
Large-Scale Learning with Fourier Features and
Tensor Decompositions

Frederiek Wesel
Delft Center for Systems and Control

Delft University of Technology
f.wesel@tudelft.nl

Kim Batselier
Delft Center for Systems and Control

Delft University of Technology
k.batselier@tudelft.nl

Abstract

Random Fourier features provide a way to tackle large-scale machine learning
problems with kernel methods. Their slow Monte Carlo convergence rate has
motivated the research of deterministic Fourier features whose approximation error
can decrease exponentially in the number of basis functions. However, due to
their tensor product extension to multiple dimensions, these methods suffer heavily
from the curse of dimensionality, limiting their applicability to one, two or three-
dimensional scenarios. In our approach we overcome said curse of dimensionality
by exploiting the tensor product structure of deterministic Fourier features, which
enables us to represent the model parameters as a low-rank tensor decomposition.
We derive a monotonically converging block coordinate descent algorithm with
linear complexity in both the sample size and the dimensionality of the inputs for
a regularized squared loss function, allowing to learn a parsimonious model in
decomposed form using deterministic Fourier features. We demonstrate by means
of numerical experiments how our low-rank tensor approach obtains the same per-
formance of the corresponding nonparametric model, consistently outperforming
random Fourier features.

1 Introduction

Kernel methods such as Support Vector Machines and Gaussian Processes are commonly used to
tackle problems such as classification, regression and dimensionality reduction. Since they can
be universal function approximators [13], kernel methods have received renewed attention in the
last few years and have shown equivalent or superior performance to Neural Networks [22, 26, 11].
The main idea behind kernel methods is to lift the data into a higher-dimensional (or even infinite-
dimensional) Reproducing Kernel Hilbert Space H by means of a feature map φ (·) : X → H.
Considering then the pairwise similarities between the mapped data allows to tackle problems which
are highly nonlinear in the original sample space X , but linear inH. This can be done equivalently
by considering a kernel function k (·, ·) : X × X → R such that 〈φ (x) ,φ (x′)〉 = k (x,x′) and
performing thus said mapping implicitly. Although effective at learning nonlinear patterns in the data,
kernel methods are known to scale poorly as the number of data points N increases. For example,
when considering Kernel Ridge Regression (KRR), Gaussian Process Regression (GPR) [33] or
Least-Squares Support Vector Machine (LS-SVM) [41, 42] training usually consist in inverting
the Gram matrix kij = k (xi,xj), which encodes the pairwise relation between all data. As a
consequence, the associated storage complexity is O

(
N2
)

and the computational complexity is
O
(
N3
)
, rendering these methods unfeasible for large data. In order to lower the computational

cost, data dependent methods approximate the kernel function by means of M data dependent
basis functions. Due to their reduced-rank formulation, the computational complexity is reduced
to O

(
NM2

)
for N � M . However, e.g. for the Nyström method [46], the convergence rate is
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only of O (1/
√
M) [7] limiting its effectiveness. As the name suggests, data independent methods

approximate the kernel function by M data independent basis functions. A good example is the
celebrated Random Fourier Features approach by Rahimi and Recht [31], where the authors propose
for stationary kernels a low-dimensional random mapping z (·) : RD → RM such that

k (x,x′) = 〈φ (x) ,φ (x′)〉 ≈ 〈z (x) , z (x′)〉 . (1)

As in the case of data dependent methods, the reduced-rank formulation allows for a computational
complexity of O

(
NM2

)
for N �M . Probabilistic error bounds on the approximation are provided

which result in a convergence rate of O (1/
√
M), which is again the Monte Carlo rate.

Improvements in this sense were achieved by considering deterministic features resulting from dense
quadrature methods [5, 25, 36] and kernel eigenfunctions [16, 39]. These methods are able to achieve
exponentially decreasing upper bounds on uniform convergence guarantees when certain conditions
are met. However, for a D-dimensional input space these methods take the tensor product of D
vectors, resulting in an exponential increase in the number of basis functions and thus of model
weights, effectively limiting the applicability of deterministic features to low-dimensional data. In
this work we consider deterministic features. In order to take advantage of the tensor product structure
which arises when mapping the inputs to H, we represent the weights as a low-rank tensor. This
allows us to learn the inter-modal relations in the tensor product of (low-dimensional) Hilbert spaces,
avoiding the exponential computational and storage complexities in D. In this way we are able to
obtain a linear computational complexity in both the number of samples and in the input dimension
during training, without having to resort to the use of sparse grids or additive modeling of kernels.

