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In the supplementary material, we expand on the background details and derivations mentioned in the
paper.

1 Additional derivations for the Wasserstein gradient flow

1.1 Stochastic differential equations and its Fokker-Planck equation

The general SDE

dθt = f(θt)︸ ︷︷ ︸
drift

dt+
√

2Σ(θt)︸ ︷︷ ︸
diffusion

dWt︸︷︷︸
Wiener process

(1)

with an initial distribution θ0 ∼ ρ0 defines the evolution of a random variable θt ∈ RD over time
t ∈ R+. The evolution of the marginal distribution ρt is given by the Fokker-Planck equation

ρ̇t(θ) = −
D∑
i=1

∂

∂θi
ρt(θ)fi(θ) +

D∑
i,j=1

∂2

∂θi∂θj
ρt(θ)Σij(θ) (2)

= −∇ · (ρtf) + (∇∇) : (ρtΣ), (3)

where we use the dyadic vector notation

A : B = tr{A>B}. (4)

The double-dot notation indicates a sum over all element-wise products, or the sum of all second
order partial derivatives. We can verify this with

(∇∇) : (ρtΣ) = tr{(∇∇)>(ρtΣ)} (5)
= 〈∇∇, ρtΣ〉F (6)

=
∑
i,j

∂2

∂θi∂θj
ρt(θt)Σ(θt). (7)

1.2 FPE of Langevin dynamics

The Langevin dynamics has drift f(θt) = ∇ log π(θt) and diffusion Σ(θt) = I. The Fokker-Planck
equation for Langevin dynamics then simplifies into

ρ̇t = −∇ · (ρtf) + (∇∇>) : (ρtI) (8)
= −∇ · (ρt∇ log π) + ∆ρt, (9)
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where the Laplacian is defined as

∆ρt = ∇2ρt =

D∑
i=1

∂2ρt(θ)

∂θ2
i

. (10)

To derive the FPE we begin by using the Laplacian identity ∆ρt = ∇ · (∇ρt), resulting in

ρ̇t = ∆ρt −∇ ·
(
ρt∇ log π

)
(11)

= ∇ ·
(
∇ρt

)
−∇ ·

(
p∇ log π

)
(12)

= ∇ ·
(
∇ρt − ρt∇ log π

)
(13)

= ∇ ·
(
ρt∇ log ρt − ρt∇ log π

)
(14)

= ∇ ·
(
ρt∇ log

ρt
π

)
, (15)

where we used the identity∇ log ρ = ∇ρ
ρ to expand∇ρ = ρ∇ log ρ. Notice that we did not need to

use the common identity∇ · (ρf) = ρ∇ · f + (∇ρ) · f , nor expand with∇ log π = −∇H .

We also notice that the first variation of the Kullback-Leibler divergence has the form δKL[ρt ‖ π]
δρt

=

log ρt/π + 1, so that∇ δKL[ρt ‖ π]
δρt

= ∇ log ρt −∇ log π, yielding the final result

ρ̇t = ∇ ·
(
ρt∇

δKL [ρt ‖ π]

δρt

)
. (16)

In the original variational formulation for the Wasserstein gradient flow (Jordan et al., 1998), the
authors prove the weak convergence of a discrete gradient flow taking discrete steps at interval h,
such that each ρkh, k = 1, 2, . . . , follows the minimization

ρkh = arg min
ρ∈P(Ω)

KL [ρ ‖ π] +
1

2h
W 2

2 (ρ, ρ(k−1)h). (17)

(ρkh)
∞
k=1 weakly converges to the Fokker-Planck equation as h ↓ 0.

1.3 The Stein-Wasserstein metric

With the Onsager operator defined as G(ρ)−1 : φ 7→ −∇ · (ρKρ∇φ), the Stein-Wasserstein metric
between ρ0 and ρ1 is defined using the geometric action function

W 2
H(ρ0, ρ1) = inf

φ,ρt

{∫ 1

0

∫
‖Kρt∇φt‖

2
H dt : ρ̇t +∇ · (ρtKρt∇φt) = 0

}
, (18)

where Kρ is the integral operator

Kρf(θ) =

∫
k(θ′,θ)f(θ′)dρ(θ′), (19)

which smoothens the function f over a similar parameters θ′ from the density ρ according to the
kernel k(θ′,θ). The Stein-Wasserstein metric follows the definition that the distance between two
points in P(Ω) consists of the length the shortest arc connecting the two points, parametrized by φt.

