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Abstract

In facial expression recognition (FER), the uncertainties introduced by inher-
ent noises like ambiguous facial expressions and inconsistent labels raise con-
cerns about the credibility of recognition results. To quantify these uncertain-
ties and achieve good performance under noisy data, we regard uncertainty
as a relative concept and propose an innovative uncertainty learning method
called Relative Uncertainty Learning (RUL). Rather than assuming Gaussian
uncertainty distributions for all datasets, RUL builds an extra branch to learn
uncertainty from the relative difficulty of samples by feature mixup. Specif-
ically, we use uncertainties as weights to mix facial features and design an
add-up loss to encourage uncertainty learning. It is easy to implement and
adds little or no extra computation overhead. Extensive experiments show that
RUL outperforms state-of-the-art FER uncertainty learning methods in both real-
world and synthetic noisy FER datasets. Besides, RUL also works well on
other datasets such as CIFAR and Tiny ImageNet. The code is available at
https://github.com/zyh-uaiaaaa/Relative-Uncertainty-Learning.

1 Introduction

Although well-trained models can give high-confidence inferences directly, the inference results
may actually be wrong and cause serious consequences [22]. Therefore, the concept of uncertainty
is widely used in measuring how well the model trusts its inference results, which has become a
research hotspot in trustworthy machine learning [3, 11, 10, 22, 26, 16]. It is expected that a reliable
model assigns high level uncertainty to its erroneous predictions so that humans can intervene to
avoid lots of disasters. As described by Kiureghian et al. [25], the uncertainties in machine learning
can be split into aleatoric uncertainty and epistemic uncertainty, which are also called data uncertainty
and model uncertainty. In this paper, we focus on quantifying data uncertainty as model uncertainty
can be eliminated by introducing more training data. Concretely, data uncertainty in facial expression
recognition (FER) is mainly caused by ambiguous facial expressions and the subjectiveness of
annotators, which blocks the improvement of recognition performance [47].

Recent studies propose a variety of methods to solve the uncertainty learning problem in the face
recognition field. PFE [37] introduces a new branch to learn the uncertainty of face recognition and
recognizes faces by measuring the similarity between two Gaussian distributions. Chang et al. [4]
further propose DUL to learn feature and uncertainty simultaneously in order to improve facial feature
learning. When it comes to FER, SCN [47] uses a fully-connected layer to learn an importance weight
for each image and suppresses uncertainties according to the learned weights. However, the strong
learning ability of neural networks will deteriorate the uncertainty learning branch. One solution
is adding regularization to force the model to learn uncertainty, which needs to be tuned carefully,
otherwise, it would lead to underfitting. For example, SCN uses margin loss to keep the gap between
certain and uncertain images, but choosing a suitable gap value is non-trivial. DUL assumes features
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to follow a Gaussian distribution, but the real distribution of the dataset is not always following such
an assumption. Therefore, it is still a challenge to learn uncertainty distributions of real datasets
without deteriorating feature learning.

To address the problem, we perceive data uncertainty from a different point of view. We realize
that data uncertainty – the difficulty to classify a sample correctly is actually a relative concept.
More specifically, the difficulty of classification is a person’s subjective feeling that comes from
comparison. One can only know whether a sample is easy or not according to a reference. Inspired by
this idea, we propose an innovative method called Relative Uncertainty Learning (RUL) to help deep
learning models to learn uncertainty for each sample. Concretely, we build a new branch to model the
uncertainties of input images and utilize the uncertainties as weights to mix two features of different
labels. Through an add-up loss function, the model is encouraged to recognize two expressions
simultaneously from the mixed features, which enables the model to learn uncertainty comparatively
while minimizing the total loss. As discussed in Section 3.3, the uncertainty learning branch will
assign large uncertainty values to uncertain facial expression images while small uncertainty values
to certain images.

The main contributions of this work are as follows:

• We perceive uncertainty from a new perspective and propose an innovative uncertainty
learning method to learn uncertainty from the relative difficulty of two samples.

• We get state-of-the-art performance in both real-world and synthetic noisy FER datasets.

• RUL does not need prior knowledge of the dataset uncertainty distribution and can be easily
applied to different classification tasks with low computation cost.