The main contribution of this work is in lifting the curse of dimensionality affecting deterministic
Fourier features by modeling the weights as a low-rank tensor. This enables the efficient solution of
large-scale and high-dimensional kernel learning problems. We derive an iterative algorithm under
the exemplifying case of regularized squared loss and test it on regression and classification problems.

2 Related work

Fourier Features (FF) are a collection of data independent methods that leverage Bochner’s theo-
rem [35] from harmonic analysis to approximate stationary kernels by numerical integration of their
spectral density p (·):

k (x,x′)
Stationarity

:= k (x− x′)
Bochner

=

∫
p (ω) exp (〈iω, (x− x′)〉) dω

FF
≈ 〈z (x) , z (x′)〉 .

(2)

Rahimi and Recht [31] proposed to approximate the integral by Monte Carlo integration i.e. by
drawing M random frequencies ω ∼ p (·). In their work they show how the method converges
uniformly at the Monte Carlo rate. See [23] for an overview of random FF. In order to achieve faster
convergence and a lower sample complexity, a multitude of approaches that rely on deterministic
numerical quadrature of the Fourier integral were developed. These methods generally consider
product kernels whose spectral density factors in the frequency domain, which enables in turn to
factor the Fourier integral. The resulting deterministic Fourier features are then the tensor product of
D one-dimensional deterministic features.

For example, in [5] the authors give an analysis of the sample complexity of features resulting from
dense Gaussian Quadrature (GQ). In [25] the authors present a similar quadrature approach for
kernels whose spectral density factors over the dimensions of the inputs. They provide an explicit
construction for their Quadrature Fourier Features relying on a dense Cartesian grid, and note
that their method, as well as GQ, can attain exponentially decreasing uniform convergence bounds
in the total number of basis functions per dimensions M̂ [25, Theorem 1]. To avoid the curse
of dimensionality, they make use of additive modeling of kernels. Variational Fourier Features
(VFF) [16] are derived probabilistically in a one-dimensional setting for Matérn kernels by projecting
a Gaussian Process onto a set of Fourier basis. An extension to multiple dimensions when considering
product kernels is then achieved by taking the tensor product of the one-dimensional features,
incurring however again in exponentially rising computational costs in D. In what they call Hilbert-
GP [39] the authors diagonalize stationary kernels in terms of the eigenvalues and eigenfunctions of
the Laplace operator with Dirichlet boundary conditions. Due to the multiplicative structure of the
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eigenfunctions of the Laplace operator, the complexity of the basis function increases exponentially
in D when one considers product kernels. Like with other deterministic approximations, bounds on
the uniform convergence error which decrease exponentially in M̂ can be achieved [39, Theorem 8].

Tensor decompositions have been used extensively in machine learning in order to benefit from
structure in data [38], in particular to obtain an efficient representation of the model parameters. In
the context of Gaussian Process Regression, the tensor product structure which arises when the inputs
are located on a Cartesian grid have been exploited to speedup inference [12]. In their variational
inference framework, [19] proposed to parameterize the posterior mean of a Gaussian Process by
means of a tensor decomposition in order to exploit the tensor product structure which arises when
interpolating the kernel function. In the context of neural networks, [27] proposed to represent the
weights in deep neural networks as a tensor decomposition to speed up training. A similar approach
was carried out in case of recurrent neural networks [48] [43].