2 Additional derivations for the analysis of MCMC dynamics

To recap, MCMC dynamics consist of positive semi-definite matrix-valued function A and skew-
symmetric matrix-valued function C with

f(θ) =
1

π(θ)
∇ · (π(θ)(A(θ) + C(θ))) , (20)

Σ(θ) = A(θ) (21)

with matrix properties

x>Ax ≥ 0, ∀x ∈ RD (22)

C> = −C, Cij = −Cji, diag C = 0. (23)
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2.1 Fokker-Planck equation and its equivalent forms

We derive the Fokker-Planck equation of SDEs with the above MCMC dynamics form as

ρ̇t(θ) = −
D∑
i=1

∂

∂θi
ρt(θ)fi(θ) +

D∑
i,j=1

∂2

∂θi∂θj
ρt(θ)Aij(θ) (24)

= −
D∑
i=1

∂

∂θi
ρt(θ)fi(θ) +

D∑
i,j=1

∂2

∂θi∂θj
ρt(θ)Aij(θ) +

D∑
i,j=1

∂2

∂θi∂θj
ρt(θ)Cij(θ)︸ ︷︷ ︸

=0

(25)

= −∇ ·
(ρt
π
∇ · (π(A + C))

)
+ (∇∇) : (ρt(A + C)) (26)

= −∇ · (ρt [(A + C)∇ log π(θ) +∇ · (A + C)]) + (∇∇) : (ρt(A + C)) (27)
= −∇ · (ρt [(A + C)∇ log π(θ) +∇ · (A + C)]) +∇ · (ρt [(A + C)∇ log ρt +∇ · (A + C)])

(28)

= ∇ ·
(
ρt(A + C)∇ log

ρt
π

)
, (29)

where the skew-symmetric addition is justified via

D∑
i,j=1

∂2

∂θi∂θj
ρt(θ)Cij(θ) =

D∑
i,j=1

∂2ρt(θ)

∂θi∂θj
Cij(θ)︸ ︷︷ ︸

=0

+

D∑
i,j=1

ρt(θ)
∂2Cij(θ)

∂θi∂θj︸ ︷︷ ︸
=0

(30)

+

D∑
i,j=1

[
∂ρt(θ)

∂θi

∂Cij(θ)

∂θj
+
∂ρt(θ)

∂θj

∂Cij(θ)

∂θi

]
(31)

=

D∑
i,j=1

∂ρt(θ)

∂θi

∂Cij(θ)

∂θj
+

D∑
j,i=1

∂ρt(θ)

∂θj

∂Cij(θ)

∂θi
(32)

=

D∑
i,j=1

∂ρt(θ)

∂θi

∂Cij(θ)

∂θj
+

D∑
j,i=1

∂ρt(θ)

∂θj

∂ − Cji(θ)

∂θi
= 0. (33)

The final form (29) corresponds to a generalization of the continuity equation ρ̇t + ∇ ·
(ρt(A + C)∇φt) = 0.

2.2 The diffusion Stein operator

Originally, the Stein’s identity (Stein, 1972) maps sufficiently regular functions Φ : RD 7→ RD
to T Φ(θ) = ∇ log π(θ) · Φ(θ) + ∇ · Φ(θ). The function T Φ has expectation zero under the
target measure π: EπT Φ = 0, yielding the original Stein’s identity. As a generalization, Gorham
et al. (2019) discuss the application of infinitesimal generator of MCMC dynamics as a means to
discover operators sharing the same property. Infinitesimal generators of Feller processes describes
the perturbation of functions:

Au(θ) = lim
t→0

E [u(θt)|θ0 = θ]− u(θ)

t
. (34)

For MCMC dynamics with parametrization (A,C), the infinitesimal generator is calculated as(
AA,C
π u

)
(θ) =

1

2π(θ)
∇ · (π(θ)(A(θ) + C(θ))∇u(θ)) . (35)

And the diffusion Stein operator, denoted as T A,C
π in this work, is defined by substituting ∇u2 with a

vector-valued function f . GSVGD is defined as EρT A,C
π k(·,θ).
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2.3 GSVGD as functional gradient in RKHS for incremental transformations

Functional gradient for a functional F [·] is defined as such ∇fF [f ] that satisfies F [f + εg] =
F [f ]+〈∇fF [f ],g〉HD +O(ε2). The particle update of GSVGD can be seen as the functional gradient
with respect to the push-forward measure ρε =

(
id + (A + C)>f

)
#
ρ = (id + (A−C)f)# ρ.