2 Related Work

Uncertainty learning in the face field Uncertainties can be mainly categorized into model uncertainty
which accounts for uncertainty in the model parameters and data uncertainty which is the noise
inherent in the dataset [22]. In the face recognition field, uncertainty learning is important for learning
discriminative feature embeddings of noisy face images. Because noisy face images are usually out
of the cluster and have large variances in the latent embedding space, which might cause wrong
recognition [37]. There have been several proposals to solve the uncertainty learning problem in
face recognition tasks [13, 51, 23, 37, 4]. Some of them [13, 51, 23] have tried to analyze and
learn face representations using model uncertainty. Gong et al. [13] estimate the capacity of a
given face representation by explicitly accounting for the manifold structure, model uncertainty
and data variability. Khan et al. [23] present a framework for class imbalance learning based on
model uncertainty. Zafar et al. [51] cope with false positives through employing model uncertainty to
improve the efficacy of face recognition systems. Thereinto the methods considering data uncertainty
learning. Shi et al. [37] use PFE to learn a variance for each fixed feature and then measure the
likelihood of each positive face pair of (xi, xj) sharing the same distribution of latent embedding p(zi,
zj). Chang et al. [4] further propose to learn feature and uncertainty simultaneously by encoding the
latent feature embedding as a Gaussian distribution. In the facial expression recognition task, Wang
et al. [47] try to learn an attention weight for each image, then utilize it to weigh cross-entropy loss
in order to suppress the influence of noisy samples. She et al. [36] propose to use several branches to
model the latent label distribution of facial expression images and use cosine similarity to capture the
uncertain images.

Noisy dataset training With the enhancement of deep learning network capabilities, the datasets
for facial expression recognition (FER) are getting larger and larger. For the large-scale FER
datasets [43, 54, 7, 1, 33, 9, 27], due to the ambiguity of expressions and the subjectiveness of human
annotators, it is extremely hard to get high-quality labels. Training with label noise has been studied
for a long time. The basic idea is to enable the model to access the quality of the labels or estimate the
noise distribution using a small set of clean dataset [5, 28, 39, 45]. Li et al. [28] design a distillation
framework to use information from both a small clean dataset and label relations in knowledge
graphs to prevent the model learning from noisy labels. Veit et al. [45] use a small amount of clean
annotations to reduce the noisy samples before fine-tuning the network using both the clean set and
the full set. Other methods do not use a small clean dataset, but usually assume extra constraints on
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Figure 1: Overview of our Relative Uncertainty Learning method. We use two branches to learn
facial features µ and uncertainty vectors σ simultaneously. Then we normalize uncertainty vectors
with their counterparts sampled from shuffled indexes. We compute the mean of the uncertainty
vectors as the uncertainty values. Next, we mix the facial features according to the mean uncertainty
values. Note that the easy sample will get a small uncertainty value because its facial feature is very
obvious for recognition. In contrast, the ambiguous sample tends to get a large uncertainty value
in order to make it easy for the model to recognize its corresponding label from the mixed features.
Finally, we use the add-up loss to encourage the model to recognize the two expressions from the
mixed feature, which implicitly forces the model to learn reliable uncertainty values.

the noisy samples. Natarajan et al. [34] design a specific loss function for randomly flipped labels.
Goldberger et al. [12] explicitly model the noises in datasets by a softmax layer which connects the
correct labels to the noisy ones. Without collecting a clean set of dataset or using prior knowledge
of noise distribution, our method learns uncertainty through the relativity of the given dataset and
suppresses the most uncertain samples to get a good performance under label noise.

3 Proposed Method

In order to reduce the negative impact of the strong learning ability of neural networks and learn
uncertainty values closer to the real dataset uncertainty distribution, we propose a simple and effective
method named Relative Uncertainty Learning (RUL). In this section, we first provide the motivation
behind our method. Then we demonstrate the details of RUL. Finally, we explain why RUL is
effective in uncertainty learning.

3.1 Motivation

The uncertainty learning methods mentioned before suffer from the strong learning ability of deep
neural networks more or less. For example, the introduced variances in DUL are equivalent to some
noises being added to feature points, so the model will learn very small variances for all feature
points making the estimation of uncertainty less reliable. SCN also learns large importance weights
for noisy samples to obtain small cross-entropy loss values as these noisy images will be memorized
by the networks after training for several epochs.