Tensor decompositions have also been used to learn from simple features. In [45] multivariate
functions are learned from a Fourier basis, which corresponds to assuming a uniform spectral
density in (2). Motivated by spin vectors in quantum mechanics, [40] consider trigonometric feature
maps which they argue induce uninformative kernels. On a similar note, [28] and [1] leverage the
tensor product structure of polynomial mappings to induce a polynomial kernel and consider model
parameters in decomposed form. While these existing approaches are able to overcome the curse of
dimensionality affecting tensor product feature maps by modeling the parameter tensor as a tensor
network, they consider simple and empirical feature maps which induce uninformative kernels. In the
following section we show how deterministic Fourier features can be used for supervised learning in
both large and high-dimensional scenarios by assuming that the model weights are a low-rank tensor,
thereby linking tensor decompositions with stationary product kernels.

3 Learning with deterministic Fourier features

3.1 Notation

All tensor operations and mappings can be formulated over both the complex and the real field. For
the remainder of this article real-valued mappings will be considered. Vectors and matrices are
denoted by boldface lowercase and uppercase letters, respectively. Higher-order tensors are denoted
by boldface calligraphic letters. Tensor entries are always written as lightface lowercase letters with a
subscript index notation. For example, element i1, i2, i3 of the third-order tensorA ∈ RI1×I2×I3 is
written as ai1i2i3 . The vectorization vec (A) of a tensorA ∈ RI1×I2×···×ID is the vector such that

vec (A)i = ai1i2···iD ,

where the relationship between the linear index i and i1i2 . . . iD is given by

i = i1 +

D∑
d=2

(id − 1)

d−1∏
k=1

Ik.

The Frobenius inner product between tensorsA ∈ RI1×I2×···×ID and B ∈ RI1×I2×···×ID is defined
as

〈A,B〉F :=

I1∑
i1=1

I2∑
i2=1

· · ·
ID∑

iD=1

ai1i2···iDbi1i2···iD = vec (A)
Tvec (B) .

Depending on the context, the symbol ⊗ either denotes the tensor outer product or the matrix
Kronecker product. The Khatri-Rao productA~B of the matricesA ∈ RN×R andB ∈ RM×R is
the NM ×R matrix that is obtained by taking the column-wise Kronecker product. The Hadamard
(element-wise) matrix product ofA ∈ RN×R andB ∈ RN×R is denoted byA�B.

3.2 The model

In this article we assume models of the form

f (x) = 〈w,φ (x)〉 , y = f (x) + ε. (3)
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Here x ∈ RD is the input vector, φ (·) : RD → H is a feature map, w ∈ H are the model weights,
y ∈ R is the corresponding available observation corrupted by a zero mean i.i.d. noise ε. Learning
such a kernelized model consists in finding as set of weights w such that:

N∑
n=1

L (yn, f (xn)) + λ 〈w,w〉p , (4)

is minimized. Here, L (·, ·) : R× R→ R+ is a symmetric and positive loss function and λ 〈w,w〉p
is a p-th norm regularization term. A variety of primal machine learning formulations arise when con-
sidering different combinations of loss functions and regularization terms. For example, considering
p = 2 and squared loss leads to Kernel Ridge Regression [42], while considering hinge loss leads to
SVM [4], and so on. Furthermore, applying the kernel trick when considering φ (·) recovers the non-
parametric formulation which, depending on the choice of kernel, enables to perform inference using
infinitely many basis functions with a computational complexity of O(N3). Considering instead a
low-dimensional finite mapping z (·) : X → RM such as Random Fourier Features or the Nyström
method leads a primal approach and to computational savings with a computational complexity of
O
(
NM2

)
for N �M . However, as already discussed, these low-dimensional random mappings

converge at the slow Monte Carlo rate, motivating our approach.

In order to approximate the kernel function with faster and possibly exponential convergence, we
consider deterministic, finite-dimensional features which are the tensor product of D vectors. For
a given D-dimensional input point x we define the deterministic feature mapping Z (·) : RD →
RM̂1 ⊗ RM̂2 ⊗ · · · ⊗ RM̂D as

Z (x) = z(1) (x1)⊗ z(2) (x2) · · · ⊗ z(D) (xD) , (5)
where z(d) is a deterministic mapping applied to the d-th dimension. The dimension of the feature
space is denoted M =