Following the proof of Theorem 3.3 in Liu and Wang (2016), we define F [f ] = KL [ρε ‖ π] =

KL
[
(id + (A−C)f)# ρ ‖ π

]
= KL

[
ρ ‖ (id + (A−C)f)

−1
# π

]

F [f + εg] = Eρ

log ρ(θ)− log π(θ + (A−C)(f + εg))− log det

I +∇((A−C)(f + εg)︸ ︷︷ ︸
Jacobian matrix

)

 .
(36)

We then have

F [f + εg]− F [f ] = −Eρ
[
log

π(θ + (A−C)(f + εg))

π(θ + (A−C)f)

]
︸ ︷︷ ︸

∆1

−Eρ
[
log

det (I +∇ ((A−C)(f + εg)))

det (I +∇((A−C)f))

]
︸ ︷︷ ︸

∆2

.

(37)

∆1 = Eρ [log π(θ + (A−C)(f + εg))− log π(θ + (A−C)f)] (38)

= εEρ [∇ log π(θ + (A−C)f) · (A−C)g] +O(ε2) (39)

= Eρ [(A + C)∇ log π(θ + (A(θ)−C(θ))f(θ))] · g +O(ε2) (40)

= Eθ∼ρ [(A(θ) + C(θ))∇ log π(θ + (A(θ)−C(θ))f(θ))] · 〈k(θ, ·),g(·)〉HD +O(ε2)
(41)

= 〈Eθ∼ρ [(A(θ) + C(θ))∇ log π(θ + (A(θ)−C(θ))f(θ))] k(θ, ·),g(·)〉HD +O(ε2), (42)
∆2 = Eρ [log det (I +∇((A−C)(f + εg)))− log det (I +∇((A−C)f))] (43)

= εEρ
[
(I +∇((A−C)f))

−1
: ∇ ((A−C)g)

]
+O(ε2) (44)

= εEρ

(I +∇((A−C)f))
−1

:

(A−C)∇g︸ ︷︷ ︸
∆3

+ M︸︷︷︸
∆4


+O(ε2), (45)

where Mij =
∑D
`=1

∂(A−C)i`
∂θj

g`. We have

Mij(θ) =

D∑
`=1

∂(A(θ)−C(θ))i`
∂θj

g`(θ) (46)

=

D∑
`=1

∂(A(θ)−C(θ))i`
∂θj

〈k(θ, ·), g`(·)〉H (47)

= 〈h(ij)k(θ, ·),g(·)〉HD , (48)
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where h
(ij)
` = ∂(A(θ)−C(θ))i`

∂θj
.

∆3 = εEρ
[
(I +∇((A−C)f))

−1
: {(A−C)∇g}

]
(49)

= εEρ
[
(I +∇((A−C)f))

−1
(A + C) : ∇g

]
(50)

= εEθ∼ρ

[
(I +∇((A(θ)−C(θ))f(θ)))

−1
(A(θ) + C(θ)) : 〈∇1k(θ, ·),g(·)〉HD

]
(51)

= ε

〈
Eθ∼ρ

[
(I +∇((A(θ)−C(θ))f(θ)))

−1
(A(θ) + C(θ))∇1k(θ, ·),g(·)

]〉
HD

, (52)

∆4 = εEθ∼ρ

(I +∇((A(θ)−C(θ))f(θ)))
−1︸ ︷︷ ︸

Q(θ)

: M

 (53)

= εEθ∼ρ

D∑
i,j=1

QijMij = ε
〈
Eθ∼ρ

D∑
i,j=1

Qijh
(ij)k(θ, ·),g(·)

〉
HD (54)

It is straightforward that when f = 0,

∆4 = εEθ∼ρ
〈 D∑
i=1

h(ii)k(θ, ·),g
〉
HD , (55)

D∑
i=1

h
(ii)
` =

D∑
i=1

∂(A−C)i`
∂θi

(56)

=

D∑
i=1

∂(A + C)`i
∂θi

= ∇ · (A + C). (57)

Using the definition of ∆i, i ∈ [4], we can derive the GSVGD particle update as f = 0, confirming
the functional derivative coinciding with the GSVGD particle update.