In order to prevent the strong learning ability of neural networks from degrading the uncertainty
learning branch, we perceive uncertainty from a relative point of view. We find that learning
uncertainty through comparison forms a natural regularization because if the model assigns a very
small uncertainty value for one image of the comparison pair, then it means the counterpart image
gets a large uncertainty value which prevents the model learning small uncertainty values for all
images. Learning uncertainty through relativity also conforms to human cognition – it is very difficult
for a person to define which sample is certain and which sample is uncertain without using one image
as a reference. In the following section, we thoroughly illustrate the details of our proposed RUL.
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3.2 Overview of Relative Uncertainty Learning

In this section, we illustrate the structure of our proposed RUL. The pipeline of RUL is shown in
Figure 1.

Two Branches Model Given a batch of face images X , assuming the conventional feature extraction
module fθ(X) can be decomposed as

fθ(X) = f
(l)
θ (f

(l−1)
θ (X)), (1)

we first extract general facial features Fg from the penultimate feature extraction layer denoted as
Fg = f

(l−1)
θ (X) [50]. Then, in order to learn facial features and uncertainty values simultaneously,

we drop the layer indexed by l, i.e., f (l)
θ and build two separate branches fθµ

(f
(l−1)
θ (X)) and

fθσ (f
(l−1)
θ (X)) to produce facial features F = [µ1,µ2, ...,µN ] ∈ RD×N and uncertainty vectors

U = [σ1,σ2, ...,σN ] ∈ RD×N . D, N denote output dimension and batch size separately.

Relative Uncertainty Learning Inspired by the relativity of the uncertainty concept and the mixup
method [53, 42, 46], we mix two different facial features according to their uncertainty values which
enables the FER model to learn uncertainty through the relativity of different samples. First, we mix
a mini-batch with their shuffled ones which results in the facial images of the whole dataset being
compared with each other during the training process because of the randomness introduced by the
dataloader and the shuffle of mini-batches. Before mixing features, we first normalize the uncertainty
vectors element-wise to compare two features with each other following Equation (2)

σ̂i, σ̂j =
σi

σi + σj
,

σj

σi + σj
, (2)

σi and σj are the uncertainty vectors for image i and its counterpart image j sampled from the
shuffled indexes, note that they have different labels. This operation not only forms a natural
regularization as the model can not learn small uncertainty values for both features, but also benefits
the training process as extreme uncertainty values might make the training process unstable or even
the loss can not converge. As mentioned by DUL [4], the mean of the predicted uncertainty vectors
σ̂i ∈ RD can be viewed as an approximated measurement of the estimated uncertainty for image i,
we also use the mean of σ̂i as learned uncertainty value for image i denoted as σ̂imean ∈ R. Then we
get an uncertainty value for each input image denoted as U = [σ̂1mean , σ̂2mean , ..., σ̂Nmean ] ∈ R1×N .
We then mix features according to their uncertainty values following Equation (3)

µ̃ = σ̂imeanµi + σ̂jmeanµj , (3)

µi and µj represent embedding features of the two images, σ̂imean
and σ̂jmean

represent their
corresponding uncertainty values. We introduce negligible computation overhead as we only mix
facial features according to their learned uncertainty values in the training phase. Furthermore, the
mix feature part will be removed for deployment. Therefore, our network is end-to-end and adds no
extra cost on inference.

Classification Loss We design an add-up loss to encourage the uncertainty learning branch to learn
different uncertainty values for different facial images. Specifically, add-up loss requires the FER
model to recognize two expressions of input images simultaneously from mixed features. Since µ̃ is
the mixed feature, we feed µ̃ to the classifier:

Ltotal = − 1

N

N∑
i,j

(log
eWyi

µ̃∑C
c eWcµ̃

+ log
eWyj

µ̃∑C
c eWcµ̃

). (4)