∏D
d=1 M̂d. Without loss of generality it is from here on assumed that

M̂1 = · · · = M̂D = M̂ such that M = M̂D. It is easy to verify by applying the kernel trick
that the features of (5) yield product kernels. The mapping Z(·) encompasses for instance the
mappings derived by quadrature [5, 25, 36] and by projection [16, 39]. Note that these mappings
cover many popular kernels such as the Gaussian and Matérn kernels. To give a concrete example, in
the framework of A. Solin and S. Särkkä [39, Equation 60], for input data centered in a hyperbox
X = [−U1, U1] ⊗ · · · ⊗ [−UD, UD], the Gaussian kernel is approximated by means of D tensor
products of M̂ weighted sinusoidal basis functions with frequencies lying on a harmonic scale such
that: (

z(d) (xd)
)
id

=
1√
Ud

p

(
πid
2Ud

)
sin

(
πid (xd + Ud)

2Ud

)
, id = 1, . . . , M̂ . (6)

Here p (·) is the spectral density of the Gaussian kernel with one-dimensional inputs, which is known
in closed-form [33, page 83]. This deterministic mapping then approximates the Gaussian kernel
function [39, Equation 59] such that

k (x,x′) ≈ 〈vec (Z (x)) , vec (Z (x′))〉 = 〈Z (x) ,Z (x′)〉F,
and converges uniformly with exponentially decreasing bounds [39, Theorem 8]. We therefore use
Z(·) instead of φ(·) in (3) to obtain

f (x) = 〈w, vec(Z(x))〉 = 〈W ,Z(x)〉F, (7)

where the weight vector w has been reshaped into a D-dimensional tensorW ∈ RM̂1×M̂2×···×M̂D .
Learning the exponential number of model parametersW in (7) under a hinge loss leads to Support
Vector Machines, while considering a squared loss leads to the primal formulation of Kernel Ridge
Regression, which we will consider as exemplifying case from here on:

min
W

N∑
n=1

(yn − 〈W ,Z (xn)〉F)2 + λ〈W ,W〉F. (8)

Since the number of elements M inW and Z grows exponentially in D, this primal approach
is advantageous compared to the nonparametric dual approach only if M̂D � N , limiting it to
low-dimensional inputs. In order to lift this curse of dimensionality, we propose to represent and to
learnW directly as a low-rank tensor decomposition. A low-rank tensor decomposition allows us to
exploit redundancies inW in order to obtain a parsimonious model with a storage complexity that
scales linearly in both M̂ and D. The low-rank structure will, as explicitly shown in the experiments,
act as a form of regularization by limiting the total number of degrees of freedom of the model.
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3.3 Low-rank tensor decompositions

Tensor decompositions (also called tensor networks) can be seen as generalizations of the Singular
Value Decomposition (SVD) of a matrix to tensors [20]. Three common tensor decompositions are
the Tucker decomposition [6, 44], the Tensor Train decomposition [29] and the Canonical Polyadic
Decomposition (CPD) [17, 21], where each of them encompasses different properties of the matrix
SVD. In this subsection we briefly discuss these three decompositions and list both their advantages
and disadvantages for modelingW in (8). For a detailed exposition on tensor decompositions we
refer the reader to [2] and the references therein. An important property of tensor decompositions is
that they can always be written linearly in their components, which implies that applying a block
coordinate descent algorithm to solve (8) results in a series of linear least-squares problems.

A rank-R CPD ofW consists of D factor matricesW (d) ∈ RM̂×R and a vector s ∈ RR such that

w =
(
W (1) ~W (2) ~ · · ·~W (D)

)
s =

R∑
r=1

w(1)
r ⊗w(2)

r ⊗ · · · ⊗w(D)
r .

Note that the entries of the s vector were absorbed in one of the factor matrices when writing the
CPD as a sum of R terms. The CPD has been shown, in contrast to matrix factorizations, to be
unique under mild conditions [37]. The storage complexity comes mainly from the D factor matrices
and is therefore O(RM̂D). The Tucker decomposition generalizes the CPD in two ways. First,
the Khatri-Rao product is replaced with a Kronecker product. The s vector has to grow in length
accordingly from R to RD. Second, the R-dimension of each of the factor matrices is allowed to
vary, resulting in a multi-linear rank (R1, R2, . . . , RD):

w =
(
W (1) ⊗W (2) ⊗ · · · ⊗W (D)

)
s.