2.4 Projection onto RKHS

To prove vA,C
H is the projection of vA,C ontoHD, we start from the inner product on L2

ρ, such that
∀v ∈ HD

〈vA,C(·|ρ),v〉L2
ρ

= Eρ [(A + C)∇ log π/ρ · v] (58)

= Eρ [(A + C)∇ log π · v]− Eρ [(A + C)∇ log ρ · v] (59)

= Eρ [(A + C)∇ log π · v]−
∫

[(A + C)∇ρ · v] dθ︸ ︷︷ ︸
weak derivative of measures

(60)

= Eρ [(A + C)∇ log π · v] + Eρ

∑
i,j

∂((Aij + Cij)vi)

∂θj

 (61)

= Eρ [{(A + C)∇ log π +∇ · (A + C)} · v] + Eρ

∑
i,j

(Aij + Cij)∂vi
∂θj


(62)

=
〈
Eθ∼ρ {(A(θ) + C(θ))∇ log π(θ) +∇ · (A(θ) + C(θ))} k(θ, ·),v(·)

〉
HD
(63)

+ Eρ

∑
i,j

(Aij + Cij)∂vi
∂θj

 , (64)
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Eρ

∑
i,j

(Aij + Cij)∂vi
∂θj

 = Eθ∼ρ

∑
i,j

(Aij(θ) + Cij(θ))
∂vi(θ)

∂θj

 (65)

= Eθ∼ρ

∑
i,j

(Aij(θ) + Cij(θ))
〈 ∂

∂θj
k(θ, ·),vi(·)

〉
H

 (66)

=

〈
Eθ∼ρ [(A + C)∇k(θ, ·)] ,v(·)

〉
HD

. (67)

Therefore, confirming that ∀v ∈ HD, 〈vA,C,v〉L2
ρ

= 〈vA,C
H ,v〉HD .

2.5 Interpreting GSVGD as MCMC dynamics of π⊗N

Additionally, we can view GSVGD with with constant C matrices and N particles as the mean-field
limit of a MCMC dynamics inferring the product target measure π × . . .× π︸ ︷︷ ︸

N

= π⊗N , a rather trivial

extension of the discussion in (Gallego and Insua, 2018). The A(θ⊗N ),C(θ⊗N ) ∈ RND×ND is
defined as

Ãi,j =
1

N
k(θi,θj)

A(θi) + A(θj)

2
, (68)

C̃i,j =
1

N
k(θi,θj)

[
C +

A(θj)−A(θi)

2

]
. (69)

We can verify that the MCMC dynamics

θ̇
⊗N
t =

1

π(θ⊗N )
∇ ·
(
π(θ⊗Nt )

(
Ã(θ⊗Nt ) + C̃(θ⊗Nt )

))
+

√
2Ã(θ⊗Nt )dWND, (70)

takes the invariant measure π⊗N . And that the drift coefficient corresponds to the GSVGD
particle update. Furthermore, this framework accepts non-constant C matrices when Ãi,j =
1
N k(θi,θj)

[
A(θi)+A(θj)

2 +
C(θj)−C(θi)

2

]
remains positive semidefinite.

It is worth noting that as N → ∞, the drift coefficient goes to 0, making GSVGD the mean-field
limit of such dynamics.

2.6 Stochastic particle optimization sampling (SPOS) as MCMC dynamics

Viewing GSVGD as the mean-field limit of MCMC dynamics yields additional insights. For example,
Zhang et al. (2020) propose stochastic particle optimization sampling in the form of

θ̇
⊗N
t =

1

π(θ⊗t N)
∇ ·
(
π(θ⊗Nt )

(
K⊗ I + σ2I

))
+
√

2σ2IWND, (71)

where Kij = k(θi,θj). Formally, SPOS combines the SVGD particle update with a step of (multi-
chained) Langevin diffusion. The SPOS particle update does not conform to the standard formulation
of MCMC dynamics, yielding a biased sampling algorithm. However, such bias can be fixed by

changing the diffusion coefficient into
√

2
(
K⊗ I + σ2I

)
. Translating into discretized dynamics,

SPOS generates samples from the target measure when the injected noise is correlated across particles.
However, the correlated injected noise has variance approaching zero as N →∞.