The loss function adds up the loss of recognizing µ̃ as class i and as class j. yi, yi means labeli,
labelj , Wc is the c-th classifier and C means the total number of expression classes. The loss function
forces the model to recognize two expressions equally from the mixed features. When mixing two
facial features, there will be a relatively easy facial feature for expression recognition, and the other
will be relatively hard. For simplicity, we note µi as the easy facial feature. Our model will learn a
small uncertainty value for µi to mix with µj as µi is easy to recognize, the model can already get a
small classification loss with its label yi after training for several epochs, even µi only takes up a
small amount of the mixed feature µ̃. While for the hard image j, it needs to take up a large amount
of the mixed feature µ̃ to enable the model to find useful feature to get a small classification loss with
label yj .
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Figure 2: An experiment to show why RUL is effective in uncertainty learning. We mix different
features with different weights and print the losses of recognizing the mixed feature to different labels.
Visually, the face with anger expression is the certain one, and the face with sad expression is the
uncertain one. In the process of feature mixup, RUL will assign a larger weight to the uncertain one
to minimize the total loss.

3.3 Why RUL is Effective

In this section, we illustrate why RUL is effective in uncertainty learning. For visualization simplicity,
we plot the mixed images instead of the mixed features in Figure 2. At the start of the training, RUL
might learn similar uncertainty values for all images, which is shown in the left part of Figure 2. As
the certain facial expression image with anger label in Figure 2 can be easily recognized from the
mixed feature, the model can already get a small loss value with anger label while gets a large loss
value with a sad label. In order to get the minimum total loss, the model needs to recognize the sad
expression from the mixed feature more effectively. As training progress, the mix weight (uncertainty
value) of the uncertain sad image will increase to enable the model to recognize the sad expression
from the mixed feature. Thus, RUL will learn larger uncertainty values for uncertain images.

4 Experiments

In this section, we first describe three in-the-wild FER datasets and our implementation details. We
then evaluate our proposed method on these datasets. We compare our method with state-of-the-art
uncertainty learning methods on the accuracy, noisy label training, and accuracy with rejection [41].
Furthermore, we provide qualitative and quantitative analysis to show what is the meaning of our
learned uncertainty values. Last, we compare our method to other state-of-the-art FER methods and
also demonstrate that RUL is applicable to datasets in different fields. We also carry out an ablation
study to find the effectiveness of the mix part in RUL.

4.1 Datasets

To evaluate the effectiveness of our model, we select three widely used in-the-wild FER datasets.
Compared with FER datasets collected in the laboratory, they have more noises like noisy labels
and ambiguous expressions. So they are more complex, variable, and challenging for expression
recognition tasks. The details are as follows.

RAF-DB [27] is a crowdsourced facial expression dataset that contains 29672 facial images annotated
with basic or compound expressions by 40 trained annotators. In this work, we use facial images with
6 basic expressions [8] and neutral expression, including 12271 images as training data and 3068
images as test data.

FER2013 [14] consists of 35,887 grayscale 48x48 pixel images in total, with 28,709 training samples,
3,589 public test samples, and 3,589 private test samples. These facial images are classified into 7
emotion classes, same as RAF-DB.

AffectNet [33] is currently the largest FER dataset, including 440,000 images. The images are
collected from the Internet by querying the major search engines with 1,250 emotion-related keywords.
There are around 280,000 training images and 4000 testing images annotated by human. They are
annotated to 8 emotion classes (7 emotion classes same as RAF-DB and Contempt class).

5



4.2 Implementation Details

Given a batch of images from RAF-DB, we first resize them to 224×224 pixels and use ResNet-
18 [18], which is pretrained on Ms-Celeb-1M [17] as backbone. The two branches have the same
structure as BatchNorm2d [20]-Dropout [38]-Flatten-FC-BatchNorm1d. We set dropout rate as 0.4,
output dimension as 64. Note that the second branch outputs logσ instead of σ in order to stabilize
the training following [4]. The model is trained in an end-to-end manner with a single GTX 1080ti
GPU for 70 epochs with batch size of 64. We also utilize an Adam optimizer [24] with weight
decay of 0.0001. The learning rate is initialized as 0.0002 except the last fully connected layer for
classification, which is 0.002. We use ExponentialLR [30] learning rate scheduler with gamma of 0.9
to decrease the learning rate after each epoch. The setting under AffectNet dataset is the same as
RAF-DB. As for FER2013, we use the same setting as [49] as the image in FER2013 is 48x48 pixel
grayscale image.

