1, 0) ∪ (0, 1). We have that
f ′(β) = 0 if and only if β = (−1 +

√
5)/2 or β = −(1 +

√
5)/2. We conclude the proof using that

β ∈ I .

S8 Continuous-time Schrödinger bridges

In this section, we prove Proposition 6 in Section S8.1 and draw a link between the potential approach
to Schrödinger bridges and DSB in continuous time in Section S8.2.

S8.1 Proof of Proposition 6

We recall the continuous Schrödinger problem is given by

Π? = arg min {KL(Π|P) : Π ∈P(C), Π0 = pdata, ΠT = pprior} , T =
∑N−1
k=0 γk+1. (S74)

In this section, we prove Proposition 6. We start with the following property which can be found
in (Léonard, 2014b, Proposition 2.3, Proposition 2.10) and establishes basic properties of dynamic
continuous Schrödinger bridges.
Proposition S41. The solution to (S74) exists if and only if the solution to the static Schrödinger
bridge exists. In addition, if the solution exists and P is Markov then the Schrödinger bridge is
Markov.

We now turn to the proof of Proposition 6. First we highlight that (Πn)n∈N is well-defined since
its static counterpart (πn)n∈N is well-defined using Proposition S26. We only prove that for any
n ∈ N, (Π2n+1)R is the path measure associated with the process (Y2n+1

t )t∈[0,T ] such that Y2n+1
0

has distribution pprior and satisfies

dY2n+1
t = bnT−t(X

2n+1
t )dt+

√
2dBt.
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The proof for Π2n+2 is similar. Let n ∈ N and assume that Π2n is the path measure associated with
the process (X2n

t )t∈[0,T ] such that X2n
0 has distribution pdata and satisfies

dX2n
t = fnt (X2n

t )dt+
√

2dBt.

We have that
Π2n+1 = arg min

{
KL(Π|Π2n) : Π ∈P(C), ΠT = pprior

}
.

Let φ = projT such that for any ω ∈ C, projT (ω) = ωT . Using Proposition S18 we get that for any
Π ∈P(C) we have

KL(Π|Π2n) = KL(ΠT |Π2n
T ) +

∫
Rd KL(K(x, ·)|K2n(x, ·))dΠT (x),

where K and K2n are the disintegrations of Π and Π2n with respect to φ. Therefore, we get that
Π2n+1 = ppriorK

2n. Since KL(Π2n|Q) < +∞ and Π2n is Markov, Using (Cattiaux et al., 2021,
Theorem 4.9) we get that (Π2n)R = ΠTK2n satisfies the martingale problem associated with the
diffusion

dY2n
t =

{
−fnT−t(Y2n

t ) + 2∇ log pnT−t(Y
2n
t )
}

dt+
√

2dBt. (S75)

Since Π2n+1 = ppriorK
2n we get that Π2n+1 also satisfies the martingale problem associated with

(S75) and is Markov which concludes the proof by recursion.

S8.2 IPF in continuous time and potentials

First, we recall that the IPF (Πn)n∈N with Π0 = P associated with (6) and for any n ∈ N

Π2n+1 = arg min
{

KL(Π|Π2n) : Π ∈P(C), ΠT = pprior
}
,

Π2n+2 = arg min
{

KL(Π|Π2n+1) : Π ∈P(C), Π0 = pdata
}
.

In this section, we draw a link between our time-reversal approach and the potential approach in
continuous time. More precisely, we explicit an identity between the two in Proposition S42.
Proposition S42. Assume A1 and that there exist M ∈P(C), U ∈ C1(Rd,R), C ≥ 0 such that for
any n ∈ N, x ∈ Rd, KL(Πn|M) < +∞, 〈x,∇U(x)〉 ≥ −C(1 + ‖x‖2) and M is associated with

dXt = −∇U(Xt)dt+
√

2dBt,

with X0 distributed according to the invariant distribution of (14). For any n ∈ N, let
{ϕn,?t , ϕn,◦t }Tt=0 such that for any t ∈ [0, T ], ϕn,?T : Rd → R, ϕn,◦0 : Rd → R, for any x0, xT ∈ Rd