The Tucker decomposition is inherently non-unique and its storage complexity O(RD) is dominated
by the s vector, which limits its use to low-dimensional input data. For this reason we do not consider
the Tucker decomposition any further in this article.

The Tensor Train (TT) decomposition consists of D third-order tensorsW(d) ∈ RRd×M̂×Rd+1 such
that

wi1i2···iD =

R1∑
r1=1

· · ·
RD+1∑

rD+1=1

w
(1)
r1i1r2

· · ·w(D)
rDiDrD+1

. (9)

The auxiliary dimensions R1, R2, . . . , RD+1 are called the TT-ranks. In order to ensure that the
right-hand side of (9) is a scalar, the boundary condition R1 = RD+1 = 1 is enforced. The TT
decomposition is, just like the Tucker decomposition, non-unique and its storage complexity R2M̂D

is due to the D tensor componentsW(d). Considering their storage complexity, both the CPD and TT
decomposition are viable candidates to replaceW in (8). The CP-rank R and TT-ranks R2, . . . , RD

are additional hyperparameters, which favors the CPD in practice. For the TT, one could choose
R2 = R3 = · · · = RD to reduce the number of additional hyperparameters but this constraint turns
out in practice to lead to suboptimal results. For these reasons we limit the discussion of the learning
algorithm to the CPD case.

3.4 Tensor learning with deterministic Fourier features

We now wish to minimize the standard regularized squared loss function as in (8) with the additional
constraint that the weight tensor has a rank-R CPD structure:

min
W

N∑
n=1

(yn − 〈W ,Z (xn)〉F)
2
+ λ 〈W ,W〉F , (10)

subject to CP-rank (W) = R. (11)

Note that if R equals the true CP-rank of the underlying weight tensor then the exact solution of (8)
would be obtained. In practice a low-rank solution forW achieves a sufficiently complex decision
boundary that is practically indistinguishable from the full-rank solution, as is demonstrated in the
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experiments. Imposing the rank-R reduces the number of unknowns from M̂D to RM̂D and allows
the application of a block coordinate descent algorithm (also known as alternating linear scheme),
which is shown to converge monotonically [3, 18, 34]. Each of the factor matricesW (d) is optimized
in an iterative fashion while keeping the others fixed. Such a factor matrix update is obtained by
solving a linear least-squares problem with M̂R unknowns. In what follows we derive the linear
problem for the d-th factor matrixW (d). The data-fitting term 〈W ,Z(x)〉F can be rewritten linearly
in terms of the unknown factor matrix as

〈W ,Z(x)〉F =
〈

vec
(
W (d)

)
, g(d) (x)

〉
, (12)

where g(d) (x) := z(d) ⊗
(
z(1)

T
W (1)T � · · · � z(D)T

W (D)T
)

. Similarly, for the regularization
term:

〈W ,W〉F =
〈

vec
(
W (d)T

W (d)
)
, vec

(
H(d)

)〉
. (13)

Here H(d) :=
(
W (1)T

W (1) � · · · �W (D)T
W (D)

)
. Derivations of (12) and (13) can be found

in Appendix. Substitution of the expressions (12) and (13) into (10) and (11) leads to a linear
least-squares problem for vec

(
W (d)

)
:

min
vec(W (d))

N∑
n=1

(
yn −

〈
vec
(
W (d)

)
, g(d) (xn)

〉)2
+ λ

〈
vec
(
W (d)T

W (d)
)
, vec

(
H(d)

)〉
. (14)

Its unique solution can be computed exactly in an efficient manner by solving the normal equations,
requiring NM̂2R2 + M̂3R3 operations. Since we are solving a non-convex optimization problem
that consists of a series of convex and exactly solvable sub-problems, our algorithm is indeed
monotonically decreasing, and, although it is not guaranteed to converge to the global optimum, it
is the standard choice when dealing with tensors [3, 20]. The total computational complexity of
the algorithm when N � M̂R is then O(NDM̂2R2), rendering it suitable for problems which
are large in both N and D, provided that R and M̂ are small. The necessary memory is equal to
RM̂D + 2R2M̂2 + 2RM̂ (storing the weight tensorW in decomposed form, the rank-RM̂ Gram
matrix and regularization matrix, the transformed responses and the solution of the linear system),
leading to a storage complexity of O

(
R2M̂2

)
for RM̂ � D. Notably the cost is independent of N ,

which allows processing large data on modest hardware.