2.7 Recovering SVGD with GFSF

While SVGD takes the form of gradient flow on (P(Ω),WH), we can connect SVGD with other form
of smoothing discussed in Liu et al. (2019a), noted as gradient flow with smoothed test functions
(GFSF). GSVGD taking A = K⊗ I,C = 0 gives

vA,C = K⊗ I∇ log π⊗N/ρ⊗N = K⊗ I∇ log π⊗N −K⊗ I∇ log ρ⊗N . (72)
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Using the GFSF estimation of ∇ log ρ 1, the term K ⊗ I∇ log ρ⊗N yields ∇ ·K, recovering the
SVGD particle update. Viewing PARVI in the product space yields additional insights of connecting
different smoothing methods. Analogously, we can use the generalized Stein’s identity (Gorham
et al., 2019) to arrive at a GFSF smoothing of GSVGD.

3 Additional discussion

3.1 Formulating Riemannian Langevin diffusion as gradient flow on (P(Ω),W2,A)

With C = 0 and positive definite A, we can generalize the 2-Wasserstein metric in the Benamou-
Brenier form (Benamou and Brenier, 2000)

W 2
2,A(ρ0, ρ1) = inf

φ,ρt

{∫ 1

0

∫
〈∇φt,A∇φt〉dt : ρ̇t +∇ · (ρtA∇φt) = 0

}
. (73)

The Onsager operator of W2,A takes the form G(ρ)−1 : φ 7→ −∇ · (ρA∇φ). MCMC dynamics such
as Riemannian Langevin diffusion (Girolami and Calderhead, 2011) can be interpreted as a gradient
flow of KL [ρ ‖ π] on W2,A: ρ̇t = ∇ ·

(
ρtA∇ δKL[ρt ‖ π]

δρt

)
= −G(ρt)

−1 δKL[ρt ‖ π]
δρt

, circumventing
the necessity of defining a projection pρ onto the tangent space of (P(Ω),W2).

3.2 How to accelerate PARVI for underdamped Langevin diffusion?

Ma et al. (2019) argue that the underdamped Langevin diffusion with A =

(
0 0
0 AI

)
,C =(

0 −I
I 0

)
is an analog of Nesterov’s acceleration of the overdamped Langevin diffusion A =

I,C = 0, and such analog still stands for their PARVI variants. Similar to results presented in
MCMC research (Mou et al., 2021), we can construct PARVI with third-order Langevin diffusion

A =

(
0 0 0
0 0 0
0 0 AI

)
, C =

(
0 −I 0
I 0 −γI
0 γI 0

)
, equivalent to applying a higher-order momentum

method in gradient descent.

3.3 Momentum resampling

One unexplored aspect of particle variational inference with momentum variable is the possibility of
turning PARVI into a proper sampling algorithm, one feat unattainable by de-randomization of LD,
as deterministic optimization of N particle can only produce N samples. With the introduction of
momentum variables, it is possible to periodically resample the momentum variable to obtain more
samples from the target distribution – in practice, it involves combining the deterministic particle
updates with a jump process that routinely samples from the marginal distribution of momentum.

Aside from possibly obtaining more samples, resampling during the optimization can also speed
up convergence to the target distribution. As we know the marginal distribution with respect
to r, resampling of momentum variables reduces the KL-divergence between ρt and π, as
KL [ρt(θ)π(r) ‖ π(θ)π(r)] ≤ KL [ρt(θ, r) ‖ π(θ)π(r)]. It remains a theoretical and empirical open
question whether resampling momentum can speed up convergence.