ϕ?,nT (xT ) = pprior(xT )/pnT (xT ), ϕ◦,n0 (x0) = pdata(x0)/pn+1
0 (x0),

and for any t ∈ (0, T ) and xt ∈ Rd

ϕ?,nt (xt) =
∫
ϕ?,nT (xT )pnT |t(xT |xt)dxT , ϕ◦,n+1

t (x) =
∫
ϕ◦,n+1

0 (x0)qn0|t(x0|xt)dx0.

We have for any n ∈ N, t ∈ [0, T ] and xt ∈ Rd

qnt (xt) = pnt (xt)ϕ
?,n
t (xt), pn+1

t (xt) = qnt (xt)ϕ
◦,n
t (xt). (S76)

In particular, for any n ∈ N we have

(a) (Π2n+1)R is associated with dY2n+1
t = bnT−t(Y

2n+1
t )dt+

√
2dBt with Y2n+1

0 ∼ pprior;

(b) Π2n+2 is associated with dX2n+2
t = fn+1

t (X2n+2
t )dt+

√
2dBt with X2n+2

0 ∼ pdata;

with for any x ∈ Rd and t ∈ (0, T )

fnt (x) = f(x) + 2
∑n
k=1∇ logϕ?,nt (x), bnt (x) = −f(x) +∇ log p0

t (x) + 2
∑n
k=1∇ logϕ◦,nt (x).

(S77)

Proof. We only prove that (S76) holds. Then (S77) is a direct consequence of (S76) and Proposition 6.
Let n ∈ N. Similarly to the proof of Proposition S20, there exists ϕ?,nT : Rd → R+ such that for any
{ωt}Tt=0 ∈ C we have

(dΠ2n+1/dΠ2n)({ωt}Tt=0) = ϕ?,nT (ωT ). (S78)
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Note that as in Proposition 6, that for any s, t ∈ [0, T ], Π2n+1
s,t admits a positive density w.r.t the

Lebesgue measure denoted qns,t and Π2n
s,t admits a positive density w.r.t the Lebesgue measure denoted

pns,t. Combining this result and (S78), we get that for any t ∈ [0, T ] and xt, xT ∈ Rd we have

qnt,T (xt, xT ) = pnt,T (xt, xT )ϕ?,nT (xT ).

We have that for any t ∈ [0, T ]

qt(xt) = pnt (xt)
∫
ϕ?,nT (xT )pnT |t(xT |xt)dxT = pnt (xt)ϕ

?,n
t (xt).

The proof for that for any n ∈ N, t ∈ [0, T ] and xt ∈ Rd, pn+1
t (xt) = qnt (xt)ϕ

◦,n
t (xt), is similar.

The link between the two formulations is explicit in (S76). Then, (S77) is a straightforward conse-
quence of (S76) and should be compared with Section S8.1. Another proof of Proposition S42 make
use of a generalization of (S76) to joint densities and use the fact that for any n ∈ N, Πn+1 is a Doob
h-transform of Πn (see (Rogers and Williams, 2000, Paragraph 39.1) for a definition). Note that this
relationship between the potential and the density of the half-bridge is not new. In particular, a similar
version of this equation can be found in Bernton et al. (2019). In Finlay et al. (2020), the authors
establish a similar relationship in the case of the full Schrödinger bridge.

S8.3 Likelihood computation for Schrödinger bridges

We provide here details on the likelihood computation of generative models obtained with Schrödinger
bridges. Under the conditions of (Léonard, 2011, Theorem 4.12), we define (X?

t )t∈[0,T ] the diffusion
associated with Π?, see (S74) as well as its time reversal, (Y?

t )t∈[0,T ]. There exist f?, b? : [0, T ]×
Rd → Rd such that (X?

t )t∈[0,T ] and (Y?
t )t∈[0,T ] are weak solutions to the following SDEs

dX?
t = f?t (X?

t )dt+
√

2dBt, dY?
t = b?T−t(Y

?
t )dt+

√
2dBt.