4.3 Evaluation on Label Noises

Both ambiguous facial expressions and inconsistent annotations will cause label noises in FER
datasets. We carry out extensive experiments to demonstrate the improvement of RUL compared
with state-of-the-art noise-tolerant FER methods. Following SCN [47], we randomly choose 10%,
20%, 30% of training data and flip their labels to other expression categories randomly. To make a
fair comparison with SCN, we also consider the most uncertain samples in the training process as
samples with label noises and if the maximum prediction probability is higher than the one of the
given label with a threshold (set to 0.2 in all cases), we choose to rely on the FER model and change
the label to the index of the maximum prediction probability.

We run all experiments three times and compute the mean and standard variance of the results. As
shown in Table 1, RUL outperforms SCN and DUL under all circumstances. RUL improves test
accuracy by 4.30%, 4.32%, 4.60% with noise ratio of 10%, 20% and 30% on RAF-DB, 1.01%,
1.56%, 2.01% on FER2013 and 1.94%, 2.01%, 4.05% on AffectNet compared with SCN. Experiment
results show that the benefit from RUL becomes more obvious as the noise ratio increases up which
means RUL is more robust to label noises. Note that we do not use pretrained model when training in
FER2013 to find how the pretrained model affects the experiment results. From the results we can
draw the conclusion that using pretrained model can better deal with label noise as RUL improves the
accuracy most when using pretrained models which aligns to the finding in [19]. The results also
demonstrate that RUL can learn meaningful uncertainty values as we use uncertainty values to guide
the model to find the most uncertain training samples and suppress label noises.

Table 1: Test accuracy (%) on RAF-DB, FER2013 and AffectNet with synthetic noisy labels.

Method Noisy (%) RAF-DB FER2013 AffectNet

Baseline 10 80.43±0.72 69.25±0.18 56.85±0.14
SCN [47] 10 81.92±0.69 69.28±0.05 58.72±0.20
DUL [4] 10 85.08±0.21 69.43±0.27 58.26±0.10
RUL 10 86.22±0.29 70.29±0.28 60.66±0.13
Baseline 20 78.01±0.29 64.87±0.32 54.74±0.62
SCN [47] 20 80.02±0.32 66.30±0.49 56.35±0.61
DUL [4] 20 81.95±0.32 65.55±0.31 56.25±0.09
RUL 20 84.34±0.29 67.86±0.35 58.36±0.28
Baseline 30 75.12±0.78 62.52±0.56 51.46±0.52
SCN [47] 30 77.46±0.64 62.61±0.82 52.60±0.86
DUL [4] 30 78.90±0.80 60.98±0.34 55.09±0.32
RUL 30 82.06±0.44 64.62±0.39 56.65±0.13
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Table 2: Test accuracy (%) versus rejection rate results of different uncertainty learning methods on
RAF-DB and FER2013. The best performance among each column is shown in bold form.

Method
RAF-DB FER2013 Private Testset

0 rejection 10% rejection 20% rejection 30% rejection 0 rejection 10% rejection 20% rejection 30% rejection
SCN [47] 87.35 86.85 86.63 87.28 72.67 72.82 74.29 75.80
CONF [6] 88.30 91.78 93.97 95.90 72.69 73.00 73.11 72.97
DUL [4] 88.04 90.11 92.58 94.50 73.67 76.01 79.10 82.25

RUL 88.98 92.72 95.40 97.35 73.75 77.24 80.98 84.75

4.4 Test with Rejection.
In order to illustrate the quality of our learned uncertainty values more intuitively, we utilize an
evaluation metric similar to [41, 2, 15, 40] named accuracy versus rejection rate. The metric shows a
test accuracy over the fraction of unconsidered facial expression images. Specifically, based on the
predicted uncertainty values, these unconsidered images are the most uncertain images to recognize,
and the test accuracy is calculated on the remaining images. The metric indicates good uncertainty
estimation when the test accuracy increases consistently when increasing the ratio of unconsidered
images. We also compare with the out-of-distribution detection method [6] noted as CONF. CONF
uses labels as hints to help indicate when the network tends to give wrong predictions. We show the
test accuracy in Table 2.We also plot the accuracy versus rejection rate curve in the supplementary
material. RUL gets the best performance in all cases, which illustrates that the uncertainty values
learned by RUL are more related to the recognition confidence than other methods. Another interesting
finding is that CONF performs pretty well on RAF-DB while degrades on FER2013. It may be
explained by the following reason that we use pretrained model on RAF-DB while training from
scratch on FER2013. CONF needs a strong backbone to make good use of the information from
labels while our method can perform well in both ways.