When learning, the selection of λ and of the kernel-related hyperparameters can be carried out by
standard methods such as cross-validation. The choice of M̂ and the additional hyperparameter R
which we introduce are directly linked with the available computational budget. One should in fact
choose M̂ so that the model has access to a sufficiently complex set of basis functions to learn from.
In practice we notice that for our choices of kernel function hyperparameters, at most M̂ = 40 basis
functions per dimension suffice. R can then be fixed accordingly in order to match the computational
budget at hand. As we will show in the next section, learning is possible with small values of M̂ and
R.

4 Numerical experiments

We implemented our Tensor-Kernel Ridge Regression (T-KRR) algorithm in Mathworks MATLAB
2021a (Update 1) [24] and tested it on several regression and classification problems. Our im-
plementation can be freely downloaded from https://github.com/fwesel/T-KRR and allows
reproduction of all experiments in this section. In our implementation we avoid constructing g(d) (·)
andH(d) from scratch at every iteration by updating their components iteratively. With the exception
of the first experiment 4.1, we further speedup our implementation by considering only the diagonal
of the regularization termH(d). All experiments were run on a Dell Inc. Latitude 7410 laptop with 16
GB of RAM and an Intel Core i7-10610U CPU running at 1.80 GHz. In all our experiments the Gaus-
sian kernel k (x,x′) = exp

(
−||x−x′||22/2l2

)
was approximated by considering the Hilbert-GP [39]

mapping of (6). In all experiments inputs were scaled to lie in aD-dimensional unit hypercube. When
dealing with regression, the responses were standardized around the mean, while when considering
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(a) R = 2 (b) R = 4 (c) R = 6 (d) R = M̂2 = 144

Figure 1: Classification boundary of the two-dimensional banana dataset for increasing CP-ranks.
In the last plot the chosen CP-rank matches the true matrix rank. The dashed line is the Hilbert-GP,
while the full line is T-KRR.

binary classification inference was done by looking at the sign of the model response (LS-SVM [41]).
One sweep of our T-KRR algorithm is defined as updating factor matrices in the order 1→ D and
then back from D → 1. All initial factor matrices were initialized with standard normal numbers
and normalized by dividing all entries with their Frobenius norm. For all experiments the number of
sweeps of T-KRR algorithm are set to 10. In the following three experiments it is shown how our
proposed T-KRR algorithm is stable and recovers the full KRR estimate in case of low number of
frequencies M̂ and low rank R, consistently outperforming RFF. Finally, our model exhibits very
competitive performance on large-scale problems when compared with other kernel methods.

4.1 Banana classification

The banana dataset is a two-dimensional classification problem [15] consisting of N = 5300

datapoints. Since the data is two-dimensional, we consider M̂ = 12 frequencies per dimension,
which enables us to compare T-KRR with Hilbert-GP. Furthermore since for tensors of order two
(i.e. matrices) the CP-rank is the matrix rank, we can deduce that our approach should recover
the underlying Hilbert-GP method with R = M̂2 = 144. In this example we fix the kernel
hyperparameters of our method and of the Hilbert-GP to l = 1/2 and λ = 10−5 for visualization
purposes. In Figure 1 we plot the decision boundary of T-KRR (full line) and of the associated
Hilbert-GP (dashed line). We can see that already when R = 6 the learned decision boundary is
indistinguishable to the one of Hilbert-GP, meaning that in this example it is possible to obtain a
low-rank representation of the model weights. From a computational point of view, we solve a series
of linear systems with M̂R unknowns instead of M̂D. However due to the low-dimensionality of
the dataset, the computational savings per iteration are very modest, i.e. for R = 6 and M̂ = 12,
we solve per iteration a linear system with 72 unknowns as opposed to the one-time solve of a
linear system with 144 unknowns as in case of Hilbert-GP. As we show in Subsection 4.2, the linear
computational complexity in D of our algorithm results in ever-increasing performance benefits as
the dimensionality of the problem becomes larger, where it becomes impossible to consider a full
weight tensor.