We assume that for any t ∈ [0, T ] there exists p?t : Rd → R+ such that for any x ∈ Rd,
(dΠ?

t /dλ)(x) = p?t (x). In addition, we assume that p? ∈ C∞([0, T ] × Rd,R+). In this case,
we have that Π? is also associated with the process (X̃?

t )t∈[0,T ] associated with the ODE

dX̃?
t = {f?t (X̃?

t )− 2∇ log p?t (X̃
?
t )}dt,

and X̃?
T has distribution pprior; see e.g. (Song et al., 2021, Section A). Since (Y?

t )t∈[0,T ] is the
time-reversal of (X?

t )t∈[0,T ] we have that for any t ∈ [0, T ] and x ∈ Rd

b?t (x) = −f?t (x) + 2∇ log p?t (x).

Therefore, we get that (X̃?
t )t∈[0,T ] is associated with the ODE

dX̃?
t = −b?t (X̃?

t )dt. (S79)
Using this result we can compute the log-likelihood of the model using the instantaneous change of
variable formula (Chen et al., 2018), see also (Song et al., 2021, Appendix D.2)

log pdata(X̃
?
0) = log pprior(X̃

?
T )−

∫ T
0

div(b?t )(X̃
?
t )dt . (S80)

As in Song et al. (2021), we can use the Skilling–Hutchinson trace estimator to compute the divergence
operator Skilling (1989); Hutchinson (1989). In practice, we discretize the dynamics of (X̃?

t )t∈[0,T ]

and use the network Bβn obtained with the last iterate of Algorithm 1 and solve the ODE backward
in time, recalling that X̃?

T has distribution pprior. Similarly, we can define

dỸt = {b?T−t(Ỹ?
t )− 2∇ log p?T−t(Ỹ

?
t )}dt,

and Y?
0 has distribution pprior. Similarly to (S79), we get that (Ỹ?

t )t∈[0,T ] is associated with the ODE

dỸt = −f?T−t(Ỹ?
t )dt.

Similarly to (S81), we have

log pdata(Ỹ
?
T ) = log pprior(Ỹ

?
0) +

∫ T
0

div(f?T−t)(Ỹ
?
t )dt . (S81)

In practice, we discretize the dynamics of (Ỹ?
t )t∈[0,T ] and use the network Fαn obtained with the

last iterate of Algorithm 1 and solve the ODE forward in time, recalling that Ỹ?
0 has distribution pprior.

Note that in this case, we solve the ODE forward in time contrary to Durkan and Song (2021).
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S9 Training Techniques

In this section we present some practical guidelines for the implementation of DSB, based on
Algorithm 1. We emphasize that, contrarily to previous approaches Song et al. (2021); Song and
Ermon (2020); Ho et al. (2020); Dhariwal and Nichol (2021), we do not weight the loss functions as
we do not notice any improvement. Let I ⊂ {0, N − 1} × {1,M}. We define the generalized losses
ˆ̀b
n,I and ˆ̀f

n,I given by
ˆ̀b
n,I(β) = M−1

∑
(k,j)∈I ‖Bβ(k + 1, Xj

k+1)− (Xj
k+1 + Fnk (Xj

k+1)− Fnk (Xj
k))‖2, (S82)

ˆ̀f
n+1,I(α) = M−1

∑
(k,j)∈I ‖Fα(k,Xj

k)− (Xj
k +Bnk+1(Xj

k+1)−Bnk+1(Xj
k))‖2. (S83)

We first describe three techniques to compute these losses, then further methods to improve perfor-
mance.