4 Experiment details

4.1 Toy experiments

The 2-dimensional likelihood of the toy experiments used in this paper takes the form
of π ∝ 1

3

∑3
i=1 exp

(
−x

4

10 + (ziy−x2)2

2

)
, zi = {−2, 0, 2}, and the original particle loca-

1formally, GFSF is equivalent of applying the Stein gradient estimator (Li and Turner, 2017) without
regularization.
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tions are initialized as
(
x
y

)
∼ N (0, 0.01I). We can use the energy function U(θ) =

log
(

1
3

∑3
i=1 exp

(
−x

4

10 + (ziy−x2)2

2

))
to construct Riemannian samplers in the experimental set-

ting consistent with Ma et al. (2015), where Fisher information metric matrix is defined as
G−1(θ) = D

√
|U(θ) + C|, U = 1.5, C = 0.5. In Riemannian Stein variational gradient descent

(SVGD) (Liu and Zhu, 2017), we follow the practice of Riemannian LD (Girolami and Calderhead,
2011) and parametrize A(θ) = G−1(θ),C(θ) = 0; In Riemannian SGHMC, we follow (Ma et al.,

2015) parametrize A(θ) =

(
0 0
0 G−1(θ)

)
,C(θ) =

(
0 −G−1/2

G−1/2 0(θ)

)
.

4.2 Bayesian neural network experiments

In Bayesian neural network for regression, we use a standard structure of 1 hidden layers with width
50, along with a conjugate prior on the precision parameter of its weight priors. Specifically, we have

y ∼ N
(
W>

2 ReLU(W>
1 x + b1) + b2, γ

−1
)
, (74)

W1,b1,w2,b2 ∼ N (0, λ−1I),W1 ∈ RD×50,b1 ∈ R50, (75)
γ, λ ∼ Gamma(1, 0.1). (76)

The weights Wi are initialized with glorot normal distribution and bi are intialized with zero.

The hyperparameters for the methods applied in the paper are selected by cross-validation in the fol-
lowing fashion: the learning rate η is selected in η ∈ {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2};
for methods involving additional momentum variables r, we adopt the momentum interpretation of the
underdamped Langevin dynamics (Chen et al., 2014) and select momentum term α ∈ {0.01, 0.1, 0.5}
2; for thermostat-type samplers, we additionally tune the precision parameter of the temperature
variable, with µ ∈ {0.1, 1.0, 10.0}. For methods involving kernel parameters, we parameterize a
squared exponential kernel with the median method (Liu and Wang, 2016). We take symmetric
splitting for methods involving momentum variables.

For the 6 datasets from UCI repository, we take a 90%/10% training/test partition of the data; for the
6 medium-sized datasets (except for “year” and “protein”), we take 20 different training / test splits,
6 splits for “protein”, and 6 different initializations with the “year” dataset, as the split is fixed. We
implemented the models using JAX (Bradbury et al., 2018), and ran the experiments on Nvidia Volta
V100 GPU nodes. We present the technical formulation of the methods and its running time in Table
1 and Table 2, respectively.

Method A C π hyperparameters Reference

LD I 0 π(θ) η = ε Welling and Teh (2011)
SVGD I 0 π(θ) η = ε Liu and Wang (2016)
Blob I 0 π(θ) η = ε Chen et al. (2018)
DE - - π(θ) η = ε, α Lakshminarayanan et al. (2017)

SGHMC-Blob
(

0 0
0 AI

) (
0 −I
I 0

)
π(θ)N (r|0, σ2I) η = ε2σ−2, α = εσ−2A Liu et al. (2019b)

SGHMC-Stein
(

0 0
0 AI

) (
0 −I
I 0

)
π(θ)N (r|0, σ2I) η = ε2σ−2, α = εσ−2A this work

SGNHT

(
0 0 0
0 AI 0
0 0 0

) 0 −I 0
I 0 (µσ2)−1diag(r)
0 −(µσ2)−1diag(r) 0

 π(θ)N (r|0, σ2I)N (ξ|A1, µ−1I) η = ε2σ−2, α = εσ−2A,µ Ding et al. (2014)

SGNHT-Stein

(
0 0 0
0 AI 0
0 0 0

) 0 −I 0
I 0 (µσ2)−1diag(r)
0 −(µσ2)−1diag(r) 0

 π(θ)N (r|0, σ2I)N (ξ|A1, µ−1I) η = ε2σ−2, α = εσ−2A,µ this work

Table 1: An overview of the parameters in the methods used in the BNN experiments paper, including
the (possibly augmented) target distribution, the parameterizations of MCMC dynamics, and the
tunable hyperparameters (step size η, momentum term α and precision term for the temperature
variable µ).