4.2 Model performance with baseline

We consider five UCI [8] datasets in order to compare the performance of our model with RFF and
the GPR/KRR baseline. For each dataset, we consider 90% of the data for training and the remaining
10% for testing. In particular, in all regression datasets, we first obtain an estimate of the lengthscale
of the Gaussian kernel l and regularization term λ by log-marginal likelihood optimization over the
whole training set using the GPLM toolbox [32]. We subsequently train GPR/KRR, RFF and our
method with the estimated hyperparameter. In case of classification, we choose the lengthscale l to
be the sample mean of the sample standard deviation of our data (which is the default choice in the
Matlab Machine Learning Toolbox and scikit-learn [30]) and λ = 10−5. We repeat this procedure ten
times over different random splits and report the sample mean and sample standard deviation of the
predictive mean-squared error (MSE) and the misclassification rate for regression and classification
respectively. In order to test the approximation capabilities of our approach, we set M̂ and R such
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Figure 2: Normalized loss and misclassification rate while training on the Spambase dataset.

Table 1: Predictive MSE (regression) and misclassification rate (classification) with one standard
deviation for RFF, T-KRR and KRR on different UCI datasets.

Dataset N ↓ D M̂ R RFF T-KRR KRR

Yacht 308 6 10 25 0.0021± 0.0018 0.0009± 0.0006 0.0007± 0.0004
Energy 768 9 20 10 0.0275± 0.0075 0.0200± 0.0066 0.0200± 0.0087
Airfoil 1503 5 20 10 0.2180± 0.0336 0.1679± 0.0258 0.1587± 0.0232
Spambase 4601 57 40 10 0.3620± 0.0188 0.0935± 0.0095 0.0909± 0.0115
Adult 45222 96 40 10 0.3976± 0.0056 0.1596± 0.0046 N/A

that M̂R � N in order to benefit from computational gains. Furthermore, we note that due to
the curse of dimensionality it is not possible to compare our approach with RFF while considering
the same total number of basis functions M = M̂D. Hence we select MRFF = M̂R such that the
computational complexity of both methods is similar. Table 1 shows the MSE for different UCI
datasets. We see that our approach comes close to the performance of full KRR and outperforms
RFF on all datasets when considering the same number of model parameters. This is because our
approach considers implicitly M̂D frequencies to learn a low-rank parsimonious model which is fully
described by M̂RD parameters, as opposed to RFF where the number of frequencies is the same
as the number of model weights. Similarly to what is reported in [47, Figure 2] we observe lower
performance of RFF on the Adult dataset than reported in [31]. Figure 2 plots the monotonically
decreasing loss function as well as the corresponding misclassification rate while training with T-KRR
on the Spambase dataset. After four sweeps the misclassification rate has converged. Since T-KRR is
able to obtain similar performance as the KRR baseline on a range of small datasets, we proceed to
tackle a large-scale regression problem.

4.3 Large-scale experiment

In order to highlight the ability of our method to deal with large data we consider the Airline
dataset. The Airline dataset [14, 16] is a large-scale regression problem originally considered
in [14] which is often used to compare state-of-the-art Gaussian Process Regression approximations
due to its large size and its non-stationary features. The goal is in fact to predict the delay of a
flight given eight features, which are the age of the airplane, route distance, airtime, departure
time, arrival time, day of the week, day of the month, and month. We follow the same exact
preprocessing steps as in the experiments in [16], [39] and [9], which consider subsets of data of
size N = 10000, 100000, 1000000, 5929413, each chosen uniformly at random. Training the model
is then accomplished with 2/3N datapoints, with the remaining portion reserved for testing. The
entire procedure is then repeated 10 times with random initialization in order to obtain a sample
mean and sample standard deviation estimate of the MSE. Following exactly the approach in Hilbert-
GP [39], we consider M̂ = 40 basis functions per dimension, with the crucial difference that T-KRR
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Table 2: Predictive MSE with one standard deviation for T-KRR. The prefix -A indicates that the
model in question considers an additive kernel.