Technique 1. Simulated Trajectory

The losses (S82) and (S83) may be computed by simulating diffusion trajectories as described in
Algorithm 1. For each sample j ∈ {1, . . . ,M} the skeleton of points in the sampled trajectory,
{Xj

k}k, will be correlated hence only a single uniformly sampled time-step per sample is used to
compute the loss per gradient step. In addition, after the initial DSB iteration, simulating the diffusion
trajectory involves computationally heavy neural network operations per diffusion step.

Technique 2. Closed Form Sampling

Since f0
α(x) = −αx, with fixed α, it is not necessary to compute full trajectories for the first IPF

iteration and one may sample points along the trajectory in closed-form by sampling from a Gaussian
distribution with appropriate mean and covariance. This technique also improves the computational
speed of the first DSB iteration.

Technique 3. Cached Trajectory

After the initial DSB iterations it is not possible perform closed form sampling as per Technique 2.
Simulating the full diffusion trajectory is both wasteful and expensive as described in Technique 1.
In order to obtain a speed-up we consider a cached-version of Algorithm 1 given by Algorithm 2
which entails storing and then resampling diffusion trajectories. Resampled trajectories are then used
to compute losses (S82) and (S83). The cache may be refreshed at a certain frequency by once again
simulating the diffusion. One may tune the cache-size and refresh frequency to available memory.
This modification allows for significant speed-up as the trajectories are not simulated at each training
iteration.

Technique 4. Tune Gaussian Prior mean/ variance

The convergence of the IPF is affected by the mean and covariance matrix of the target Gaussian. In
Section S10.1 we investigate possible choices for these values. In practice we recommend to choose
the variance of the Gaussian prior pprior to be slightly larger than the one of the target dataset and to
choose the mean of pprior to be equal to the one of the target dataset. This remark is in accordance
with (Song and Ermon, 2020, Technique 1).

Technique 5. Network Refinement / Fine Tuning

Training large networks from scratch, per DSB iteration, is very expensive. However, from (S49)-
(S50),

bnk+1(x) = bn−1
k+1(x) + 2∇ log pnk+1(x)− 2∇ log qn−1

k (x),

fnk (x) = fn−1
k (x) + 2∇ log qn−1

k (x)− 2∇ log pn−1
k+1(x).

One may therefore initialize networks at DBS iteration n from n − 1 in order to reduce training
time. In future work, we plan to investigate more sophisticated warm-start approaches through
meta-learning.

Technique 6. Exponential Moving Average

Similar to (Song and Ermon, 2020, Technique 5), we found taking the exponential moving average of
network parameters across training iterations, with rate 0.999, improved performance.
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Algorithm 2 Cached Diffusion Schrödinger Bridge

1: for n ∈ {0, . . . , L} do
2: while not converged do
3: Sample and store {Xj

k}
N,M
k,j=0 where Xj

0 ∼ pdata and
Xj
k+1 = Xj

k + γk+1fαn(k,Xj
k) +

√
2γk+1Z

j
k+1

4: while not refreshed do
5: Sample I (uniform in {0, N − 1} × {1,M})
6: Compute ˆ̀b

n,I(β
n) using (S82)

7: βn = Gradient Step(ˆ̀b
n,I(β

n))
8: end while
9: end while

10: while not converged do
11: Sample {Xj

k}
N,M
k,j=0, where Xj

N ∼ pprior, and
Xj
k = Xj

k+1 + γkbβn(k,Xj
k) +

√
2γk+1Z

j
k

12: while not refreshed do
13: Sample I (uniform in {0, N − 1} × {1,M})
14: Compute ˆ̀f

n+1,I(α
n+1) using (S83)

15: αn+1 = Gradient Step(ˆ̀f
n+1,I(α

n+1))
16: end while
17: end while
18: end for
19: Output: (αL+1, βL)

S10 Additional Experimental Results and Details

We provide additional examples for the two-dimensional setting in Section S10.1. We then turn to
higher dimensional generative modeling in Section S10.2. Finally, we detail our dataset interpolation
experiments in Section S10.3. Code is available here: .