4.5 Understand learned uncertainty values.

In this section, we visualize the learned features of different uncertainty learning methods and provide
qualitative and quantitative analysis to show the meaning of our learned uncertainty values.

Visualization of learned features. We use t-SNE [44] to visualize the learned feature distributions
of different uncertainty learning methods to show the effectiveness of RUL. The results are shown
in Figure 3. It is shown that the comparison of different facial expressions encourages intra-class
compactness and inter-class seperability of the learned features. We believe that this is because RUL
needs to recognize both expressions from the mixed feature, and it will be forced to learn the most
discriminative feature that can tell an expression image apart from all the other expression images
compared with it. We plot the uncertainty distribution of images with high uncertainty and images
with low uncertainty seperately in the supplementary material. The results show that the samples
with high uncertainty learned by RUL congregate at the center of the figure. They tend to contain
ambiguous expressions like neutral (class 6), which can be easily confused with other expressions.
However, the samples with small uncertainty are far from each other which are very easy to be
recognized. The feature visualization demonstrates that RUL can learn feature distribution which
reflects the uncertainty distribution of the dataset.

Figure 3: The learned feature distribution of SCN, DUL and RUL on RAF-DB dataset.(0:Surprise,
1:Fear, 2:Disgust, 3:Happy, 4:Sad, 5:Angry, 6:Neutral)

Visualization of uncertainty values. We display some expression images in testset with their
estimated uncertainty values in Figure 4. The first row shows that images with large uncertainty
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values are more likely to contain ambiguous expressions. They are easy to be misclassified (The
wrong predicted labels are marked at the bottom of the first row images in red color). In contrast, the
second row shows that images with small uncertainty values tend to contain obvious facial features,
and they are easy to be rightly classified. This illustrates that our learned uncertainty values can
represent the difficulty of expression images as well as the model’s confidence of its predictions. That
property brings us benefits that are important for the development of safe AI systems. If the model
knows when it is prone to be wrong then it can turn to human for help, which might avoid disasters in
fields with high accuracy requirements.

Figure 4: The learned uncertainty values for different images. Images with large and small uncertainty
values are shown in the first and second rows respectively. Uncertainty values are marked in the upper
left corner, and predicted labels are marked at the bottom. Note that RUL learns large uncertainty
values for images with ambiguous expressions while small uncertainty values for images with obvious
expressions.

Distribution of uncertainty values. RUL can learn different uncertainty distributions based on
different datasets instead of constraining uncertainty distributions of all datasets to the diagonal
multivariate normal Gaussian distribution like DUL. We show the learned uncertainty distributions
of different datasets in Figure 5 and Figure 6. In order to make a comparison, we normalize RUL
learned uncertainty values to [0,1]. Note that larger uncertainty values mean the images are more
uncertain. We cut off at 400 on the y-axis in Figure 5 as SCN learns too many uncertainty values close
to 0, which indicates bad performance. The results demonstrate that RUL learns large uncertainty
values for more samples while the other two methods learn relative small uncertainty values (smaller
than 0.4 on RAF-DB and smaller than 0.6 on FER2013) for all samples, which means RUL can
reduce the negative influence from the strong learning ability of networks mentioned in Section 3.1.
Furthermore, we also randomly sample several images which are hard for human to recognize and
find that only RUL learns large uncertainty values for them.

Figure 5: The learned uncertainty distribution
of RAF-DB. Uncertainty values are marked at
the top of the image, different colors represent
different methods.