N 10000 100000 1000000 5929413

T-KRR (R = 5) 0.91± 0.10 0.82± 0.03 0.80± 0.02 0.800± 0.008
T-KRR (R = 10) 0.89± 0.05 0.80± 0.05 0.79± 0.02 0.785± 0.009
T-KRR (R = 15) 0.90± 0.07 0.80± 0.04 0.78± 0.02 0.773± 0.007
T-KRR (R = 20) 0.97± 0.15 0.78± 0.04 0.77± 0.01 0.763± 0.007
A-Hilbert-GP [39] 0.97± 0.14 0.80± 0.06 0.83± 0.02 0.827± 0.005
A-VFF [16] 0.89± 0.15 0.82± 0.05 0.83± 0.01 0.827± 0.004
SVIGP [14] 0.89± 0.16 0.79± 0.05 0.79± 0.01 0.791± 0.005
VISH [9] 0.90± 0.16 0.81± 0.05 0.83± 0.03 0.834± 0.055
GPR [33] 0.89± 0.16 N/A N/A N/A
A-GPR [10] 0.89± 0.16 N/A N/A N/A

approximates a standard product Gaussian kernel, as opposed to an additive model. As was the
case in the previous section for classification, we select the lengthscale of the kernel as the mean of
the standard deviations of the eight features and choose λN = 100/N for the different splits, where
the dependency on N is suggested by standard learning theory. We then train four distinct models
for R = 5, 10, 15, 20. Table 2 compares T-KRR with the best performing models found in the
literature, which all (except for GPR) rely on low-rank approximation of the kernel function. The
T-KRR method is able to recover the baseline GPR performance already with R = 5 and remarkably
outperform all other approaches although we choose the hyperparameters naively and consider equal
lengthscales l for all dimensions. Interestingly, a higher choice of R does result in better performance
in all cases except for N = 10000, where model performance very much depends on the random split
(note that we consider different splits for each experiment). The SVIGP [14] achieves comparable
results to T-KRR, indicating that a performance gain is possible from product kernels. The difficulty
with SVIGP is however that the kernel function is interpolated locally at M nodes in a data-dependent
fashion, requiring an increasing amount of interpolation nodes to cover the whole domain to allow for
good generalization. In contrast, T-KRR considers an exponentially large amount of basis functions
in the frequency domain, and learns an efficient representation of the model weights. In light of the
performance of the additive Hilbert-GP and additive VFF models, we expect similar performance
when considering other feature maps which induce stationary kernels. When considering the whole
dataset, training our model with R = 5 takes 1565 ± 1 seconds on a laptop, while for R = 20 it
takes 7141 ± 245 seconds. Reported training times of SVIGP indicate 18360 ± 360 seconds [16]
on a cluster. Since the computational complexity of our algorithm is dominated by matrix-matrix
multiplications, we expect significant speedups when relying on GPU computations.

5 Conclusion

In this work a framework to perform large-scale supervised learning with tensor decompositions which
leverages the tensor product structure of deterministic Fourier features was introduced. Concretely,
a monotonically decreasing learning algorithm with linear complexity in both sample size and
dimensionality was derived. This algorithm leverages the efficient format of the Canonical Polyadic
Decomposition in combination with exponentially fast converging deterministic Fourier features
which allow to implicitly approximate stationary product kernels up to machine precision. Numerical
experiments show how the performance of the baseline Kernel Ridge Regression is recovered with
a very limited number of parameters. The proposed method can handle problems which are both
large in the number of samples as well as in their dimensionality, effectively enabling large-scale
supervised learning with stationary product kernels. The biggest limitation of the current approach is
that it is does not allow for uncertainty quantification, which motivates further work in that direction.
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