S10.1 Two-dimensional experiments

In the case of two-dimensional distributions we use a simple architecture for the networks fα and bβ ,
see Figure S2. We use the variational formulation Section S5.2.2 because our network architecture
does not have a residual structure. To optimize our networks we use ADAM Kingma and Ba (2014)
with momentum 0.9 and learning rate 10−4.

OutputMLPBlock (2)ConcatenateMLPBlock (1a)

MLPBlock (1b)PositionalEncoding

x

k

Figure S2: Architecture of the networks used in the two-dimensional setting. Each MLP Block is a
Multilayer perceptron network. The “PositionalEncoding” block applies the sine transform described
in Vaswani et al. (2017). MLPBlock (1a) has shape (2, 16, 32), MLPBlock (1b) has shape (1, 16, 32)
and MLPBlock has shape (64, 128, 128, 2). The total number of parameters is 26498.

In all two-dimensional experiments we fix γk = 10−2 and use a batch size of 512. The mean and
variance of pprior are matched to those of pdata. The cache contains 104 samples and is refreshed every
103 iterations. We train each DSB step for 104 iterations. All two-dimensional experiments are run
on Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz CPUs.

In Figure S3 we present additional two-dimensional experiments.

We found that the variance of pprior has an impact on the convergence speed of DSB, see Figure S4 for
an illustration. This remark is in accordance with (Song and Ermon, 2020, Technique 1). In practice
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Figure S3: The first row corresponds to iteration 1 of DSB, the second to iteration 3 of DSB, the third
to iteration 5 of DSB and the last to iteration 20 of DSB.

we recommend to set the variance to be larger than the variance of the target dataset, see Technique 4
in Section S9.

(a) pprior (b) DSB iteration 5 (c) pprior (d) DSB iteration 5

Figure S4: Effect of the variance of pprior on the convergence of DSB. If pprior has a small variance
σ2 (here σ2 = 5 in (a) and (b)) then DSB converges more slowly. If σ2 ≈ σ2

data, where σ2
data is the

variance of pdata then we observe more diversity in the samples obtained using DSB even for few
iterations.

Figure S5: Failure of DSB for low N . DSB iteration 3 with N = 2 and 30, 000 training steps per
DSB iteration. The results deteriorate significantly after 5 iterations of the algorithm.

Finally, since DSB does not require the number of Langevin iterations N to be large, one may
question why not use N = 1 in order to derive a feed-forward generative model. In practice this
choice of N is not desirable for two reasons. (a) Firstly, since pN is not a good approximation of
pprior, theoretical results such as (Léger, 2020, Corollary 1) indicates that more IPF iterations are
needed. (b) Second, in our experiments we observe that in order to obtain similar results to N = 10
with N = 1 we need to substantially increase the size of the networks, even for a large number of
IPF iterations, see Figure S5.
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S10.2 Generative Modeling

Implementation details We use a reduced version of the U-net architecture from Nichol and
Dhariwal (2021) for Fα and Bβ , where we set the number of channels to 64 rather than 128 for
computational resource purposes. We tried the architecture of Song and Ermon (2020), however we
observed worse results in our framework. Although we observed improvement using the corrector
scheme of Song et al. (2021), this improvement was similar to augmenting the number of steps in
the Langevin scheme. We therefore chose to avoid using such techniques altogether because of the
increase in computing time when sampling, often by doubling the number of passes through the
network.

We chose the sequence {γk}Nk=0 to be invariant by time reversal, i.e. for any k ∈ {0, . . . , N},
γk = γN−k. In practice, we assume that N is even and let γk = γ0 + (2k/N)(γ̄ − γ0) for
k ∈ {0, . . . , N/2} with γ0 = 10−5 and γ̄ = 10−1. The rest of the sequence is obtained by symmetry.