Figure 6: The learned uncertainty distribution
of FER2013. Uncertainty values are marked at
the top of the image, different colors represent
different methods.
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Table 3: Comparison on
RAF-DB
Method Acc.(%)

DLP-CNN [27] 84.22
gaCNN [29] 85.07
IPA2LT [52] 86.77

RAN [48] 86.90
SCN [47] 87.03

RUL 88.98

Table 4: Comparison on
FER2013

Method Acc.(%)

Conv+Inception [32] 66.40
Bag of Words [21] 67.40
Deep-Emotion [31] 70.02

VGG [35] 72.70
SCN [47] 72.67

RUL 73.75

Table 5: Comparison of
different structures.
Method Acc.(%)

mix output 88.36
loss attention 88.75

RUL 88.98

Method 10% rejection
mix output 92.17

loss attention 89.32
RUL 92.72

Table 6: The test accuracy versus rejection rate of different uncertainty learning methods on CIFAR-10
and ImageNet-100.

Method
CIFAR-10 ImageNet-100

0 rejection 10% rejection 20% rejection 30% rejection 0 rejection 10% rejection 20% rejection 30% rejection
CONF [6] 93.47 96.84 98.90 99.56 76.48 76.46 76.36 76.21
SCN [47] 95.37 94.87 94.24 94.14 75.49 74.61 74.49 74.99
DUL [4] 95.24 98.16 99.22 99.49 76.03 75.80 79.64 82.86

RUL 95.58 98.60 99.34 99.44 77.74 77.65 82.48 86.74

4.6 Comparison with state-of-the-art FER methods.

Although we aim to deal with uncertainty learning problems in FER, our RUL method still gets better
test accuracy comparing to a series of state-of-the-art FER methods according to the results in Table 3
and Table 4.

Note that though RUL uses no extra data for co-training, it still achieves better performance. We
speculate that this is because the comparison of different FER images in the training process implicitly
introduces the data augmentation effect. Meanwhile, as uncertain images will get larger weights to
mix with certain images, the FER model will pay more attention to learning the uncertain images after
it fits the certain images, which improves the model’s ability to recognize difficult facial expressions.
We provide the confusion matrix of different methods on RAF-DB in the supplementary material. As
mentioned by [23], the FER model tends to make more mistakes in classes with fewer samples, such
as disgust and fear. However, the confusion matrices show that RUL increases test accuracy mainly
in these two classes, which means RUL can better recognize difficult facial expressions.

We also replace the Gaussian variances which are the learned uncertainty values in DUL with RUL
learned uncertainty values to guide the DUL feature learning branch. Though RUL does not constrain
the uncertainty distribution to a Gaussian distribution, it still improves the performance of DUL from
88.17% to 88.75%, which means the uncertainty learned by RUL can better reflect the uncertainty
distribution of the dataset.

4.7 Other Experiments.

Experiments on CIFAR-10 and ImageNet-100. To show RUL is effective not only on FER tasks,
we also carry out experiments on CIAFR-10 and ImageNet-100. Table 6 shows that RUL could still
improve the performance of the deep learning model on other classification tasks. The test accuracy
increases along with the rejection of the most uncertain test samples, which illustrates that RUL can
still learn meaningful uncertainty values on datasets besides FER tasks.

Ablation study. In order to show that the mixed feature part is useful for uncertainty learning, we
implement a mix output method and a loss attention method to make a comparison. Specifically, we
do not mix facial features in the mix output method. Instead, we classify two images separately and
mix the logits according to uncertainty values. Results are shown at Table 5. RUL performs better
than mix output in both the test accuracy and accuracy with 10% rejection, reflecting that mixed
features may contain more relativity information than mixed logits. Loss attention method means we
skip the mix part and use the uncertainty values to directly weight the loss values. Table 5 shows that
RUL outperforms the loss attention method, which illustrates that RUL is effective not only because
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uncertainty values affect loss values but also due to the interaction of different facial features during
the training process.

5 Conclusion

In this paper, we propose a novel and effective uncertainty learning method called Relative Uncertainty
Learning for uncertainty quantification and noisy label training. Unlike traditional uncertainty learning
methods, which use uncertainty values to weigh the loss and then add regularization to force the
network to learn uncertainty, we view uncertainty as a relative concept and learn uncertainty through
the relativity of different samples. Extensive experiments have shown that RUL can learn meaningful
uncertainty values, which reflect the difficulty of samples to be rightly classified. RUL can also help
the FER model achieve state-of-the-art performance in both real-world and synthetic noisy FER
datasets. We further demonstrate that RUL is also useful in other classification tasks.
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