4.3 Additional experiments

Apart from the standard from of GSVGD and Blob methods in the paper, we experimented Bayesian
neural network with particle-based variational inference (PARVI) consistent with the pSGHMC-det

2It is notable that the step size ε in the discretization of dynamics does not directly correspond to the “effective
learning rate” in SGHMC-type samplers.
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boston concrete energy kin8nm power yacht year protein

LD 124.88(22.68) 91.40(45.34) 98.17(41.45) 131.89(21.67) 131.01(14.20) 86.91(42.83) 811.08(140.66) 559.76(9.84)
SVGD 75.76(10.04) 75.31(13.82) 67.70(19.69) 87.03(3.68) 81.98(10.59) 71.11(10.14) 704.39(30.75) 348.16(16.67)
Blob 79.69(2.25) 75.39(14.36) 66.79(19.86) 83.55(10.36) 75.35(18.10) 66.94(18.52) 708.06(16.48) 352.89(11.15)
HMC-Blob 76.76(20.62) 80.95(19.51) 83.31(16.53) 93.61(13.63) 87.99(16.13) 73.33(22.05) 874.68(165.39) 409.75(13.78)
SGNHT 231.86(55.61) 245.63(25.54) 252.53(3.79) 256.84(2.74) 232.18(60.56) 222.90(59.43) 1326.01(197.56) 1016.57(79.80)
DE 76.76(10.52) 75.53(14.57) 75.30(7.04) 80.76(13.80) 79.26(15.56) 70.80(13.89) 709.06(23.05) 351.96(13.21)
SGHMC-Stein 89.03(10.60) 91.82(8.58) 85.50(13.45) 95.02(9.94) 90.87(9.73) 81.02(16.11) 761.57(119.60) 395.49(14.61)
SGNHT-Stein 101.22(3.27) 94.33(13.16) 89.52(18.69) 86.18(19.88) 96.86(14.21) 89.98(13.62) 879.78(14.91) 429.61(13.22)

Table 2: Mean (standard deviation) of running times for BNN experiments measured in seconds. All
methods are run for 5,000 iterations (first 6 columns, averaged over 20 runs) and 20,000 iterations
(last 2 columns, averaged over 6 runs), respectively.

formula in Liu et al. (2019b), and the corresponding Stein version with reproducing kernel Hilbert
space (RKHS) projection. The experiment results do not show clear difference from the standard
form. From the perspective of Hamiltonian dynamics, we can view underdamped Langevin dynamics
(LD) and this variant of PARVI both as Hamiltonian Monte Carlo with a “continuous resampling” of
the momentum variable: underdamped LD resamples momentum by running overdamped LD on the
momentum variable; its PARVI variant runs SVGD (Stein) or Blob variant as continuous resampling.
While the particles do not converge to an equilibrium, the marginal distribution ρt remains unchanged.

boston concrete energy kin8nm power yacht year protein

SGHMC-Blob* 11.68(39.93) 0.21(0.45) 0.00(0.00) 0.07(0.00) 0.05(0.00) 0.00(0.00) 0.64(0.00) 0.49(0.01)
SGHMC-Stein* 0.12(0.07) 0.09(0.02) 0.00(0.00) 0.07(0.00) 0.05(0.00) 0.00(0.00) 0.65(0.00) 0.48(0.01)

Table 3: Mean (standard deviation) of mean squared error with PARVI experiment: the experimental
setting is the same as the standard BNN experiment.

boston concrete energy kin8nm power yacht year protein

SGHMC-Blob* -2.58(0.12) -2.93(0.08) -0.49(0.10) 1.23(0.02) -2.77(0.04) -0.70(0.36) -3.58(0.00) -2.87(0.01)
SGHMC-Stein* -2.54(0.28) -2.98(0.09) -0.32(0.24) 1.25(0.02) -2.78(0.03) -0.76(0.53) -3.59(0.00) -2.87(0.01)

Table 4: Mean (standard deviation) of text log-likelihood with PARVI experiment: the experimental
setting is the same as the standard BNN experiment.
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