In the case of the MNIST dataset (dimension d = 28× 28 = 784) we set the batch size to 128, the
number of samples in the cache to 5× 104 with 10 time-points sampled from each trajectory for each
sample of pdata. We end up with an effective cache of size 5× 105. The cache is refreshed each 103

iterations and the networks are trained for 5× 103 iterations. Again we use the ADAM optimizer
with momentum 0.9 and learning rate 10−4. pprior is a Gaussian density with zero mean and identity
covariance matrix. We have presented results for varying number of diffusion steps, N .

In the case of the CelebA dataset (dimension d = 32 × 32 × 3 = 3072) we set the batch size to
256, number of steps N = 50, the number of samples in the cache to 250 with 1 time-point sampled
from each trajectory for each sample of pdata. The cache is refreshed each 102 iterations and the
networks are trained for 5× 103 iterations. Again we use the ADAM optimizer with momentum 0.9
and learning rate 10−4. pprior is a Gaussian density with zero mean and identity covariance matrix.

Our results on MNIST and CelebA are computed using up to 4 NVIDIA Tesla V100 from the Google
Cloud Platform.

Additional examples In this section we present additional examples for our high-dimensional
generative modeling experiments. In Figure S6 we perform interpolation in the latent space. More
precisely we letX0

N andX1
N be two samples from pprior. We then computeXλ

N = (1−λ)X0
N +λX1

N

for different values of λ ∈ [0, 1]. For each value of λ ∈ [0, 1] we associate Xλ
0 which corresponds to

the output sample obtained using the generative model given by DSB with final condition Xλ
N . Note

that in order to obtain a deterministic embedding we fix the Gaussian random variables used in the
sampling. One could also have used the deterministic embedding used by Song et al. (2021), i.e. a
neural ordinary differential equation that admits the same marginals as the diffusion thus enabling
exact likelihood computation, see Section S8.3 for details.

Figure S6: Interpolation in the latent space for MNIST.

In Figure S7 we present high quality samples for MNIST. In order to obtain these high quality
samples we consider our baseline MNIST configuration but instead of choosing N = 10 time steps
we consider N = 30. In addition, we train the networks for 15× 103 iterations instead of 5× 103.
The number of samples in the cache is M = 500

In Figure S8 we present a temperature scaling exploration of the embedding obtained for CelebA.
Similarly to the interpolation experiment we fix the Gaussian random variables in order to obtain a
deterministic mapping from the latent space to the image space.

In Figure S9 we explore the latent space of our embedding of CelebA. To do so, we obtain samples
using a Ornstein-Ulhenbeck process targeting pprior. We refer to our project page project webpage for
an animated version of this latent space exploration.
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Figure S7: MNIST samples: original dataset (left) and generated MNIST samples (right) after 12
DSB iterations

Figure S8: Temperature scaling in the latent space.

Figure S9: Exploration of the latent space. Samples are generated using a Ornstein-Ulhenbeck
process targeting pprior to obtain the initial condition then using the generative model given by DSB.
From left to right to right: samples at time t = 0, 1.3, 3.6, 8.6.
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S10.3 Dataset interpolation

For the dataset interpolation task we keep the same parameters and architecture as before except that
the number of Langevin steps is increased to 50 steps in the two-dimensional examples and to 30
steps in the EMNIST/MNIST interpolation task. We also change the reference dynamics which is
chosen to be the one obtained with the DSB where pprior is a Gaussian. This choice allows us to speed
up the training of DSB in this setting. Animated plots are available at project webpage.

EMNIST/MNIST In order to perform translation between the dataset of handwritten letters (EM-
NIST) and handwritten digits (MNIST) we reduce EMNIST to 5 letters so that it contains as many
classes as MNIST (we distinguish upper-case and lower-case letters), see Cohen et al. (2017) for the
original dataset.

Figure S10: Iteration 10 of the IPF with T = 1.5 (30 diffusions steps). From left to right: t =
0, 0.4, 1.25, 1.5.

Two dimensional examples We present interpolation for a number of classical two-dimensional
datasets.

Figure S11: Dataset interpolation (DSB iteration 9). From left to right: t = 0, 0.15, 0.30, 0.5.
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